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Résumé. 2014 Nous montrons dans des modèles unidimensionnels que la sélection du nombre d’onde dans des

structures cellulaires est due aux conditions aux limites qui se font sentir dans toute la structure. Différentes pré-
dictions sont faites en ce qui concerne la dépendance du nombre d’onde dans la longueur de la solution et dans le
paramètre de contrôle.

Abstract. 2014 We show on one-dimensional model equations that the wavelength selection in cellular structures is
due to the effect of boundary conditions that propagate throughout the whole structure. Various predictions are
made concerning the dependence of the wavenumber as a function of the total length of the solution and of the
control parameter.
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1. Introduction. - In his famous article on the
convection currents in a horizontal layer of fluid,
Lord Rayleigh [1] not only solved the linear problem
in a fluid between differentially heated horizontal
plates, he also settled the problem of the pattern
selection as follows : « the cells of Bénard [2] are then
reduced to infinitely long strips, and, when there is

instability, we may ask for what wavelength the

instability is greatest. The answer can be given under
certain restrictions, and the manner in which equili-
brium breaks down is then approximately determined.
So long as the 2-dimensional character is retained,
there seems to be no reason to expect the wavelength
to alter afterwards ». If one interprets this suggestion
of Lord Rayleigh as meaning that the wavenumber
selected is the one with the maximal linear growth
rate, it is in contradiction with the most careful obser-
vations, made in particular by Koschmieder [3] :
beyond the onset of convection, there is a natural

tendency for the wavelength to increase, at least for
large Prandtl number fluids where most experiments,

(*) Laboratoire de Physique du Solide, ENS, 24, rue Lhomond,
Paris, France.

by visual observation of the convective pattern are
done.

This wavelength increase is, of course, not seen in
experiments where the wavelength is imposed from
the outside, for instance by a periodic horizontal
differential heating [18]. This last circumstance is

likely a source of misundérstanding : a confusion seems
to exist between the problem of stability of patterns
with an imposed wavelength, and the problem of the
« natural » evolution of a pattern without, a priori,
any imposed structure, except (possibly) the one due to
the vertical boundary conditions. 

’

Up to now, the origin of this wavelength increase
remains unclear. However it is of interest tô understand .
it as experiments on convection in various fluids
reveal [4] that, near the onset of convection, a low
frequency turbulence develops in large structures,
indicating that the selected convective pattern might
be spontaneously unstable with respect to slow

displacements of the structure [5]. A source of difficulty
here could be the well known fact [6] that the Ray-
leigh-Bénard convection at threshold takes place after
a normal (or « supercritical ») bifurcation, and this
implies in a certain sense that the convective flow must
be stable in slightly supercritical conditions. A careful
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examination of the arguments leading to this conclu-
sion show that its truth requires either the assumption
that the pattern is infinite and periodic with a definite
and imposed period, or that convection takes place in a
finite box. Of course, experimental convection takes
place in finite (even large) boxes, but the region of
stability that is determined by the general theorems of
stability of supercritical bifurcations shrinks to zero
(in the range of supercritical Rayleigh number) as the
size of the system goes to infinity. Essentially, this sort
of theory is limited by the phase motions, yielding very
small rates of change of order L- 2 when the size of the
pattern L goes to infinity. The question of these phase
motions in cellular flows has been considered else-
where [7] and it has been shown that they are described
by diffusion equations, some diffusion constant being
negative if the underlying structure is unstable against
this sort of motions. Daniels and Hall and Walton
have considered [21] the effect of a small heat transfer
through lateral boundaries. This makes the sharp
transition from conduction to convection disappear.
In that follows we shall not consider this sort of effect,
and limit ourselves to models with a sharp transition.
The present paper reports on studies of model

equations in one-dimension. This was made with the
intent of showing that wavelength selection is likely
due to boundary effects (1). This has been felt by a
number of investigators in the field, although it does
not seem to have been already stated explicitly in the
literature. That the wavelength selection originates
from boundary effects is, after all, not surprising.
If one thinks of macroscopic crystals in their ground
state under a positive pressure, the interparticle spacing
is a well defined function of this external pressure.
However, as we shall see in our model equation, a
quite subtle competition may take place between
the tendency to accomodate the boundary conditions
and the tendency to fall into the ground state (when
this notion has a meaning), which implies a well
defined interparticle spacing.
We do not claim to have solved the general problem

of wavenumber selection in cellular flows, but at least
we give a rather precise explanation of what happens
in one model. In the conclusion, we shall discuss

possible implications of our results, regarding in

particular the obvious limitations of models with

respect to the real (and thus much more complicated)
situations.
The rest of this paper is organized in four parts,

of which we shall now give some details. We shall
simultaneously present some of the ideas to be deve-
loped.

In part 2, we introduce two model equations
(models « a » and « b ») and outline some of their
elementary properties. The models considered are two

(1) This effect was recently discussed by Cross et al. [8], for both
the Boussinesq equations and the models of reference [5] considered
here.

non linear partial differential equations for a function
A(x, t). They are of first order with respect to t (« time »)
and of fourth order with respect to x (« space »).
These equations depend on a control parameter
denoted as e. The control parameter e is defined in
such a way that if it is less than zero, the only stable
solution is A = 0, although for e a slightly larger
than zero, steady (= time independent) solutions

periodic with respect to x exist. These steady solutions
are studied in the rest of the paper by perturbation
theory near e = 0.

In part 3, we consider how steady periodic solutions
« accomodate » the boundaries, the boundary condi-
tions being chosen to be A = ôA/ax = 0. The periodic
solutions do not fit the boundary conditions, and a
boundary layer joins the boundary to the periodic
pattern if its size is much larger than the space period.
We first discuss the existence of this boundary layer
from a geometrical point of view. Considering only
steady-state solutions (as done in the rest of the paper),
we find for models a and b two systems of fourth order

ordinary differential equations (with respect to x),
which can be also considered as four non linear

differential equations of first order. We discuss the
« phase portrait » of the corresponding flow in 1R4.

Steady semi-infinite solutions exist which satisfy
the boundary conditions at x = 0 (A = ôA/ôx = 0)
and are periodic as x --&#x3E; + oo. These solutions are

given by the intersection of two surfaces in 1R4 : one
of these surfaces is defined by the boundary conditions,
the other one is the stable manifold of one of the closed

trajectories describing periodic solutions : any point
starting in this manifold tends asymptotically to the
periodic solution. This geometrical approach has been
followed to obtain numerical results giving what is
drawn in figures 1 to 3a : considering the four first
order differential equations (with respect to x), we
have sought the initial conditions yielding steady
solutions either in a finite (and large) box or in a semi-
infinite layer.

Subsection (3 .1. a) is self contained, and is devoted
to the computation (near a = 0+) of the band of
wavenumber selected in semi-infmite solutions for
model a. This perturbative calculation uses two

ingredients : the steady solutions are the Euler-

Lagrange of a functional V[A]. Accordingly an inva-
riant quantity exists, formally analogous to an energy,
v being the Lagrange function. This invariant,
denoted as K, depends on the local values of 4 and its
first, second and third derivatives, and it satisfies

dK/dx = 0. Indeed this relates the solution A(x) at
the boundary and in the bulk, as K must be constant
everywhere. The perturbative computation of K for
periodic solutions far from the boundary is trivial
near E = 0+. The computation of K at the boundary
is done by means of envelope theory [14]. Near the
boundary, the amplitude of the solution is small and
the linear approximation is valid, so that the solution
is readily obtained except for a general multiplicative
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factor. This factor is found (near e = 0+) by a matching
condition. The slope of the envelope at the boundary
is determined in two different ways : first it is the deri-
vative of the hyperbolic tangent of the envelope
theory, and it is also given in the linear approximation,
since this gives the solution as a linear superposition
of two oscillations with opposed amplitudes and very
close wavenumbers. Once the amplitude of the linear
solution at the boundary is fixed, the boundary condi-
tions leave an undetermined phase called (p. When this
phase changes a corresponding variation is induced
into the invariant K. As K at infinity (and for e fixed)
depends on the wavenumber only, the variation of cp
is transformed into a variation of the wavenumber at
infinity. This is the way in which the wavelength is
selected in a narrow band for model a.
Wavenumber selection in model b is examined in

subsection (3.1. b). The computation is very similar
to the one of subsec. (3.1. a), except that it requires an
« adiabatic » invariant instead of the exact invariant K
of a model a. The derivation of this invariant is given
in appendix B.

In subsec. (3.2), we use the results of subsec. (3. 1)
to determine the pattern selection in finite boxes of
length L (instead of semi-infinite geometries consi-
dered previously). The method used for this is the

study of solutions at fixed e when L increases. It is
based upon an examination of figures 3a and 3b.
One of the results is that at small E and large eL, the
number of steady solutions is of order (EL).

In section 4 we present some remarks concerning
various points raised by our results. For more realistic
problems, such as the wavelength selection for Ray-
leigh-Bénard convection in large boxes, we show that
there is some indication that the boundary layer is
unstable against a localized cross-roll instability
when the rolls are parallel to this boundary. This
probably makes quite difficult a theoretical approach
to wavenumber selection in this case, if one follows
the method of the present paper. However, in elasticity
problems [19] or for free thermoconvection in porous
layers [20], it is possible, at least in principle, to test
the ideas presented ip the present paper.

2. Models and their elementary properties. - For
a reason which will appear later we have restricted oùr
attention to two models of cellular flow. As empha-
sized elsewhere [7], these models imply obvious
idealizations with respect to realistic equations for
cellular flows. We shall refrain for the moment of

discussing the consequences of this idealization and
give the model equations.

Let A(x, t) be a (smooth) function of x (space) and
t (time). We consider the non linear partial differential
equations 

where Au --- ôA/ôu (u = x, t), 03A903B5 = e - (8;2 + q’)’,
qo being an (arbitrary) wavenumber. These equations

have to be supplemented by boundary conditions
[except, of course, for the case of periodic solutions
such that A(x + L) = A(x) Vx], but we shall not

consider this last case, which is markedly different
of the one which we shall consider. We have chosen to

study these equations for 0  x  L with the b.c.

Consider now, as usual, steady solutions of (1) in
the form sin (qx). One readily finds that fluctuations
of this form are linearly unstable around the steady
solution A = 0 in the range

Of course, these solutions do not fit the b.c. whatever L

is, and we shall be concerned now with the influence
of b.c.
In the limit of an infinite one-dimensional pattern,
the bifurcation from the solution A = 0 to a non
zero solution as e becomes positive is supercritical,
since a steady non zero solution may be found by
perturbation in the range e &#x3E; 0 only. The perturbative
construction of these steady solutions is quite ele-

mentary and need not to be explained here.
One finds from (la)

where

and from ( 1 b)

where

In all these expansions y(z) is the linear damping
(or growth) rate of fluctuations with wavenumber
z : y(z) - E - (z2 - qÕ)2, and the perturbation solu-
tion requires 0  y(q)  1.

It is of interest to notice that, despite the fact that
the non linear term is formally quadratic w.r.t. A
in (1b), no subcritical solution exists [6]. This is
connected with the peculiar form ôf this quadratic
term, allowing an « energy principle » : : multiplying
both sides of (1b) by A and integrating either over a
space period (in the case of periodic solution in an
infinite layer) or over the « length of the box » (in
the case of a solution between 0 and L), one eliminates
by partial integration the contribution of the non
linear terms to the time derivative of the energy :
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if a is negative, the operator 03A903B5 is negative, and A2 dx

can only decrease.
To prove in general that (la) has a supercritical

bifurcation from the rest state A = 0, is almost as

easy, since one adds - A4 dx to the r.h.s. of (3),
which is negative. J
Owing to its peculiar form (la) has strong stability

properties. These stability properties are typical of a
quite general class of such non linear equations,
where A 3 is replaced b - ’ U . being an even
smooth function with an absolute minimum at zero.
Instead of considering this general class of systems,
at the price of awkward algebraic manipulation, we
have chosen to look at this peculiar case ; the exten-
sion to a more general U is obvious. Let us define
the functional

Thus (la) can be put into the form

where 03B4/03B4A is the Fréchet derivative. The above form
of the equation of the motion shows that V[A]
decreases monotonously as time goes on (this reason-
ing is valid either for solutions on a bounded interval
or for solutions with a prescribed space period). To
show that V [A] is bounded from below, let us define
the L4 norm of A as

From the Cauchy-Schwarz inequality

and

furthermore since

one has

and

One of the purposes of this paper is to establish
the nature of the ground state ; that is, the shape of
A making V minimum, given L and a. This ground
state is of course a stable steady state, and the exis-
tence of a variational formulation for (la) excludes
the possibility of sustained oscillations.
From this point of view, the case of (lb) is much

more generic as no Lyapunov functional exists for
e &#x3E; 0. In particular, numerical experiments [9] on
( 1 b) indicate that sustained oscillations appear spon-
taneously in large structures beyond some well
definite threshold. This shows that no «hidden»
variational formulation exists for (1b). One may
think that this is also the case for the non linear
time dependent equations of hydrodynamics. This
point is of interest, since the idea that some sort of
« preferred » wavenumber exists for cellular flows in
supercritical conditions should result from a varia-
tional formulation of these hydrodynamical equations.
For instance, it has often been suggested that the
convection flow in R.B. experiments tends to maxi-
mize the heat flow.

3. Outline of the calculations. Results. - Having
in mind the results of dynamical simulations of (1a
and b) we have asked if the final steady state obtained
near e = 0+ was a consequence of some dynamical
selection prôcess, connected for instance with the

stability of the structure of the steady solutions of
( 1 a and b) in a large box. That is why we have tried
to find the whole set of steady solutions in a large
box, without worrying about their dynamical sta-

bility. On the basis of numerical calculations, it was
shown in reference [5] that a selected steady one-
dimensional pattern may be linearly unstable against
some sort of perturbations. This gives a concrete
support to the idea [5] that the low frequency turbu-
lençe observed [4] near threshold in Rayleigh-Bénard
convection is due to the selection of a structure with
an unstable wavenumber.
The steady solutions are the solutions of the fourth

order ordinary differential equations

with the b.c. A = Ax = 0 at x = 0 and L.
A simple calculation shows that a non trivial solu-

tion of (6) exists if L is larger than a quantity of order
8-1/2 near E = 0.
We have considered (6) as defining a flow in R’ :

consider x as a time and define the vector (A1, A2,
A3, A4) that depends on this « time » as
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Due to the boundary conditions, we are looking for
solutions of this system starting at « time » zero from
the 2-plane A1 = A2 = 0 (which will be called P2
from now on), and returning after a « time » L.

Among these solutions, a particularly important
class is made of chat can be called the « regular »
ones. They are as follows : boundary layers (of width
E-l/2 near E = 0) exist near x = 0 and near x = L,
and in between the regular solution possesses very
regular oscillations. At large L, the wavelength of this
solution can be appreciated with a relative accuracy
much better than L -1, contrary to what could be
expected from simple arguments. This is because the
convergence to the regular oscillations from the

boundary layer to the bulk is exponential, so that
perturbations in the bulk due to finite size effects
are of order exp - (k£il2 L), where k is some constant.
In computer experiments, the indeterminacy in thé
wavelength due to finite size effects becomes, as

L grows beyond, say ten times qü 1, of the same
order or smaller than the round off errors and/or
the finite mesh effects.

Before examining in the following subsection 3.2 the
construction of solutions for a large finite L, we
shall look in subsection 3. 1 at the problem of solutions
in a half-infinite line ; that is, solutions starting from
the 2-plane A 1 = A2 = 0 and tending asymptotically
to a periodic solution after some transients. Solutions
with large, but finite L, are made in some sense by
gluing together two half-infinite solutions.

3.1 HALF-INFINITE SOLUTIONS. - In what follows,
we call simple closed trajectory (in short SCT) the
closed trajectories in 1R4 with a wavenumber in the
unstable band ](q 2 _ gl/2)1/2 (q2 + El/2)1/2[; they
are « simple » in the sense that they can be obtained
near e = 0+ by perturbation, as shown in equations (2a
and b). More complex closed trajectories exist. Near
threshold (e = 0+) they can be described as periodic
solutions of period of order qü 1, which are slowly
modulated with a much longer period. These modu-
lated solutions can be understood basically in the
same way as the half-infinite solution, the modulation
effect being due to the occurrence of internal boun-
daries, as it will be discussed thereafter.
To understand the way in which this SCT can be

reached. from the outside (in particular from the
« initial » or « bQundary » conditions A = Ax = 0,
that is from P2), one must first study the local struc-
ture of the flow around this SCT : do real trajectories
exist which are asymptotic to SCT ? Then one must
wonder if a subset of these asymptotic trajectories
cut the manifold of initial conditions, making pos-
sible a half-infinite solution. A picture of this situa-
tion is given in figures 1 a and 1 b, where we draw the
Poincaré map Qbtained from the cuts of trajectories
with the 3-space H3 defined in R4 by Ax = 0 and
qÔA’_Axxo.
The first question can be answered by determining

the local structure of the flow defined by (7) around

Fig. la. - This is the Poincaré map in the half space H3 . Line (a)
is made of the intersections of the SCT (simple closed trajectories)
with H3 . Line (b) is an example of the trace of a stable manifold
starting from a hyperbolic fixed point Fb and cutting the A = 0
plane, although line (c) is the trace in H3 of a stable manifold which
does not cut the A = 0 plane and thus does not belong to a SCT
attainable from PZ.

the SCT. This can be done, as explained in Appendix A
by a Floquet-expansion.
The main result of this calculation is that near

e = 0+, the SCT are hyperbolic in the region of
wavenumber stable with respect to the Eckhaus

instability [10] (no confusion must be made with the

Fig. lb. - Projection (parallel to the coordinate Axx) of the stable
(Ws) and unstable (Wu) manifolds of a hyperbolic trajectory. Ws
and Wu intersects at H which is a homoclinic point.
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Eckhaus instability, which refers to stability in the
usual sense - that is, for the time dependent equa-
tions - although we shall consider hereafter the stable
and unstable manifolds of SCT, for which the word
« stability » refers to these equations of motion in

x-space). For these hyperbolic SCT two surfaces (or
« manifolds » in the usual mathematical terminology)
exist, often called Wg and Wu (s and u for stable and
unstable respectively) with the following properties.

i) Both Wu and Ws are globally invariant under
the equation of motion (in the x-space of course) :
a point starting in Wu (or Ws) and obeying the equa-
tions of motion (7) remains forever in Wu (WJ. As
explained in Appendix A, Wu and W. are 2-dimen-
sional.

ii) The SCT is at one of the intersections of Wu
and Ws. There is a one-dimensional continuum of
such manifolds, as a 1-d continuum of SCT exists
for e &#x3E; 0; this continuum is indexed, for instance,
by the space period of any Eckhaus stable periodic
solution.

iii) Any trajectory starting in WS s (resp. Wu) is

asymptotic at x --&#x3E; + oc (resp. x - - oo ) to the

corresponding SCT.

As explained in Appendix A, this hyperbolic
character of the Eckhaus stable SCT is a simple
consequence of the real character of the corresponding
Floquet exponents.
As shown in Appendix A, the Eckhaus unstable SCT

are on the contrary elliptic : that is no neighbouring
trajectory tends to them. These elliptic trajectories
are surrounded by a continuum of nested tori, on
which neighbouring trajectories wind up undefini-
tely, as familiar now from the KAM theorem [11].
These elliptic SCT cannot be reached from initial (or
boundary) conditions which are not precisely on
them. In Aubry’s terminology [12], these elliptic tra-
jectories are not defectible, although the hyperbolic
ones are defectible, the defect being here simply the
transient going from rather arbitrary initial condi-
tions to a SCT.

However, as said above, the « local » structure of
the flow around a SCT is not sufficient to determine
if this SCT can be reached from P2. To be accessible
from a starting point in P2, a SCT must have its

stable manifold W. cutting it. As we shall see, this is
a very restrictive condition, and defines a narrow
band, of width of order e (near g = 0+) in the band
of hyperbolic SCT, which is itself of width of order El/2.
To detail and justify these last statements, it is

better to consider separately the case of (la) and ( 1 b).
3 .1. a. - Let us recall that we are solving the

fourth order ordinary differential equation

Multiplying by Ax, one finds the constant of the
motion

In the plane of the boundary conditions (A = Ax = 0)
the value of the constant of the motion is -1 A x, @ so
that, to be accessible from a starting point with

a SCT must have a positive constant K. This gives
a first condition of wavenumber selection.

In the present case, this condition seems to be
bound to the existence and form of the constant of
the motion. But this is only partly true. Actually, the
limit SCT defined in this way is reached from initial
conditions A = Ax = Axx = 0.

Let us consider the corresponding half-infinite

solution, say A (0) and let Il be the linear operator
obtained by linearizing the equations of motion
around A (0) : acting on an arbitrary function A(x),
A is defined as

As the equation of motion is autonomous with res-

pect to x (i.e. formally invariant in the change

Xo arbitrary length) AX(0) is formally an eigenfunction
of A with eigenvalue 0. But in general, A(O) does not
satisfy the prescribed b.c. This happens only when

that is if Ax(0) = 0 and corresponds precisely to the
limit SCT, as defined above.
As it is well known from bifurcation theory [13],

the occurrence of a non trivial kernel in a linearized
functional problem denotes a bifurcation. To make
this more concrete, one may reason as follows :
Each SCT has a two-dimensional stable manifold W,
and, as the 2-plane P2 is also 2-dimensional, the
intersection of a Wg and P2 is made of a finite number
of points, so that the 1-d continuum of Ws manifolds
cuts P2 along a curve, say r (or eventually along a
discrete set of curves) which may be drawn in the
cartesian plane (Axx, Axxx) (see Fig.. 3a).
The existence of the above bifurcation at Axx(0) = 0

implies that r is perpendicular to the axis Axx = 0
at their mutual intersection. This bifurcation also
occurs in any « generic » parametrization of the half-
infinite solutions (that is, near the bifurcation point,
the parameter must define a transverse intersection
at the critical point).

This bifurcation can be seen for instance in the

parametrization defined by the final wavenumber of
the SCT to which tends a half-infinite solution.
Thus it is natural to expect that one of the limit of
« attainable » SCT in the wavenumber space corres-
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ponds precisely to a starting point in P2 with Axx=O.
To understand the other limit for the selected wave-
number, one may use the following remarks.
One of the possible ways to attack the problem is

envelope theory [14, 8] ; near e = 0+ the solution of
the original equations is a product of a rapidly varying
function and of a smooth function. In the present
case, the rapidly varying function is periodic with
space period qo, and the sought form for A has the
form 

.

x(x) being slowly varying (on the space scale 2 trio)
and 03C8 an arbitrary phase. A straighforward calcula-
tion shows that x(x) obeys the equation

The solution of this equation describing the boun-
dary layer for the half-infinite problem is

it satisfies the boundary conditions (i.e. A = Ax = 0
at x = 0) if 03C8 = 0, the next derivatives being

In the geometrical formulation, envelope theory
allows one to know the stable (and unstable) mani-
folds of our particular SCT (the one with period qo).
A consequence of this calculation is the fact that

near e = 0+ the invariant K is of order E2, so that
near P2, the non linear term is negligible. This
allows one to determine the above defined curve r

(= the trace of the stable manifolds of the accessible
SCT in P 2)’

Actually, in the linear approximation, and for E

given, the general solution of (6) is a superposition
of two circular function with wavenumber

q± = (q 2 ± El/2)1/2 :

where ai, (pi are four arbitrary numbers. The boun-
dary conditions put the following conditions on
them :

and

This gives for qJ:t :

From q- z q + one gets the estimates :

so that

and

But a+ is constant on r (so that r is a circle in P2).
This can be shown as follows : the solution given
by (11) is made of fast oscillations of period qo times
a slowly varying envelope 2 a + sin (1(q + - q _ ) x).
This envelope must match the «outer» envelope
obtained from the non linear theory. The derivative
of the outer envelope at x = 0 is

so that the matching of this first derivative with the
above linear solution at x = 0 yields

As the non linear envelope equation differs appre-
ciably from (10) (that is obtained when the underlying
wavenumber is qo) only for wavenumber differing
from qo of an order El/2, and as we are interested in
wavenumber such that q - qo N 0(E), the above

matching condition shows that near e = 0+, the

quantity a+ does not depend on the wavenumber of
the SCT merging from an arbitrary point on r, so
that from (12), r is a circle.
To delineate now the range of wavenumbers of

the SCT merging from r, the simplest thing to do is
to use the invariant K and to connect it to the above
deduced value of a+.
A straightforward calculation gives the following

expression for the invariant computed for the SCT
as a function of the wavenumber :

where ô = q - qo, and where we have neglected
terms of order E3, eô2, ...

The limit value K = 0 is reached for ô - = - E3 ;
16 q3 ’

it corresponds in the band of accessible wavenumber
to the one with the boundary condition Axx = 0.
The other limit is reached for Axxx = 0, and cor-

responds to K = 2 a+ e, since it is realized for

and since K = § A x on P2. A simple substitution
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of the above defined a+ gives b+ = -1 E 3 for this16 qo
limit of the accessible wavenumber.
The main conclusion of these considerations is

that, near g = 0+, the half-infinite solutions have a
wavenumber in the band

where £5+(E) 2013 :t -3 [ 15] . The symmetry of
- e-+ + - 16 qo

this band is seemingly an accident. Moreover, all the
above considerations are in perfect agreement with
our numerical calculations (Fig. 2a).

Fig. 2a. - The band of wavenumbers ]q-(e), q,(e)[ for model (a)
in the cartesian plane (q, e).

3 .1. b. - Many results established for model (a)
remain a priori true for model (b) :

However, this is not true of the results which require
the formal existence of the invariant K.
However, for model (b), one may construct near

a = 1&#x3E;+ an adiabatic invariant playing the role of
the exact invariant of (a). Its derivation is given in
appendix B.
The final result is the value of the invariant [say

J(A)] : it is 2 Axx in P2 (and near Axx = Axxx = 0)
and 159 E 2 E + 4g 3 b for periodic solutions with
a wavenumber q = qo + l5 and 03B4~ E. As for model (a),
J = 0 defines one of the boundaries of the range of
accessible wavenumbers, this corresponds to

The other limit could be computed as for model (a)
by matching the inner and outer envelope. However

another more direct method can be used ; it consists
in matching the solution itself.
The envelope equation gives for the dominant

part of the solution A(x) = x(x) sin qo x, where x is
the solution of

The half-infinite solution of (14) is :

Atx = 0, A = Ax = Axxx = OandAxx = 3J2 eqo.
Thus the maximum value for the invariant P2 is

Once made equal to the expression for J as a func-
tion of c5( = q - qo), this gives the other limit value
for c5 [15], which is

Before to close this subsection, let us make two
comments :

i) Our numerical computation are in good agree-
ment with the calculated limits for the selected wave-
number (Fig. 2b).

ii) The recourse to the adiabatic invariant for

computing the solutions may be justified by the

following remark (based again upon our numerical
calculations). When we are looking at finite (but
large) values of L (which is the length of our « box »1
the solution must fall at x = 0 and x = L in P2 (in
more explicit terms, it checks the boundary condi-
tions at the two ends of the box) and we have verified
that - near e = 0+ - at both ends, the value of
Axx are either the same or opposite, which implies
that the adiabatic invariant is conserved throughout
the whole trajectory.

Fig. 2b. - Same as figure 2a for model (b).
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3.2 SOLUTIONS IN FINITE BOXES [FOR MODELS (a)
AND (b)]. - As alluded above, these solutions are
obtained by « gluing » together half-infinite solutions.
In geometrical terms [i.e. by considering trajectories
in R4, as defined by eq. (7)], the starting point is not
exactly on r (== the intersection of P2 with the
stable manifold WS of the SCT). Hence, after some
« time » the representation point on this trajectory
feels the instability of the SCT (this SCT defines the
bulk wavelength of the solution) and escapes along
the unstable manifold of this SCT. Of course, as the

length increases, this escape must occur later and
later so that the starting point must be closer and
closer to r.
The condition for a return to P2 defines a discrete

set of starting points in P2 for a given SCT (provided,
of course, that its stable manifold cuts P2) : for an
arbitrary starting point close to r, the set of escaping
points (i.e. the ones on Wu) is an arbitrary set of ite-
rates close to Wu as seen from the point of view of
the Poincaré map in H 3 . And, in general, none of
these iterates (which are on a line in H3 ) lies in P2.
The discrete set of points starting from and returning

to P2 after a stagnation in the vicinity of SCT, accu-
mulate on r in a geometric fashion. If one draws by
continuity (with respect to the wavenumber of the
SCT in the bulk) the set of starting points yielding
finite solutions, one gets in P2 two spirals starting
from the point Axx = A3 = 0, each spiral corres-

ponding to a solution of a given parity with respect
to the middle of the cell [see Fig. (3a)]. These spirals
converge exponentially toward the circle r, so that
the infinite number of neighbouring intercepts of one
of them with a line Axx = C correspond to the solu-
tion with a bulk wavenumber defined by the value
of the invariant. As one gets closer to the limit r it
is almost obvious that these successive intercepts

Fig. 3a. - The trace in P2 of the starting points for solution in a
finite box (for e = 0.1), (a) corresponds to odd solutions (with res-
pect to the middle of the box), (b) to solution without parity and
(c) to even solutions. The outside circle is the set of starting points
for half-infinite solutions.

correspond to a step increase of one wavelength for
the total length of the solution.
Accordingly, when one plots (at fixed e) the bulk

wavelength as a function of L, one gets in the (L, À)
Cartesian plane a curve oscillating between the two
extreme values of 03BB say À+ and À-, which are the
boundaries of the accessible band of SCT. As shown
on figure 3b, these oscillations are of period À +
(resp. À_) when the wavelength takes its maximum

(resp. minimum) value. By continuity, a branch of
solution in the (L, À) plane keeps its number of nodes
constant as far as its wavelength does not reach À +
as L grows. The lower limit of the branch corresponds
to Axxx = 0 in P2 ; this corresponds too to the maxi-
mum for the invariant and to the minimum for À.

As shown in figure 3b, the curve giving as a function
of L is obtained by joining all these branches and

accounting for the bifurcations between symmetric,
antisymmetric and nonsymmetric solutions.

As L increases at fixed E, the number of oscillations
in À+ grows as L/À+ although the number of oscil-
lations of period À- is L/ À-. Hence, the number of
intercepts of the multivalued curve À(L) with a ver-
tical line L = C is of order unity as E-l/2 &#x3E; L a- 1 ,
and becomes of order

Furthermore, solutions withôut symmetry with

respect to the middle of the box exist. They do not
appear by linear bifurcation from the A = 0 state,
unless e and L take special values for which the

ground state of the linear problem is degenerated.
These unsymmetrical solutions as viewed in P2
connect the successive crossing of the two above
defined spirals with the axis Axx = 0 and Ax3 = 0
(see Fig. 3a). They are defmed by initial conditions
on a set of more or less concentric closed lines tending
asymptotically to F as L increases.

In model (a), once a solution exists for (e, L) given,
it keeps the same wavenumber as e grows. This is
understood by looking at the (multivalued) plot of À
as a function of L.

In this plot, each solution is at the crossing of a
line L = C with a branch of solutions ; that is, a line
joining two extremal values of the wavelength À±(e).
As e increases, À+ increases and À- decreases. Thus,
the upper limit of all branches of solutions move
toward increasing L, and the lower limit toward

decreasing L. The ratio of the displacements of
these two limits is constant near e = 0+, as both ,1-
and À+ differ from 2 03C0/qo by a quantity of order e.

Thus the intercept of any branch with a line L = C
remains approximately at the same wavelength as E
increases. One may also notice that no new node
appears (or disappear) in a solution as far as it has
not reached one of the extremal values À:t.

In model (b) both 03BB + and À - increase as e increases,
and the upper and lower limits of any branch of
solution move towards decreasing L in the (L, 03BB)
plane [15]. There is a succession of bifurcations
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Fig. 3b. - This is the bulk wavelength of finite solutions as a function of their total length (again for e = 0.1). The wavelength oscillates
(for L large enough with respect to e - 1/2) between 03BB_ and À +. They are two oscillating curves corresponding to even and odd solutions
(with respect to the middle of the cell). For large L only even solutions are shown. s is for stable and u for unstable and a possible hysteresis
loop is drawn (e). For large L as the period of the upper oscillations (on 03BB+) is 03BB+ and of the lower ones is 03BB _, the whole representation curve

03BB(L) is twisted and the number of solutions for L fixed becomes of order

(L fixed, E increasing) each one occurring whenever
the upper or lower limit of a branch of solution
crosses the vertical line L = C. Thus the wavenumber
jumps (and decreases) by small increments, staying
close (at a distance - L-1) to the curve 2 03C003BB_1(E) in
the (q, e) plane ase increases. Actually a subcritical
bifurcation takes place whenever the line 2 03C003BB-1(03B5)
is reached in the (q, e) plane, and it is natural to
assume that the solution jumps toward the stable
solution with the nearest wavenumber (and so changes
its parity with respect to the middle of the cell). Each
jump corresponds to the destruction of a « roll »
near the boundary. This description is in fair agree-
ment with the often noticed (but yet unexplained)
fact that adjustment of the wavenumber occurs

through the nucleation or destroying of rolls at the
lateral boundaries.

Similarly, as e decreases in model (b) (but EL

remaining large) the wavenumber remains close to
the line 2 03C003BB+ 1(E). Of course various hysteretic pheno-
mena can in principle exist if e is varied in a more or
less complicated way.

4. Final remarks. - As conclusion we discuss a
few points raised by our results.

4. l. - First of all, owing to our use of a « geome-
trical » method, one may wonder how much our
results depend on peculiarities of our models. Actually,
the « realistic » problems of wavelength selection in
cellular flows implies at least the existence of another
space-dimension (for instance the vertical dimension
in gravity controlled Rayleigh-Bénard codvection) so
that the steady state equations are by themselves
(i.e. without time dependence) partial differential

equations (instead of ordinary differential equations
as in our models). We believe that this does not
affect our main qualitative results (i.e. that the lateral
boundary conditions control the wavelength and
restrict it to a band of width - e). Looking carefully

at our method, one notices that it uses essentially
the matching of the inner and outer envelope solu-
tion. And, precisely, this approach remains valid
even if there is a structure along the vertical direction :
this vertical structure accomodates slow changes in
the horizontal amplitude with a characteristic length
of the order of the wavelength. Thus one may forget
in some sense this supplementary dimension and
limit oneself to variations in the horizontal dimension.
However, it remains to carry out our analysis in

a « realistic » situation [19] (for instance the Rayleigh-
Bénard convection between rigid boundaries).

4. 2. - The idea of a realistic treatment of the

pattern selection in Rayleigh-Bénard convection could
be more elusive than it appears first. Actually it is
not at all certain that experiments without any

forcing process (as a horizontal temperature gradient
forcing a roll at lateral boundaries or an imposed
thermal grid) yield, near threshold, well defined rolls
parallel to the boundaries, when the aspect ratio in
rectangular geometry becomes large both along and
perpendicular to the rolls. This is precisely the confi-
guration which could be treated more easily by the
theory : i i.e. the case of long (in principle infinitely
long) rolls limited by rigid vertical boundaries. In
real experiments with large aspect ratio and without
forcing of the structure, most of the time complicated
patterns [16] are obtained ; these cannot nevertheless
be considered to be random, since they exhibit well
definite symmetries with respect to the box geometry.
To be truly « realistic » one should solve the (formi-
dable) problem of selection of these complicated
patterns. For the moment, the only reasonable guess
we can make about these structures is that near

threshold the rolls are always perpendicular (or
eventually parallel) to the boundaries. This is likely
a manifestation of the well known property that the
nodal lines of the solution of the Helmholtz equa-
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tion [(A + kô) 03C8 = 0] in a 2-d box with Dirichlet

boundary conditions (03C8 = 0) cut perpendicularly the
boundaries when their curvature is much smaller
than ko.

4.3. - The case of model (a) seems easier to treat,
at least at first glance, since one can assume that the
selected pattern is the one with the lowest potential.
From this point of view too this is certainly not a
good model for standard problems in cellular flows,
wherein the evolution equations (say the Oberbeck-
Boussinesq equations) have no variational structure.
One of the conclusion which can be drawn from our

calculations is that, among all steady solutions
without internal envelope node, one is the most
stable, having the minimum potential. Of course
this is the one with wavenumber closest to the optimal
wavelength [7] (at a distance of order L -1, as the
possible wavenumbers are quantized in the band

the quantum being L-1). However this does not
tell us that solutions with a wavenumber differing
from the optimal one are linearly stable or unstable.
It is possible that they lie at a local minimum of the
potential. Perhaps the height of the potential barrier
separating two such solutions is of order of the contri-
bution of one wavelength of solution to the potential.

Furthermore, the case of solutions in rectangular
boxes is much more complicated, as the minimum of
potential could be reached for a quite irregular
pattern. Solutions of the linear part of our equations
in rectangular boxes have been found [17] with
dislocations. These solutions in the non linear regime
could have a lower potential than the regular ones,
owing for instance to a lower contribution from the
lateral boundary layers. The fact that the rolls in

Rayleigh-Bénard convection tend to be perpendicular
to the larger side of the cell indicates that under

quite general conditions the « energy » of this confi-
guration is lower than the one of rolls parallel to the
vertical boundaries. Accordingly it could be better,
from this energetic point of view, to have rolls every-
where perpendicular to lateral boundaries, at the

price of a few internal dislocations. In two dimen-
sional elasticity theory, the energy of dislocations

grows as the logarithm of the sample size and this
should be negligible with respect to the boundary
energy, implying quantities of the order of the sample
size itself.

4.4. - Concerning the search of realistic boundary
conditions, another remark is of some interest. In
our model (a) (and this is presumably a quite general
feature), the boundary layer (when the rolls are

parallel to the lateral boundary) is unstable against
a localized (in the x direction, the roll and the lateral
boundary being parallel to the y direction) cross-
roll instability.

Let Ao(x) be a half-infinite solution for model (a)

limited at x = 0 by a rigid boundary (A = Ax = 0
at x = 0), and consider a linear perturbation in the
form eût a(x) sin qo y. This is made of rolls perpen-
dicular to the main rolls. If 0153(x) varies slowly with x
one may neglect its rapid variation, as implying
higher harmonics of a negligible amplitude near E = 0,
and obtain from (la) for this slowly varying part the
linearized equation

where we have written the unperturbed solution as

This equation is to be supplemented by the usual
b.c. a = ax = 0 at x = 0. Let us dimensionalize this

equation by x = X E-l/4 and put à = (JE, so that (15)
becomes

The largest eigenvalue is given by the Rayleigh-Ritz
formula

where and the maximum is

taken on test function satisfying the b.c. (a = oc,, = 0
at x = 0). It is easy to show that J tends to 1 as,6 tends
to zero.

If one neglects the tanh2 term in (16), 03C3 = 1 is
an eigenvalue with the eigenfunction x’. Inserting a
test function of the form X3 e-nx into the right hand
side of (17) one establishes the instability.

It should be also noticed that this sort of perpen-
dicular modulation of the boundary rolls is quite
often observed in experiments [16].

4. 5. - Last but not least, our model allows one
to check carefully many details of our analysis. In
particular, it confirms in a detailed fashion the vali-

dity of the amplitude approach for the questions
under consideration. Moreover our results are in

agreement with those already obtained [5] reaching
the final steady state in a box by numerical integra-
tion of the dynamics.
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Appendix A. - In this appendix, we explain how
to compute the tangent structure to the SCT in
model (a). This shows in particular that near e = 0+
the trajectories with a wavenumber in the Eckhaus
unstable range are elliptic, although the Eckhaus
stable ones are hyperbolic.

First of all, let us notice that for a given value of
the invariant K, they are either one, two or zero SCT.
The marginal case (one SCT) corresponds to the

boundary of the Eckhaus stability region. Near

e = 0+ the value of the invariant as a function of
8 = q - qo (q being the wavenumber of the solution)
is

The marginal case (one value of ô for one value of K )
corresponds to dK/d5 = 0, which gives

This is precisely the boundary of the region of Eckhaus
stability.
To find the tangent structure of the SCT, one

proceeds as follows. Let

be the steady function of (la) with wavenumber q.
One considers a small perturbation around this
solution of the general form

To proceed with the following calculation, it is useful
to notice a few formal relations.

Let us put v(x) = (0153 cos qx + fl sin qx) e03C3x and

ce and p arbitrary numbers. Thus

One is looking for a solution of

where A and A are given in (A. 2) and (A. 3).
By identification of the coefficients of the various

circular functions of qx in (A. 4) one gets homogeneous
systems in ao, âl, bo and bl. At the lowest order in e,
tris .. yields

and two similar relations. The whole (homogeneous) system has a non trivial solution if its determinant is non
zero, this giving an equation for J.

This equation has the form (by neglecting terms of higher order in E)

where

After expanding this equation, one finds that to
the lowest order in e, a pair of Floquet exponents
becomes equal to zero if e = 12 qô b2. This corres-
ponds to the value of b for which these Floquet
exponents change from real to imaginary values,
and precisely to the curve of marginal Eckhaus
stability in (q, e). Furthermore the fact that (A. 5) is
even with respect to 6 comes basically from the
space reversal symmetry of the original equation
that exchanges the stable and unstable manifolds,
and this shows that these manifolds are two-dimen-
sional.
The calculations in model (b) can be done along

very similar lines and show similarly that the elliptic-

hyperbolic boundary for the tangent structure of the
SCT is at the marginal Eckhaus stability. 

-

Appendix B. - In this appendix, we compute the
adiabatic invariant for the system (b) near e = 0+
[this invariant plays the same role as the exact inva-
riant K for the model (a) for the determination of
the accessible SCT]. Let J (A ) be this invariant. It
could be obtained in principle by multiplying the
equation

by Ax, integrating over one period 2 7ruz being
some « local » wavenumber of the solution which
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should not be strictly periodic either. In this way one
should get a small variation of J (A ), connected with
the weak non periodicity of the solution. This small
variation were the x-derivative of the sought adia-
batic invariant.

This procedure is uneasy to follow in practice,
because a number of contributions might be easily
missed. We have preferred to proceed as follows :
first the linear part of the left hand side of (B .1 )
generates the following quadratic contribution to

this invariant, which is straightforward :

the value of this part of the invariant, as a function
of the wavenumber q for the SCT is near 8 = 0+
and q = qo : 

°

where ai is the amplitude that appears in the expan-
sion (2b) and where 03B4 = q 2013 qo. Near 03B5 ~ 0+ and
for à - l%a) the approximate form of J1(A) is

It remains to consider the contribution of AAx to
J(A). We assume that the solution A(x) is the product
of a rapidly varying function of x times a slowly
varying amplitude. This expansion is to be combined
with the usual power expansion in e : the a priori
form of A(x) is taken as

where the superscript (1), (2), ... refers to the (formal)
order in a. Moreover A (1)(x) expands as

where now the expansion is with respect to the small
derivative of x, so that î - xx.
The second harmonic A (2) is the solution of

where [A (1) Ax(1)](2) is made of circular function either
ouf argument 2 qo x or 0 (for what concerns the « rapid »
variation). The solution of (B. 3) must be obtained
, up to first order in xx (which is also the order of x).

The corresponding result is inserted into the equa-
tion for A (1) :

where the subscript (1) means that we keep the contri-
butions from sin qo x and cos qo x only (and neglect

sin 3 qo x, ...). By identification of the coefficients of
these circular functions in (B. 4), one gets both the
self consistent amplitude equation for x and the
value of î as a function of xx and x.
The final step consists in writing A2 Ax (which is

to be integrated over one period to get the non linear
part of the adiabatic invariant) up to terms of first
order in xx. This quantity can thus be written as
the (slow) derivative with respect to x of some func-
tion of x, yielding the desired contributions to the
adiabatic invariant.
We give below some details about this calculation.

It is understood tacitly at each step that terms of
relevant order only are considered.
The first step in the calculation (i.e. the solution

of (B . 3)) gives, near e = 0+

where 1’(z) == E - (z2 - qÕ)2 and ç == qo x. This cal-
culation is not completely straightforward, as one

must take care (for instance) that the solution of
fx = X2 sin 2 qo x is (when x depends slowly on x)

By comparison of (B. 2) and (B. 5), one notices
that the (small) term î cos 9 in (B. 2) is merely a
local phase change in the rapid variation. Actually,
if i is small with respect to x (as it should be), A (1) can

be written A (1)~ x sin qo x + x . The same phasex
change, once done into the dominant term of A (2)

which is exactly the contribution proportional to x
on the right hand side of (B. 5). This explains why
no contribution from î may appear in the adiabatic
invariant, as this invariant must be insensitive to a
global change of phase of the fast oscillations. Such
a contribution appears at the order of the gradient
of this phase only, and thus is of higher order.
To go further, we completely neglect terms arising

from this phase shift, as they ultimately compensate
in the adiabatic invariant. The quantity to be computed
is thus the slowlv varving Dart of

By substituting the expansion A = A (1) + A (2) + ...
into (B. 6), one gets (at the dominant order of course)
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Neglecting, as explained above, all the contribu-
tions arising from 2 (although they are formally of
the same order as the ones under consideration), one
has

and

thus

where the horizontal bar denotes the average over
the fast variation (cos2 cp = 1... ).

Similarly

This yields, after multiplication with (B. 5) (and by
omitting again terms proportional to x)

so that

which implies that the corresponding contribution to
the adiabatic invariant is 7 X’/288 qô. Its value for
the SCT with a wavenumber close to qo is (remind

Keeping together this non linear contribution
with the one of the quadratic term, one has (again
for the SCT of wavenumber qo + (5) :
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