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Dielectric relaxation in a ferroelectric liquid crystal (*)

Ph. Martinot-Lagarde and G. Durand

Laboratoire de Physique des Solides, Université de Paris-Sud, 91405 Orsay, France

(Reçu le 11 juillet 1980, accepté le 13 octobre 1980)

Résumé. 2014 Nous présentons le calcul de la distorsion d’un cristal liquide ferroélectrique au voisinage de la tran-
sition A ~ C* sous l’effet d’un champ électrique alternatif parallèle aux couches smectiques. Cette distorsion se
décompose en quatre modes normaux; chacun de ces modes est une combinaison de la polarisation électrique
et de la direction des molécules. Notre hypothèse originale par rapport au travail de Blinc et Zeks est que la vis-
cosité ne couple pas les modes normaux. Dans ce cas, nous trouvons que le mode mou de la transition A ~ C*
tend loin de celle-ci vers le mode diélectrique de ces deux phases. L’effet flexoélectrique modifie les fréquences
de relaxation des modes dans la phase C* près de la transition. Cet effet change l’amplitude relative des contri-
butions des quatre modes à la constante diélectrique ; la valeur de celle-ci à fréquence nulle n’en dépend cependant
pas.

Abstract. 2014 We present an analytic calculation of the normal modes of distortion induced by a small transverse
A.C. electric field on a ferroelectric liquid crystal close to its transition temperature Tc between the smectic A and
C* phases. These normal modes are superpositions of electric polarization and angular molecular distortion.
Compared to a previous work of Blinc and Zeks, we assume that the losses are diagonal for the normal modes.
The new prediction is that the soft mode in the A and C* phase goes continuously into pure polarization modes
far from Tc. Flexoelectric effects eventually could be observed close to Tc, in the amplitude and frequencies of
the A.C. contribution of the normal modes to the dielectric constant, although for zero frequency the sum of these
contributions remains zero.
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1. Introduction. - Ferroelectric liquid crystals
possess in their ordered C* phase an increase of the
transverse dielectric constant [1], which is attributed to
the so-called « Goldstone » mode, i.e. to the rotation
of the spontaneous polarization toward the applied
electric field. On the basis of simple arguments [2, 3],
the relaxation frequency for this process has been
identified with the mechanical relaxation frequency
of the helical texture. In fact, an electric field also
changes the tilt of the molecules inside the smectic

layers, so that four variables are involved in the

problem, two for the molecular orientation and two
for the transverse polarization [4].
A more complete calculation is needed. Such a

calculation has been made by Blinc et al. [5, 6], who
have given the amplitude and frequencies of the

corresponding four normal modes of the problem.
As previously shown [7], this treatment was incomplete
because it gave to the flexoelectric component of the
spontaneous polarization a role in the dielectric

response, although it has none at zero frequency.

(*) This paper was presented at the 8th International Liquid
Crystal Conference, Kyoto, July 1980.

In addition, dissipation was introduced for the tilt
and polarization variables, and not for the normal
modes.

In this work, we describe the dynamics of E field
induced distortions iri a ferroelectric smectic liquid
crystal, with a dissipation function diagonal for the
eigenmodes of the distortion. This assumption allows
us to relate the properties of the « soft » mode close to
the transition temperature (in particular the electro-
clinic [8] effect), with the standard relaxation of the
transverse dielectric constant far from Tc.
The geometry of our system and the complex

notation are the same as described in reference [7].
The helical axis of the C* texture is the Z axis. The
field E is applied along OX. As usual we call K3 the
layer twist elastic constant, q the wave vector of the
spontaneous helix, C the electroclinic coefficient,
a[a = a(T - Tc)] and b the first coefficients of the
Landau expansion of the free energy density.

In [7], we had written an expression for the dissi-
pation function as :
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In principle, r 1 r 2 r 3 could be choôcn arbitrarily,
so that the dissipation function could be non diagonal
if represented on the basis of the eigenvector of the free
energy. This would represent a situation where the
losses would couple the modes of distortion. This
coupling is probably very weak due to the very large
number of thermal modes to which each distortion
mode is coupled, as implicitly written in the dissipation
function. It seems reasonable to describe the dynamics
of the system by neglecting this possible friction

coupling between the E field distortion modes. This
amounts to writing a dissipation function diagonal
on the eigenvectors defining the modes. As in refe-
rences [5] and [6], we also neglect inertia effects, i.e.
we restrict our analysis to the purely damped regime,
typically below the lowest relaxation frequency of the
transverse dielectric constant si. This frequency is
in the MHz range.
We start from the free energy expression [4, 5]

The equilibrium (Euler) equations are :

2. Electric induced distortion in the smectic A

, phase. - Let us first discuss the case of the smectic A
phase, where é0* is zero. After a Fourier transform we
find the normal modes by diagonalizing. Wç note with
a subscript k the amplitude of any component of wave
vector k varying like exp( jkz).

Equations (2) and (3) are written simply as :

is the dimensionless

temperature ; K = K33 - XJl2 is the renormalized [4]
twist constant. As the field E is uniform, we are only
interested in the k = 0 components. We must now
diagonalize (2’), (3’). The eigenvalue equation is :

where the flexoelectric term jlkjC is retained just to
point out that k # 0 modes have different eigenvalues
(see later the discussion on flexoelectricity in the C*
phase ; the new Fourier component which appears in
addition to k = 0 is k = 2 q ; this results in the
same A ). We now drop the flexo term for k = 0.
The eigenfunctions are :

From now on, we suppress the obvious subscripts.
The diagonalized equations are now

The eigenvalues are :

r 1 corresponds to the soft mode (« in phase » mode of
reference [5]) ;
r2 corresponds to the hard mode (« out of phase »).
With the previously discussed assumption, the dyna-
mical equations associated with (2") and (3") are :

,r 1 and T2 are the only two friction coefficients (with
dimensions of time) which remain ’in the chosen

. approximation. ’t 1 and i2 are presumably of the same
order of magnitude, comparable to a transverse

dielectric relaxation time. Assuming E = E exp(jwt),
we find :

To calculate e_L, we derive P(E ) of the form :

The two terms in the bracket represent the contri-
bution to the dielectric constant from the two normal
modes. For co = 0, these two terms recombine to give
back the result of our previous calculations [7]

On figure 1, we have plotted the dependence of r 1
and r2 versus A (i.e. versus the temperature). We have
also plotted (Fig. 2) the corresponding amplitudes of
the two relative contributions to P o(w), i.e.
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Fig. 1. - Relaxation frequencies of the four modes (smectic C*
without flexo coupling) and of the two modes (smectic A) of distor-
tion induced by a transverse electric field, versus the reduced tem-
perature. Tc corresponds to zero, smectic A on the right.

On the « soft mode » branch, ri goes from almost
zero close to Tc (A --+ 0), to 1 at high temperature.
In our notations, Tc corresponds to A = Kq2/xC 2 = Q2. .
For A --+ 0, the corresponding amplitude diverges like
1/2 A. For high temperature, the amplitude saturates
down to 1. The relaxation frequency of the soft mode
contribution is r 1/1: 1. Close to Tc, there should be a
slowing down, limited at the value

At high temperature, the relaxation frequency satu-
rates at 1/ii.
On the p hard mode » branch r2 goes from 2

(close to A = 0) to infinity at high temperature,
where it diverges as A/-r2. The corresponding ampli-
tude goes from 1/4 to 0 (as A -3) as shown on figure 2.
The relative amplitude of the hard mode contri-
bution remains weak compared to that of the soft
mode. The relaxation frequency of the hard mode

Fig. 2. - Amplitude of the relative uniform polarization versus
the reduced temperature. The dashed lines represent the case fi = 0
(no flexo coupling) the full lines correspond to fl = 0.05.

is r2/i2. Since r2 &#x3E; ri and ii - T: 2’ the hard mode
relaxation frequency is expected to be larger than the
soft mode relaxation frequency ri/ii.
Knowing ri and r2, we can discuss the physical

nature of the two modes. We can see on figures 2 and 3
the amplitudes of P/xE and COIE for the normal
modes. Close to 7c (A - 0), çi, and P2 are modes of
coupled tilt and polarization. For large A, at high tem-
perature, çi tends to a pure polarization mode, and p2
tends to a pure tilt mode. 0 and P are decoupled. lIT: 1
appears as the transverse dielectric relaxation fre-

quency of a standard smectic A (in the MHz range).
r2/T2 - A/T2 appears as the pure tilt relaxation,
observed for instance in light scattering experiments [9]
above a SA -+ Sc transition. Note, however, that this
high temperature limit is obviously not valid close to
Tc, where 0 and P are strongly coupled. In that range of
temperature (A - 0), the low frequency relaxation of
the mode 1 must be identified with the relaxation
observed in the electroclinic effect.

Fig. 3. - Amplitude of the relative uniform tilt versus the reduced
temperature. The dashed lines represent the case fi = 0 (no flexo
coupling). The full lines correspond to p = 0.05. Dielectric means
that, far from T,,,, the mode tends toward a pure dielectric mode.

3. Electric induced distortions in the smectic C*

phase. - We now discuss the more complicated case
of the smectic C*. In the absence of an E field, the
minimization of f gives the spontaneous polarization
and tilt :

To calculate the normal modes of distortion induced

by the field E, one must go back now to the small
amplitude approximation and write the various

equations which give the amplitudes Pk excited

by the field Ek. As previously seen in the case of smec-
tic A, with a uniform E, we excite Po and 00. The non
linear term 0, when expressed with the Ok, gives
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a coupling between the various k components. We
keep only in this term those which are linear in the
small distortion Ok. This results, in the equation for
the k = 0 Fourier component, in a change in the
coefficient and in a coupling with 0* , which

In this equatioh, A is now

and again measures the temperature is now

MQIC. The eigenvalue equation for r is now the quadra-
tic equation :

The eigenmodes are the vectors :

Note that, in gênerai whatever may be the eigen-
values r, because they are real, the various complex k
components of P and 0 remain « perpendicular »,
as were the spontaneous Pq and 0q. The only difference
between the different modes comes from the possible
varying sign of (r - 1) which may lead to various
« in phase » and « out of phase » geometries. For the
two modes ± 1, r - 1 remains negative. The P and 0
distortions remain « in phase » i.e. with the same
relative orientation as the spontaneous Pq and 
The modes ± 2 are the « out of phase » combinations.
To simplify the discussion, let us take first the simple

case fi = 0 (no flexoelectricity).
In this case, the eigenvalue equation decomposes
into two equations :

The two values r+ (associated with the + sign) are
temperature independent :

is thus also indirectly excited. The eigenmodes must be
linear combinations of the 00, Po and and as

first noted by Zeks and Blinc [5]. To explicitly do the
calculation, we write the equations (2) and (3) to be
diagonalized, in the matrix form :

For low Q2 (typically, we expect Q2 ’" 10-1-10- 3)
r + 1 is very close to Q ’/2 = Kq2/2 XC2 and r +2 is very
close to 2. Again calling T ±, 1/2 the damping time
associated with each normal mode, the relaxation
frequencies of these + modes are of the order of
Q 2/2 i + 1 and 2/i + 2. The two other eigenvalues r-
are temperature dependent :

At Tc, the two eigenfrequencies r -1/1: - 1 and r 2/T- 2
are equal to the corresponding frequencies of the
+ modes, and of course to the two eigenfrequencies
of the 1 and 2 modes of the smectic A phase. The
reason is that, at T, the modes 1 and 2 decompose
into 1 ± and 2 ± . This implies that i t 1 = r 1 and

’r±2 = r2. We shall assume that this remains valid
even in presence of flexoelectric effects, in the fi :0 0
case. Far from T, the relaxation frequency r- 1/ii
tends to the constant 1/ii, the dielectric relaxation
frequency of the smectic A (since we have neglected
the dielectric anisotropy to describe the properties
of the C* phase). The other frequency r-2/1:2 diverges
as 2 A/i2, i.e. linearly in Tc - T.
To understand the physical nature of the modes,

let us look at the P and 0 components of the ± 1,2
eigenvectors. Recombining the k = 0 and k = 2 q
components, we find for the + 1 mode :

and

Remember that the undisturbed spontaneous helix
is defined by Oq = 1 Oq exp( jqz). The + 1 distortion
is then a pure rotation of the spontaneous 0. and P..
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With the small Q2 in denominator, the amplitude of
this « Goldstone » mode is by far the largest of the
four modes. The relative amplitude of the distortion
(i.e. the quantities Po/xE, COOIE, P2q/XE, C02q/E,
which are the relative susceptibilities of the polariza-
bility and of the electroclinic effects) are plotted on
figures 2, 3, 4, 5. The - 1 mode corresponds to an
« in phase » change in the moduli of the spontaneous
Pq and 0 q. The amplitudes are :

Close to T, the relative susceptibilities have the same
amplitude, although far below Tc, as shown on

figures 2 and 3 the - 1 mode becomes a pure pola-
rization mode, the 0 distortion beeing quenched by
the large rigidity of the smectic layers. This mode
is the « soft » mode of the C* phase.

Fig. 4. - Amplitude of the k = 2 q relative polarization, versus

the reduced temperature. Other details as in figure 3.

Fig. 5. - Amplitude of the k = 2 q relative tilt, versus the reduced
temperature. Other details as in figure 3.

The amplitudes of the mode ± 2 are plotted on
figures 2, 3, 4, 5. The + 2 mode corresponds to equal

rotations, in opposite senses, of Pq and 0 q. The ampli-
tudes are

and

They are - Q 2/4 times smaller than the one of the
dominant + 1 « Goldstone » mode, and temperature
independent. The - 2 mode corresponds to « out of
phase » change in the moduli of Pq and 6q. The ampli-
tudes are :

For high temperature, as shown on figures 2, 3,
this mode becomes a pure tilt mode.

Let us now discuss the case where the flexoelectric

coupling is included. The eigenvectors now take the
complicated form given by equation (4). We have seen
in the C* phase that, to first order in field E, the distor-
tion of the texture can be described as a superposition
of k = 0 and k = 2 q components of P and 0, i.e.
are represented by four normal modes ; linear combi-
nation of these four variables. On the other hand, in
the A phase, only two modes are excited, a combi-
nation of Po and 00 excited by E. P2q and 02, have
zero amplitude. Just at the transition, the 4 modes of
the C* must go continuously into the corresponding
modes of the A phase, at spatial frequencies 0 and 2 q.
In the previous special case of no flexoelectric coupling,
the smectic A modes at k = 0 and k = 2 q had same
eigenvalues (and frequencies). This implied that the
four C* modes had to merge two by two at the tran-
sition, so that the relaxation frequencies were conti-
nuous with those of the A phase. Turning on the flexo-

Fig. 6. - Relaxation frequencies of the E induced distortion modes,
in the presence of flexoelectric coupling fi = 0.05, versus reduced
temperature. The dashed lines represent the k = 2 q mode relaxation
frequencies which have zero amplitude in the smectic A phase.
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electric coupling results in different eigenvalues (and
frequencies) for the corresponding 0 and 2 q modes
of the A phase. The four modes of the C* phase at
T,, thus have, in general, different eigenvalues and
frequencies, as shown on figure 6. Since we keep the
requirement that the amplitude of the 2 q modes in
the A phase must be zero, on going to Tc from the C*
phase, the amplitude of all the four 2 q components,
and of the two k = 0 components for the two modes
which go continuously toward the 2 q mode of the A
phase must vanish. We have computed the relative
amplitudes of P/xE and COIE at k = 0 and k = 2 q
for the four different modes of the C* phase (see
Figs. 2, 3, 4, 5) versus the reduced temperature A.
These curves are computed for a typical value of the
twist energy Q 2 = 0.1. Note that the flexo coupling
fi = MQIC cannot be too large. Its maximum value is
that which suppresses the curvature elasticity, because
of the K renormalization K = K3 - Xj12, i.e.

f’Max = Q - 0.3.

We have chosen fi = 0.05. One sees on figures 2, 3,
4, 5, that the amplitude of each mode depends on the
flexo coupling on a temperature scale of the order of
Q 2. For low temperature, the only excited mode
remains the + 1 « Goldstone » mode. The one com-
ponent which is sensitive to the flexo coupling far
below Tc is the (P+ 1)2q component, which varies as
(1 + fi). In fact, a dielectric measurement would
measure only the amplitudes and relaxation frequen-
cies of the Po components of these modes. P2q is not
easy to observe. The simplest observable consequences
of the flexo coupling are that : the relaxation frequen-
cies at Tc are no longer doubly degenerate ; and that,
far below Tc, the relaxation frequency of the dominant
« Goldstone » mode depends now on the flexoelectric
coupling, from both the fi dependence of r and the fl
renormalization of K3.
To summarize, we can write formally the general

expression giving Po(E, co) from the contribution of
the four modes, as :

where i = 1 to 4 corresponds to the four ± 1, ± 2
modes. This bulky expression in fact gives X(w), from
which we can simply derive DEl(c) (from the A phase)
by àe_L(co) = 41tX(w). Using the eigenvalue equation,
one can verify that, for w = 0, p vanishes from x(01
as previously shown [7].
At the end of this calculation, we must examine

the starting hypothesis of the pure damped regime
to describe the dynamics. If, as we assumed, the two
damping frequencies 1/1: 1 and 1/1:2 are comparable, the
maximum acceptable frequency is of the order of 1/T.
We must keep only the ± 1 modes to describe the
relaxation. If 1/Ti and ’/’r2 can be very différent, the
four mode analysis may retain some physical interest.
In that case, however, the very small relative ampli-
tudes of the high frequency ± 2 modes limit any
practical interest of the calculation to the temperature
range A - Q 2 close to Tc.

It is interesting to compare our predictions with
existing data on the C* transverse dielectric constant.
The most important parameter is Q 2, the relative twist
to piezo energies. Dielectric measurements [10] indi-
cate an increase in dielectric constant, from the
« Goldstone » mode, of the maximum value of

In the A phase, e-L - 1 + 4 nX is of the order of 5,
resulting in Q 2 1’-’ 0.2. A direct estimate of Q 2 can be
made from the polarization measurement. Assuming

a weak flexo coupling we take from P = XCO (see
Refs. [10] and [11]) the estimate

This results in Q’ - 10-2, with x - 0.3 and
K - 5 x 10-’ cgs. In the A phase, we know from
reference [8] that the lower relaxation frequencies of
the electroclinic effect are in the kHz range. Since the
transverse dielectric relaxation frequency in the A

phase is in the MHz range, from our calculation this
results in Q2 10-3. These indeoéndent measu-
rements give two to three orders of magnitude dis-
persion for Q 2. There is a clear inconsistency between
dielectric and spontaneous polarization measurements.
Note that a recent report [12] from a Japanese group
seems to indicate a larger value of Aei, reaching 80.
This corresponds to Q2 = 5 x 10-2, in better agree-
ment with the polarization measurement. Additional
experiments would be useful to clarify this point.

4. Conclusion. - To conclude, we have studied the
supposedly purely damped dynamics of the dielectric
response of a C* ferroelectric liquid crystal. Instead
of introducing friction on the physical variables

describing the tilt (0) and the polarization (P) as
previously [5] made by Zeks and Blinc, we have
introduced a damping diagonal for the normal modes
(i.e. linear combinations of 0 and P). We have given an
analytic expression for the dielectric constant. In the A
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phase, the relaxation of the electroclinic effect goes
continuously to the simple transverse dielectric rela-
xation, far above Tc. In the C* phase, one again finds
the dominant « Goldstone » mode, almost tempe-
rature independent. The other « soft » mode, as in the
A phase, rapidly becomes very « rigid » below Te
and also merges into the simple dielectric relaxation

mode. The influence of the flexoelectric coupling
should be visible close to Tc, where careful dielectric
relaxation measurements could eventually detect it.
At zero frequency, apart from the renormalization of
K3 and q, the flexoelectric coupling vanishes exactly
from the dielectric constant, in both the A and C*

phases.
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