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Scattering of neutral particles
by a two-dimensional exponential corrugated potential

G. Armand

Centre d’Etudes Nucléaires de Saclay, Service de Physique Atomique, Section d’Etudes des Interactions Gaz-Solides,
B.P. N° 2, 91190 Gif sur Yvette, France

(Reçu le 25 avril 1980, révisé le 12 août, accepté le 21 août 1980)

Résumé. 2014 L’équation intégrale de la diffusion est résolue exactement dans le cas d’un potentiel exponentiel gaufré
bidimensionnel. L’on obtient un ensemble infini d’équations intégrales couplées, contenant des fonctions inconnues
proportionnelles aux amplitudes des ondes. Cet ensemble est traité numériquement en utilisant le processus
itératif de Neumann. Pour une surface ayant une cellule carrée et un profil de corrugation sinusoidal, le domaine
de convergence est déterminé. Les résultats numériques sont comparés à ceux obtenus en traitant la diffusion par
un potentiel de mur dur gaufré.
La pente finie du potentiel exponentiel produit une augmentation de l’intensité du faisceau spéculaire et une réduc-
tion de toutes les autres intensités. Ce fait s’explique qualitativement en considérant la pénétration des ondes dans
le potentiel.
Les singularités apparaissant dans les intensités des différents faisceaux lorsque l’un d’eux émerge sont analysées.
Elles sont de deux types, et dépendent du couplage entre le faisceau considéré et le faisceau émergeant. Leur forme
et amplitude sont fortement dépendantes du coefficient d’amortissement de l’exponentielle et leur mesure devrait
permettre la détermination de cette quantité.

Abstract. 2014 The integral equation for the scattering is solved exactly for a two-dimensional exponential corru-
gated potential. An infinite set of coupled integral equations involving a function proportional to the wave ampli-
tude has been found. This set is numerically solved by a Neumann iterative process. For a surface square unit
cell and a sinusoidal corrugation profile, the convergence domain is determined and numerical results are obtained
which are compared to those given by the hard corrugated wall potential.
The finite slope of the potential yields an enhancement of the specular intensity and a reduction of all the others.
This is qualitatively explained by considering of wave penetration.
The singularities which appear in the different beam intensities when a beam is emerging are analysed. They are
of two types depending on whether the beam is strongly coupled or not to the emerging one. As their shape and
amplitude depend strongly upon the damping coefficient of the exponential, their measurement could allow the
determination of this quantity.
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1. Introduction. - Experimental data for the scat-
tering of neutral particles by a periodic surface are
in numerous cases compared to calculated intensities
obtained with the hard corrugated wall potential
(HCWP) defined by

Generally one determines a periodic corrugation
function ç which gives the best fit between experi-
mental and calculated intensities (see for instance
refs. [1, 2]). This function gives something like the
electronic isodensity profile on the surface, the

periodicity of which coincides generally with the
atomic surface periodicity. Therefore this function
is often called surface profile.

Furthermore the HCWP with a well having a
long-range attractive part varying as z- 3 [3, 4],
gives a good description of the structures observed
experimentally in the diffracted beams in the vicinity
of conditions for which resonance with bound states
is satisfied.
On the other hand, from the observation of these

resonances one deduces the energy of the bound
states. In all cases a Morse, or a nine-three, or more
elaborate potential of this type [5] gives good agree-
ment between calculated energy levels and the experi-
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mental data. This gives the zero order Fourier compo-
nent of the potential which has in the repulsive region
a finite slope.

In fact, the adjustment of the energy levels is not
very sensitive to the stiffness of the repulsive potential
part in the continuum region and hence the fit to
beam intensities is probably a better way to deter-
mine this repulsive part.
At short distances from the surface the overlap

of the electronic wave functions of the incident
atom and the crystal surface is responsible for the
appearance of repulsive forces. Usually this does
not lead to a potential of infinite stiffness and this
qualitative conclusion is confirmed by a reliable

potential calculation [6]. Hence the HCWP is only
an approximate representation of the real potential.
Thus the following question arises : why does the

HCWP seems to be so successful in interpreting the
experimental data ? In part the answer may lie in the
quality of available data. In an experimental set up
the incident beam is not strictly monoenergetic and
has a small but finite angular spread, and the same
is true for the detector. Consequently the diffracted
peaks are broadened, the broadening being a func-
tion of incident angle and diffraction order. Also
the crystal has a finite temperature yielding an atte-
nuation of the measured intensities. Therefore it is

necessary to correct for peak broadening and to

measure the thermal attenuation of intensity in order
to extrapolate to zero temperature if one wants to
make a precise comparison with the calculated inten-
sities. To the author’s knowledge there is just one
reported result where the two corrections have been
made [2]. Even in this work, after correction, the
experimental unitarity is less than 0.8 which is pro-
bably due to incoherent in plane or out of plane
scattering. In these conditions an approximate poten-
tial such as the HCWP, could give a good representa-
tion of the experimental data.
With intensity measurements now becoming more

and more precise, it seems necessary to work theore-
tically with a less approximate potential. It is then
natural to consider a potential of finite stiffness

which, contrary to HCWP, allows wave penetration.
This effect has been modelled previously by using
a HCWP of finite height (V = Vo, z  9(X, y))
called the soft wall potential [7]. The results show a
significant effect on the calculated beam intensities
as the height Vo decreases. Nevertheless this seems
to be an improper way to represent physical reality.
In order to have a more realistic picture we have
considered recently [8] the one-dimensional exponen-
tial corrugated potential (ECP)

which gives the HCWP as x goes to infinity. The
scattering problem has been solved without approxi-
mation. Numerical calculations imply the solution
of an infinite set of coupled integral equations. With

the procedure adopted a convergent solution is
obtained only with small corrugation amplitude.
In the domain of convergence numerical results
show clearly that, compared to a hardwall, a soft

potential enhances the specular and reduces the

intensity of all other diffracted beams. The wave

penetration reduces the effect of multiple scattering.
In this paper the theoretical developments are

presented with more details for a two-dimensional
surface with corrugation function qJ(x, y). A set of
coupled integral equations is obtained as before
but here the unknown functions are the t matrix
elements which are directly linked to the scattered
wave amplitude. This set is solved by an iterative
process. Compared to the previous work the domain
of convergence is further extended. Particular numeri-
cal results are reported for the case when, varying
the incident angle, a beam emerges from a closed
to an open channel.

Similar previous works are the so-called coupled
channel calculations initiated by Wolken [9] in which
the infinite set of coupled differential equation is
solved numerically. Generally the authors take account
of only a few potential Fourier components. All
these components are included in the ECP calcula-
tion and therefore the two potentials used in these
two different approaches are substantially different.

2. Général theory. - The starting point is the

integral form of the Schrôdinger equation in the

two-potential formalism :

with

As usual the direction Oz is taken normal to the
surface, and respectively a position r or a wave

vector k is decomposed into parallel (R, K) and
normal (z, kz) components to the surface.
The two potentials V and U are assumed to have

only positive values and to be continuous decreasing
functions of z. U(z) is chosen in such a way that the
continuous sets of eigenvalues ep and eigenfunctions
eiK.11 l/Jp(z) of Ho are known.

Letting

the projection operator is given by
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The potential V(R, z) being periodic in R, the

solution of (1) can be decomposed into a sum of
diffracted waves extended over all the reciprocal
surface lattice vectors G :

where the subscript i refers to the incident condition.
t/lG(z) is expanded into the continuous set cPp(z),
that is to say

Now in the right hand side of (1) the Green operator
is multiplied on the left by the projector (3), 1 t/J t &#x3E;
is replaced by the expansion (4) taking account
of (5), and the potential V(R, z) is expanded into
Fourier components :

with

where S is the area of the unit cell (u.c.). A straight-
forward calculation gives an expression of 14(i’ &#x3E;
which is identified with the expansion (4). One

obtains the wave function of each channel :

in which

with p a dimensionless variable,

One finds that equation (8) is the same expression
as in the so-called C.C.G.M. theory [10].
The expectation value of (8) with the state q5,(z)

gives an infinite set of coupled integral equations
which determines the unknown dimensionless coeffi-
cients b,,(P) :

Apart from a normalization factor Lj(r) is equal
to the t matrix element

The set of integral equations between these ele-
ments is readly obtained by replacing in (13) the
bG(q) by their expression (12). One gets :

The solution of this latter set may be easier to obtain
because it does not cpntain the delta function

b(r - Pi).
3. Application to the exponential corrugated poten-

tial. - For this case jhe potential is :

and one takes

3.1 The eigepvalues and eigenvectors of Ho are
very well knoifn [11] ] as

where Ktp is the modified Bessel function of the
second kind of imaginary order ip. Its integral repre-
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sentation [12] shows immediately that this function
has only real values and that it tends to zero as z
tends to - oo. The asymptotic expansion. allows us
to determine its limiting value as z tends to + oo,
which gives :

In this limit, for a given eigenvalue, the constant C
yields only a modification of the phase shift.

In order to determine the normalization factor B 2
one considers the potential U(z) limited by an infinite
wall at z = 1 with 1 positive and very large. In the
vicinity of the wall the eigenfunctions are given by (18).
They should vanish for z = 1 and this gives the dis-
crete set of values pn taken by the parameter p

The normalization integral over the intervâl - oo,
1 can be solved [13] and the result shows that when 1
increases indefinitely it behaves like

Omitting the component due to R variable, the
projector is given by

Now taking the limit 1 - + oo of (20) and comparing
the result to expression (3) one gets

The Fourier components of the potential are prao-
portional to U(z) :

If the amplitude of the corrugation function is
written as ha, where a is a typical length of the surface
lattice and h a dimensionless parameter, the constant
VG depend upon the product xha. Particularly they
increase with x to reach infinite value for the HCWP.
From expression (10) one sees immediately that

the matrix element M being equal to [11] ]

with

3.2 With the above quantities, the wave function
of each beam is given by expression (8), which appears
as :

in which

Upon carrying out the second integral in (24) the
limit of each t/I J(z) is found to be zero as z --+ - 00.
An expression suitable for looking at the limit
z - + oo is found in Appendix 1 and appears as :

- for an open channel (pj &#x3E; 0)

where

with
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- for a closed channel (pj  0) : the wave func-
tion is given by the same expression as above replacing
Pi by 1 p J 1 . Note that in this case 5Jo is always
equal to zero.
Each of these wave function is a sum of one plane

wave and many exponentially damped waves for the
case of an open channel. For a closed channel the

plane wave is transformed into an exponentially
damped one.
Taking the limit z - + oo one finds J(z) = 0

for p’  0, and for pl &#x3E; 0

where f3p and f (p, q) are given respectively by (19)
and (23). The constant C enters only into the phase
shift Pl,, as a variation of C produces a translation
of the potential. The wave amplitude Aj may be seen
as a sum of contributions given by each open or
closed channel, each of them being proportional
to the Fourier coefficient of the potential which links
the two channels J and G.

Therefore the reflection coefficients of the diffracted
waves are given by

3.3 It remains to write the integral equations
which allow the determination of the coefficients b,, ,(q).
The set of L J(r) is given by (14). Putting

one gets

with f (r, q) given by (23).
On the other hand from (13) we get a relation

between Fj and bG, namely

which compared to (25) gives :

Therefore the solution of the, integral equation
system (27) allows to calculate directly the wave
amplitudes and the reflection coefficients. 

4. Numerical solution of the intégral équation set. -
Several solutions of the system (27) can be found
easily for particular cases or particular values of the
variable r. Assume a potential without corrugation,
that is to say suppose (p(R) = 0. The Fourier coeffi-
cients v J _ ç - ÔJG are all equal to zero which implies
the solution Fj(r) = 0, VJ. The particles are complete-
ly reflected into the specular beam.

Let us consider now an incident angle of 90 degrees.
We have p; = 0 and f (r, pi) = 0. The solution

Fj(r) = 0, VJ is a solution of the system and again
all the particles are reflected into the 00 beam.
For the variable value r = 0, f (r, q) = 0 and we

have

Note that for the HCWP limit, that is to say for

x - + oo, all the parameters pj -&#x3E; 0. The wave ampli-
tude A J will then be given by the ratio of two numbers
going each to zero.
For large values of r the function f (r, q) is pro-

portional to exp(2013 -r) and Fj(r) will be propor-2 
tional to the same factor. Consequently the integrand
in (27) for large values of q will be proportional to
exp(2013 nq) and the integral is always convergent.

These considerations are all we can say in a general
way on the system (27). In order to calculate the
diffracted intensities it is now necessary to look for
a numerical solution. Whatever the numerical proce-
dure may be, one should keep only a finite number
of reciprocal lattice vectors NG, this set including
at least all the G vectors corresponding to the open
channels. Also one should limit the integration over
the q variable within the interval [0, qM], qM being
much greater than the largest value of the pG numbers
(p 2 &#x3E; 0).
The procedure adopted in the previous work [8]

consist in dividing the segment [0, qM] into N equal
intervals Q = qM(N)-1 and replacing the continuous
function Fj(r) by the discrete set

In this way a matrix equation is obtained, the size of
the matrix to be inverted being equal to NG x N.
In order to get a solution which gives an unitarity
value close to one it is necessary to increase the matrix
size as the Fourier coefficients increase with the
dimensionless product xha. We were in this way
limited in the calculation to xha value less than 0.1,
with the integral equation set for the b(q) coeffi-
cients given by expression (12). This limitation will
likely appear for approximately the same xha value
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with the new integral equation set of this paper,
and one must look for another procedure.
Another way is to expand the F,(q) into an infinite

set of Laguerre polynomials. Again keeping NG
reciprocal lattice vectors and NL Laguerre coeffi-
cients one has a matrix of size NG x NL to be inverted.
The same limitation as before appears and this proce-
dure does not seem to be convenient.
Thus the idea of trying an iterative process arises.

The obvious starting point is to write F(r) - 0
corresponding to either an incident angle of 90 degrees
or to a flat corrugation (R) = 0. The second iteration
gives

which is the starting point of the well known Neu-
mann iteration process in the theory of integral
equations. Generally speaking this process is well
known to converge to the right solution FG(r) for
small values of the relevant parameter. In our case,
the kernel is proportional to the Fourier coefficients
wJ-c - ÔJG). Then the convergence criterion for’
a system of integral equations solved by Neumann
iteration [14] shows that the procedure’ diverges
for values of xha larger than say (xha)d. The deter-
mination of this value in an analytic way seems to be
intractable. Thus the convergence (or divergence)
of the solution obtained will be appreciated by
comparing to unity the sum of all the diffracted beam
reflection coefficients, called the unitarity in the

following paragraphs. Note that (xha)d depends on
the surface cell and on the corrugation function

shape. Also note that the PG numbers are inversely
proportional to x hence the (xha)d value obtained
could be different depending on wether x or h vary
independently, all other quantities being constant.
For purposes of numerical calculation the way by

which the integral in the right hand side of (27) can be
handled is given in Appendix 2.

5. Convergence-divergence. - Let us consider now
and in the subsequent paragraphs a particle of wave
vector kj 1 = 8.6 A-1 which is scattered by a

periodic lattice with a square unit cell (parameter

a = 2.55 À). The incident plane contains the [100]
direction (ç = 450). The corrugation function is
taken as

and the Fourier components vG are equal to

with I the modified Bessel function of the first kind.
These conditions correspond to an experiment in

which a molecular hydrogen beam produced by a
nozzle source at room temperature is scattered by
a copper (100) face.

In order to study the convergence of the iterative
process we choose an incident angle of 31 degrees
(with respect to the surface normal). There are 37 open
channels. The x and h parameter values will vary
independently.

Figure 1 gives the evolution of the unitary cal-
culated at each iteration step un) versus the iteration
number n, for different values of the potential damping
coefficient x, with h = 0.02. Table 1 gives the U(n)
value for n = 5, 10, 15, 20, 25.

Fig. 1. - Evolution of the unitarity calculated at each iteration
step un) with the number of iterations. Each curve is labelled by a
number which is the value of x in A - 1, [ ki = 8.6 A -1, Bi = 31°’,
ç = 450, and h = 0.02.

Table 1. - Evolution of the unitarity cfn) as a function of the number of iteration n for different values of x. Ne is
the number of reciprocal lattice vectors introduced into the numerical calculation, 1 ki 1 = 6.8 A -l, a = 2.55 A,
h = 0.02, and Oi = 310.



1481

A quick inspection of these data shows immediately
that for X - 6 A-1 the u(n) values are successively
greater and lower than unity and that the unitarity
defect L1 (n) = 1 U(n) _ 1 decreases continuously with
n, provided a sufficiently large value of n is considered.
For a given x value, if the number of reciprocal
lattice vectors introduced into the numerical cal-
culation is increased the L1 (n) becomes smaller,
provided the initial value of n is sufficiently large.
These facts characterize a convergent process.

For x = 7 Â - 1 the iteration seems to converge
until a value n = 18 but beyond this value L1 (n)
increases slowly but continuously. The iteration leads
to a divergent solution. Nevertheless it is interesting
to look at the behaviour of the different calculated
reflection coefficients RJ;2,Gy. Some of them behave
like u(n) ) respectively for x = 6 A-1 (convergent)
and for X = 7 A-1 (divergent). For others the R (n)
value decreases continuously with n ; this is mainly the
case for high index beams (23, 33, 34...) for which
R &#x3E; is very low, say less than 10-5.

Table II. - Evolution of the unitarity U(n) as a function
of the number of iterations n for different values of h.
NG is the number of reciprocal lattice vectors introduced
into the numerical calculation, 1 k; 1 = 6.8 A- 1 ,
a=2.55A, X = 3 A - l, and 0 i = 310.

For x = 8 Â -1 the u(n) and the different R (n)
values increase with n and the numerical iterative.

process does not converge.
Table 11 gives the same quantities as above when

h varies with X = 3 Â - 1. The process is convergent
for h  0.04 and is divergent above this value. For
h = 0.045 the U(n) and R(n) behaviour is identical
to that described above for x = 7 Â -1.

Therefore the two variables x and h are symmetric
with respect to the convergence criterion in spite of
the fact that the pj number are inversely propor-
tional to x and independent of h. The Neumann
iterative process yields a convergent solution for

xha less than or equal to 0.34 for the particular system
depicted at the beginning of this paragraph.

6. Results. - 6 .1 Tables III and IV give the
calculated reflection coefficients for increasing value
of x with h = 0.02 for incident angles of 31 and
60.5 degrees respectively. The most significant values
only are given, the others being at least. two orders
of magnitude smaller. Of course, the calculated results
reflect the symmetry of the chosen incident condi-
tions, i.e. one always finds RGx,Gy = RGy,G.- For the
HCWP the R values have been calculated using the
Fourier expansion of the source function [15] and a
new method for carrying out the resulting inte-

grals [16].
The following facts can be readily observed :
- as expected, when x increases, the HCWP

solution is approached ;
- the intensity in the specular beam is greater

than the limit given by the HCWP. The inverse
behaviour is displayed by all the other diffracted
beams ;
- all the beam intensities vary rapidly for low x

value, more precisely, for x less than 3 A-’. Beyond
this value the variation is smoother ;

Table III. - Reflection coefficients of the most significant beams as a function of x. HCWP correspond to an
infinite value of x. E, is the normal kinetic energy ratio of’ the beam considered to that of the specular,
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- among the diffracted beams (G 0 0), at least
for the incident angle of 31 degrees, the relative
difference between intensities given by the ECP and
HCWP is small for the peaks 01, 11 and large for the
other three. It can be noticed that these two groups
are composed of subspecular and supraspecular
beams respectively.

6.2 Let us suppose now that the incident angle Oi
decreases in the vicinity of Om, the incident angle for
which the beam labelled by the reciprocal vector M
is emerging. The corresponding value of pM which is
negative passes through zero and becomes positive.
In the sum over reciprocal lattice vectors of equation
(27) this produces the appearance of a delta function
b(pM - q2) as soon as P2 becomes positive. Therefore
one can expect to observe on the reflection coefficient
of each open beam a disturbance at Oi = 0M. Further-
more this disturbance should be most important for
the diffracted peak J having the largest Fourier coeffi-
cient vj-,, - bi,, i.e. for beams J strongly coupled
with the emerging one. Consequently this effect will be
important for the emerging beam itself and for those
having a J vector close to M. Also its importance will
increase with the product xha and particularly will be
maximum in the case of HCWP.

Following these qualitative considerations it is

interesting to study the case where the most intense
and the emerging beams are strongly coupled. With
the system adopted for numerical calculation, this

happens when the 10 and 01 beams emerge, i.e. for
an incident angle OM = 50.96 degrees. Figure 2 gives
the Ewald diagram for this condition.

Fig. 2. - Ewald diagram for B; = 50.96°. The 10 and 01 beams
are emerging 1 ki = 8.6 A-1 and we have taken a square lattice of
parameter a = 2.55 Á. The lines connect the points representing
the open channels coupled to the 10 beam by the first, second, and
third shortest reciprocal lattice vectors.

As far as the 01 (10) beam is concemed the calcu-
lation with the ECP indicates that thé derivative of the
reflection coefficient with respect to incident angle
for Oi = 9M is infinite as in the HCWP case [1]. However

the corresponding intensity being very small, strictly
equal to zero for Oi = 6M, its variation is not experi-
mentally detectable.

Figure 3 gives the evolution of the reflection coeffi-
cient for the 00 and 11 beams, the two beams coupled
to the 10 by one of the smallest reciprocal lattice
vectors. In the case of HCWP, in agreement with
previous results [1], one observes a discontinuity on
the slope dR/dOi for Oi = eM, the slope being infinite
just when the 10 and 01 beams are emerging. With the
ECP this kind of singularity persists but tends to
disappear as X decreases. However, the slope on the
emerging beam side always has a finite value.

Fig. 3. - Evolution of the reflection coefficient for the 00 and
1T beams in the vicinity of 8i = 50.96 where the 10 and 01 beams are
emerging. The number which labels each curve gives the value of x
(X -+ oo =&#x3E; HCWP). Forx = 3 t-1, Roo = 0.905, and R 11 = 0.33.
For x = 6 A-1, Roo = 0.84 and Rtl = 0.08. For X -... oo

Roo = 0.805, Rtl = 0.16. RtT is multiplied by 103(3 Â-1) and by
102 for the other x values.

Figure 4 gives the same evolution as above for the
01 and 11 beams which are respectively coupled to the
10 by the second and third smallest reciprocal lattice
vectors. Here the singularity at (JM is of different shape
resembling rather a singularity given by a resonancè
with bound state. It disappears as y decreases, more
rapidly than in the preceding case.



1483

Fig. 4. - Evolution of the reflection coefficient for the O1 and 1T
beams in the vicinity ouf0; = 50.96 where the 10 and 01 beams are
emerging. The number which labels each curve gives the value of X
(with x - oo =&#x3E; HCWP). For_ x 3 Â-’, Ro i = 0.424, and

Rii = 0.037. For x = 6 Â-1, Roi = 0.664 and Ril = 0.085. For
X --* oo Roi = 0.773 and Rïi = 0.117.
All the R values are multiplied by 10.

7. Discussion. - Following the above result (see
expression (25)) each open or closed channel gives a
contribution to the wave amplitude of a diffracted
beam. The equation giving the wave amplitude con-
tains a sum over all the reciprocal lattice vectors. This
is clearly an effect of multiple scattering.
As a consequence the set of integral equations (27),

which allows the calculation of wave amplitudes and
reflection coefficients, as well as the equation which
determines the source function for the HCWP case,
contains a similar sum.

In each case the infinite sum is truncated for purpose
of numerical solution and a finite number of reciprocal
lattice vectors, and correspondingly of potential
Fourier components NG, is retained. In this situation
one verifies that the calculated unitarity UNG is never

equal to one but the unitarity defect UNG - 1 1
becomes smaller and smaller when N G increases,
provided the numerical procedure used leads to a
convergent solution. Therefore the solution obtained
is close to the exact result which would be obtained in
the limit NG --+ oo. The gap between them, corres-
ponding to the neglected G vector contributions, may
be characterized by the value of the unitarity defect

LE JOURNAL DE PHYSIQUE. - T. 4I, N" 12, DÉCEMBRE 1980

which in turn gives, roughly speaking, the maximum
error on the calculated reflection coefficient values. In

particular the values which are less than the unitarity
defect may not be significant. Fortunately with the
modern computer available one can introduce into
the numerical calculation a large number of reciprocal
lattice vectors such that the unitarity defect should be
less than the sensitivity of experimental measurement.
Thus we are sure to obtain a solution with a potential
containing all its Fourier components with sufficient
precision.
Taking the HCWP results as a reference one sees at

first sight that the overall effect of the ECP is to enhance
the specular intensity and to reduce all the others. As
these intensity modifications become more and more
important when the potential damping coefficient X
decreases they should be ascribed to the effect of the
increasing wave penetration into the potential region.
In order to clarify this point let us recall first that each
diffraction channel is described by the product of two
wave functions, j(z) exp[i(Ki + J).Rj. Obviously
the wave penetration affects only the normal compo-
nent t/J J(z), to which corresponds a normal kinetic
energy EJz proportional to /?j. For this energy the
potential slope is given by

Therefore as far as the wave penetration is concerned,
each wave t/I J(z) feels a potential region in which the
potential slope is different. The higher the absolute
value of the slope, or equivalently the higher the
normal kinetic energy, the lower is the wave penetra-
tion.

Let us now consider the 10 and 01 beams (Table III)
for which the multiple scattering effect is certainly
equivalent as each of them is linked to the 00 beam
by one of the smallest reciprocal lattice vectors.

Considering the relative Ez value (see Table III) the
wave penetration is lower for the 01 beam than for the
10. The intensity reduction of each beam, taking the
HCWP result as reference, is also proportionally
lower for the former confirming that to a lower wave
penetration corresponds a lower intensity reduction.
The same analysis can be done for the group composed
of the 11,11 and 11 beams. If these beams are classed
by order of increasing wave penetration i.e. 1 I, 11
and 11, we obtain the order of increasing intensity
modification.

For the incident angle of 60.5 degrees (Table IV)
the comparison can be done only with the pair 11 and
1 l. Following the preceding analysis the intensity
reduction should be greater for the 11 than for the 11
but the results show that they are approximately
equivalent. It should be noticed however that their
nearest neighbour beams are very much different.
The 11 has two closed and two open channels

whereas the 1 I has four open channels. Thus the
97
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multiple scattering effect is different for either beam
and it seems that the proximity of closed channels
enhances the intensity.
The results concerning the disturbance appearing

when a beam is emerging are in agreement with the
qualitative behaviour deduced from the integral
equations (27). The disturbance is greatest for beams
strongly coupled with the emerging one, i.e. linked

together by small reciprocal lattice vectors, and
becomes more important as x increases. The shape of
the disturbance reflects the fact that the coupling
involves one or many reciprocal lattice vectors. We
propose to call these perturbations of the intensity
variation emerging beam singularities of the first and
second type, respectively. The second type seems to be
like a perturbation due to a bound state resonance.
Such a shape is expected since an emerging beam is
precisely at the threshold resonance condition. The
practical interest of merging singularities should be
outlined. As their shape seems to be very sensitive to
the x value, this seems to be a good way to obtain an
approximate value of x if one has a set of reliable
experimental data. Experimentalists are urged to make
such measurements.

One might ask if the behaviour of the scattering
pattern given by the ECP and analysed in one parti-
cular case here can be considered as general. For
instance one can wonder if with a greater h value, in a
region where the rainbow pattern appears, the same
beam intensity modifications or the same emerging
beam singularities happen. It is always hasardous to
answer such a question. However as our present results
have been qualitatively explained on the basis of some
simple physical ideas one can infer that the whole
qualitative behaviour will occur. In particular it is

likely that the effect of wave penetration as discussed
above, will certainly play an important role and

perhaps yield a modification of the beam intensities
which will be more important for a greater h value, the
multiple scattering being then more important. In the
same way it is likely that the emerging beam singula-
rities will be visible as their appearance can be predict-
ed from the form of the integral equations.

8. Conclusion. - The scattering of neutral atoms
by an exponential corrugated potential has been solved
exactly. Compared to our previous work [8] the solu-
tion has been extended to real bidimensional corru-

gated surfaces and the infinite set of integral equations
involving t matrix elements which are directly linked
to the beam wave amplitude has been solved numeri-
cally. The convergence domain is extended from

xha = 0.1 to xha = 0.34. Now we are able to obtain
numerical results up to medium amplitude surface
corrugations.
Compared to the results given by the well known

hard corrugated wall potential, the exponential corru-
gated potential yields an enhancement of the specular
intensity and a reduction of all the others. It modifies
also the shape and importance of the singularities
which appear on beam intensities when one or more
beams are simultaneously emerging.

This latter effect can be predicted on the basis of the
integral equation form. As the integral equations
written in the general case (expression (14)) always
have the same structure these singularities should
happen whatever the potential may be.
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Appendix 1

The last integral of formula (24) can be written as :

K,,(y) and pg(p, q) are even functions with respect to the p variable. Therefore the integration can be taken from

From the recurrence relation between the K functions one deduces easily that

The integral now becomes
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where, upon using the integral representation of K function [12],

and

This gives

with

This last integral is solved in the usual way by taking a contour in the upper half complex plane for ce &#x3E; 0, and
in the lower half complex plane for ce  0. After some lengthy but straightforward calculations one gets :

where

The symbols fll and 3 mean that one has to take respectively the real and imaginary part of the expression which
follows.

The first term comes from the poles of the denominator p] - p 2 + ie, and the second from the poles of
g(p, q) with the rn equal their respective residues as follows :

This result is valid for pj &#x3E; 0 (open channel). For pJ  0 (closed channel) W is given by the preceding expression
in which PJ is changed into i 1 PJ 1. In either case one see immediately that W tends to zero as y goes to infinity
or conversely as z goes to minus infinity.

A more interesting expression can be obtaned by introducing in the preceding the following relation [12] :

in which I is the modified Bessel function of the first kind. One gets :
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with

Appendix 2

The integral to be calculated numerically at each iteration can be written in the form :

lfp2 is negative there is no problem. As WG(r, q) behaves like exp( - nq) for large q values, integration from 0 to
Q with Q very large leads to the neglect of a number of the order or less than n- 1 exp(- nQ ).

Let us consider now the case p. 2 &#x3E; 0.

where P means the principal value. Looking at the Taylor expansion of W G’ it easy to show that the function

has no singularity for q = pG. Therefore the principal value integral can be rewritten as

or, the last principal value integral being equal to zero,

with Q larger than pl. For the same reason as above the second integral is less than exp(- 7r3) and can be
neglected. This gives :
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