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Geometry of (non smectic) hexagonal mesophases

Y. Bouligand

E.P.H.E., Laboratoire d’Histophysique et de Cytophysique, C.N.R.S., 67, rue M.-Günsbourg, 94200 Ivry-sur-Seine, France

(Reçu le 14 avril 1980, accepté le 18 juillet 1980)

Résumé. 2014 On observe fréquemment un ordre hexagonal dans les cristaux liquides, notamment dans les phases
smectiques. Nous considérons ici les phases non smectiques, formées de baguettes indéfinies, flexibles et ordonnées
de manière hexagonale. La méthode de Volterra permet de définir les trois composantes principales des défauts
de translation : les dislocations transversales de types coin et vis et les dislocations coin longitudinales. On définit
également les disinclinaisons. Celles formées autour d’axes normaux aux baguettes doivent être fréquentes. Les
autres disinclinaisons formées autour d’axes parallèles aux baguettes ont peu de chance d’exister à l’état isolé,
mais peuvent entrer dans l’architecture du c0153ur de certains défauts de translation. En l’absence de toute dislo-
cation, les couches réticulaires du système hexagonal forment des surfaces développables, quand la mésophase
est déformée continûment. De tels domaines sont limités par une caustique développable, qui dégénère générale-
ment en un axe; les baguettes forment alors des cercles coaxiaux ou des arcs parallèles autour de ces axes. Certaines
comparaisons peuvent être faites avec les smectiques. L’existence d’un ordre hexagonal dans certaines phases
cholestériques lyotropes explique l’absence en général de lignes focales dans ces cristaux liquides.

Abstract. 2014 An hexagonal order is frequent in liquid crystals, namely in many smectic phases. We consider here
the non smectic phases formed by hexagonally packed, indefinite and flexible rods. The Volterra method enables
three main components of the translation defects to be defined : transverse edge and screw dislocations and longi-
tudinal edge dislocations. One also defines disclinations. Those formed about axes normal to rods must be frequent.
The other disclinations about axes parallel to rods have little chance of existing. However, they can be involved
in the architecture of the core of certain translation defects. In the absence of dislocations, the layers of rods of
the hexagonal system form developable surfaces in the continuously distorted mesophases. Such domains must
be limited by developable caustics, which often degenerate into axes. The rods then form coaxial circles or parallel
arcs about these axes. Certain comparisons can be made with smectics. The presence of an hexagonal order in
certain lyotropic cholesterics explains the general absence of focal lines in such phases.
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1. Introduction : a brief review of hexagonal struc-
tures in liquid crystals. - The examination of X-ray
diffraction patterns of several types of liquid crystals
reveals the frequent existence of hexagonal packing.
In nematic and cholesteric liquids formed by solutions
of synthetic polypeptides, the a-helices are arranged
hexagonally, the intermolecular distance depending
on the concentration [1].
Hexagonal arrays are observed within layers in

smectics B. The molecules are either normal to the

layers or tilted [2-4].
Hexagonal phases are well known in water-lipid

systems and, more generally, in amphiphilic molecules
and polymers (review in [5] and [6]).
Another example of hexagonal liquids is provided

by the first synthesized discotic components [7-11].
The disc-like molecules form cylindrical piles, which
lie parallel in hexagonal order. The distance of two
successive molécules in one pile strongly fluctuates.

The disc-like molecules of two adjacent stacks are not
in register. The piles can glide with respect to the
others and they can bend in parallel [9].
The discotic liquid crystals are thermotropic, but

might have lyotropic analogues, as previously sug-
gested [12]. The defects and textures of hexagonal
mesophases have been briefly described [9,13-15]. We
study here the geometry of the hexagonal packing of
indefinite and flexible rodlike micelles.

2. Symmetries of non smectic hexagonal meso-

phases. - The two main examples : discotic liquid
crystals and hexagonal phases of water-lipid systems
show a uniaxial negative birefringence [9, 14]. The
director can be represented by a unit vector n parallel
to the optical isotropy axis. The arrow direction is
chosen arbitrarily. The symmetries of the perfect
crystal are described in figure 1. One can consider
the group of displacements which superimpose the
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Fig. 1. - Hexagonal array of cylindrical éléments of equal dia-
meter. The director is a unit vector n, lying along the longitudinal
axis of an indefinite rod of the hexagonal system. The vector a lies
normally to n and represents one of the six translations relat-

ing one element to one of the six first neighbours. The senses of n
and a are arbitrary. There are several axes of symmetry. Two-fold
axes : longitudinal axes L2, transverse axes T2 (lying along vectors a),
transverse axes 02 (bissecting the angles between the axes T2).
Three-fold axes : longitudinal axes L3. Six-fold axes : longitudinal
axes L6. Each point of L2 or L6 is a centre of symmetry. Each plane
normal to n is a symmetry plane. The planes (L6, T2) and (L6, 62)
are planes of symmetry.

crystal onto itself. This group is formed by the follow-
ing operations :

. All the translations parallel to n.

. Ail translations which are a multiple of a and of
the homologous vectors a’ and a" (of length 1 a 1
and separating from a by an angle of + 1200
in the plane normal to n ; these translations allow
one to pass from one pile to its first neighbours).

. All the rotations by a multiple of n about the L2,
T2 or 02 axes,
all the rotations by a multiple of 2 n/3 about the
L3 axes,
all the rotations by a multiple of n/3 about the L6
axes.

. All the products of these displacements.
The microscopic observations and the X-ray diffrac-

tion patterns of discotics have not yet confirmed the
existence or non existence of a six-fold axis of symme-
try. Its presence is quite obvious in hexagonal water-
lipid systems. The discotic molecules that have been
synthesized so far present six lateral paraffinic chains.
Suppose for instance that xhese external chains tend
to be out of the disc plane, three of them on one side,
alternating with the three other chains on the opposite
side. In figure 2, the chains pointing towards the

Fig. 2. - An example illustrating the absence of the axes L6, L2, 02-

reader are represented and not the chains with the
opposite orientation. Such a system present two

different L3 axes, but there is no L6 axes. This situation
is purely hypothetical and simply shows that the pre-
sence of a L6 axis is not obvious. One must also note
that the absence of the L6 involves the absence of the
axes L2 and 02 represented in figure 1.
The set of symmetries indicated in figure 1, or the

restricted set of symmetries (in the absence of L6, L2
and 02 axes) allows the definition, by the Volterra
process, of translation dislocations (dislocations)
and rotation dislocations (disclinations).

3. Dislocations. - Any Burgers vector can be

expressed by a linear combination such as :

1 and m being positive or negative integers or zero.
As b lies normally to n, lines of pure screw dislocation

Fig. 3. - Translation dislocations of Burgers vector a. Three main
cases are considered, according to the relative positions of the line L
and the vectors n and b = a.
A : L // b and L 1 n ; screw dislocation ; plausible structure of the
core. B : L 1 b and L e n ; longitudinal edge dislocation ; the core
splits into two disclinations indicated 5 and 7 (see Fig. 6). The vector
d joining 5 and 7 is normal to b. Rods with hatched sections corres-
pond to the supplementary layer of the edge dislocation. C : L 1 b
and L 1 n ; transversal edge dislocation ; supplementary layer
underlined by hatched sections.
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are transverse (normal to n). The pure screw disloca-
tions of vector a, a’ or a" follow one of the three main

crystallographic axes. Such a dislocation is repre-
sented in figure 3A. There are longitudinal and trans-
verse edge dislocations ; the vector L parallel to the
dislocation line is normal to b, which is normal to n.
The directions of L and n are thus independent. A
longitudinal edge dislocation is represented in figure 3B
and a transverse edge dislocation in figure 3C. All
translation dislocation lines L can be replaced by a
succession of segments parallel either to b or to n or to
b A n. These three kinds of segments are drawn in
figures 3A, B, C, in the case b = a. An important
hybrid dislocation (screw and edge) is shown in

figure 4. Another interesting Burgers vector is

The three main situations corresponding to this
vector are described in figure 5.

Fig. 4. - Example of hybrid dislocation (scew and edge) of

Burgers vector b = a, which is oblique with respect to L. Hatched
sections of rods indicate the presence of a supplementary layer.

4. Disclinations. - The existence of numerous
axes of symmetry indicates that a large ariety of
types of disclinations can be conceived. ever,
most of them must have prohibitive energies.

4.1 LONGITUDINAL DISCLINATIONS. - The rotation
vector il lies along the longitudinal axes L6, L3 and
L2. Such disclinations affect the hexagonal order.
The smallest rotation angle is ± n/3 and occurs around
an axis L6. The corresponding disclinations are

drawn in figures 6A, B. The ± 2 n/3 rotations occur

Fig. 6. - A, B : + n/3 and - Tr/3 disclinations of the hexagonal
array : The vector a rotates by + n/3 or - n/3 along a circuit closed
around the disclination. These defects are classical in many natural

hexagonal arrangements such as systems of bubbles at the surface
of a liquid [15]. The disclination + Tr/3, which leads to a central
elements enclosed by a ring of five neighbours is found in polyhedral
viruses such as adenoviruses and certain bacteriophages. They also
exist in the compound eye of insects, which involves an hexagonal
array distributed on a convex surface. The - n/3 disclination forms
a decorative pattern in the test of certain diatoms [15]. The disclina-
tion - x/3 has a central element enclosed by a ring of seven neigh-’
bours. C, D : disclinations + 2 n/3 and - 2 Tr/3 formed around
a L6 axis. Such systems are not observed in natural hexagonal
systems and have little chance of existing in really hexagonal meso-
phases. They may have been used in certain ancient architectures.
E, F : disclinations + or - 2 n/3 about the L3 axes.

Fig. 5. - Translation dislocation of Burgers vector b = a - a’.
Three main cases are considered, according to the relative position
of the line L and the vectors n and b. A : L e b and L 1 n ; screw
dislocation. B : L 1 b and L / 0; longitudinal edge dislocation ;
the core splits into two disclinations indicated 5 and 7 (see Fig. 6).
The vector d joining 5 and 7 is normal to b and has the length of b,
as in figure 2B. C : L 1 b and L 1 n, transverse edge dislocation.
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around the axes L6 and L3 and correspond to discli-
nations represented in figures 6C-F.
The distortions created by these disclination lines

are easily studied in a plane normal to the disclination
line (Fig. 7). 0 is the core of the defect. The orienta-
tion of a, one of the crystallographic axes at point
M(x, y) makes with Ox an angle (p, which is a function
of 00, the azimuthal angle of M. The distance OM = p.
Thé angle lp is supposed to be a linear function of co.

Fig. 7. - Consider a disclination with L parallel to n ; L cuts the
drawing plane in 0. The Volterra process involves a rotation Q
around 0. The vector a has an orientation qJ, which depends only
on (}J. One has :

and along t which is an integral curve of a, one has :

This gives a general formula for these curves in polar coordinates :

As shown in figure 7, at a point M(p, w), one has :

and

For Q = + n/3, these equations give solutions
such as :

and

po and cvo being constants. In such disclinations, one
can calculate the varying distance of the reticular rows
of the hexagonal system (Fi . 8). One easily observesthat the interdistance a 2 separating the reticular
rows of the hexagonal array increases with the dis-
tance p to the disclination line, if Q &#x3E; 0 and decreases
if Sl  0 (Fig. 6). For Q = + n/3, 1 a varies as pl/6
and for Sl = - nl3, 1 a 1 varies as p -1/6. In strictly
hexagonal media, where the parameter 1 a 1 is rigo-
rously defined, such disclinations cannot have a large
extension. The disclinations + n/3 and - Tr/3 should
be paired to form translation dislocations as shown in
figures 3B and 5B. The vector d which allows one to
pass from one disclination to the opposite is normal

Fig. 8. - One considers two homothetical integral curves of
. vector a (t1 and t2 with an equal (po). The two curves correspond to

P = Po.f(ro) and p = (Po + dpo) f (o» -
The interdistance of the two curves at the point M(p, co) is dp.
One has :

One finds that

This interdistance varies as a power of p and does not depend on w.
In the case of D = 1: n/3, this power is ± 1/6.

to the Burgers vector and has an equal length. The
disclinations ± n/3 are well developed in media which
allow certain variations either of the parameter 1 a 1
or of the angles of the hexagonal array. Such distor-
tions are well known in systems of bubbles floating
on water or in the morphology of certain living beings
(review in [15]).

4.2 TRANSVERSE DISCLINATIONS. - The rotation
vector Q lies along the axes T2 or 02. The angles Q are
equal to + 7r and sometime to + 2 n. The + n discli-
nations are drawn in figure 9. The existence of these

Fig. 9. - Two + 1t disclinations, formed about the binary axes
T 2 (A) and (J2 (B).
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disclinations shows that the elements of the hexagonal
array can glide one with respect to the other and bend.
The disc-like molecules of two adjacent piles in a
discotic mesophase are not in register and these mutual
motions and deformations are possible. Disclinations
corresponding to - n and - 2 n rotations lead to the
formation of walls and present probably very high
energies. Closed circuits around such systems of
defects however correspond to the definition of - n
disclinations. A theoretical example is shown in

figure 10.

Fig. 10. - A : - n disclination ; the director n rotâtes by an angle
- n when a point M makes one turn along (y) in the positive sense.
Such disclinations lead necessarily to the formation of walls wl, w2 ...
in the vicinity of the core.

As indicated above, the X-ray diffraction patterns
do not allow one to establish the presence or absence
of a six-fold axis. The symmetry axes L2 and 02, the
symmetry plane (L6, 02) and the symmetry centre are
also abolished in the absence of L6. Certain associa-
tions of disclinations could serve as a proof of the
existence of L6. Consider for instance a system of
two + n disclinations forming an angle of 900 and
associated as shown in figure 11. The angle of the two

Fig. 11. - System of two + n disclinations lying at right angle.
Such a situation implies the presence of a L6 axis. If one disclination
is built about a T2 axis, the other one is formed around a B2 axis.

disclination lines is such that one of them is necessarily
built about a 02 axis, which involves a six-fold sym-
metry. A similar situation can be considered with an

angle of 300.

The disclinations considered so far are wedge
disclinations. This means that the rotation vector il
lies parallel to the disclination line L. One can also
consider disclination lines with a rotation vector Q

lying normally to L called twist disclinations. This
nomenclature is that adopted at a general conference
on defects [16]. An example of a twist disclination in
an hexagQnal mesophase is represented in figure 12.

Fig. 12. - Pathological disclination + n/3 around a L6 axis.
For clarity, the rotation is confined to a unique edge of the frame.
This figure finds its inspiration in [25].

The vector of the + rc/3 rotation is normal to the
disclination line. Such defects seem to be pathological
and have little chance of existing. However, they
show how one passes continuously from a longitudinal
disclination + n/3 to the opposite longitudinal dis-
clination - n/3. The line ceases to be parallel to the
rotation vector fi and becomes a twist disclination
and then turns to an opposite disclination - n/3. The
closed circuit of figure 13 shows the possible relation
between wedge and twist disclinations.

Opposite wedge disclinations are associated in

figures 3B and 5B to form edge dislocations. In screw
dislocations such as that represented in figure 3A,
one can define two opposite circuits corresponding
to the pathological twist disclinations of figure 12.
We have built in figure 14 an hybrid disclination with
two rotation vectors parallel and normal to the line.
This defect also has little chance to be encountered.

5. Pure distortions. -- We have defined defects

by topological operations. These defects show a

core where the hexagonal structure is abolished. At a
distance from the core, the structure is deformed but is

locally tangent to an ideal perfect crystal. We have now
to examine what are the most general deformations,
which are compatible with the hexagonal structure
and in the absence of defects. We already indicated
that the piles may glide and curve. The problem is
therefore to know how a system of equidistant curves
can form an hexagonal array in cross section. We shall
first give a definition of parallel curves in space, like
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Fig. 13. - Continuous passage from a + Tr/3 disclination (on the
left) to a - Tc/3 disclination (on the right). The - n/3 disclination
is transformed into a + n/3 disclination by inversion of the sense
of L. All the represented defects belong to the same homotopy class.

Fig. 14. - Another pathological disclination which involves a
- 7C/3 rotation about the L6 axis of the torus and a 2 7r disclination
about any axes normal to L6.

that which exists for parallel surfaces. Let us consider
a very general curve C with a defined tangent at each
point M (Fig. 15). Let there be a plane P(M), normal
to C at each point M. In some region of the space,
namely in the vicinity of C, the unit vectors n, normal
to planes P are defined and present integral curves
which will be called the set (C) of parallel curves to C.
It is clear that one can consider in a set (C) a subset (H)
forming an hexagonal array in transverse section P
(Fig. 16). Let us call h this hexagonal array.
The planes P envelop a developable surface D and

are tangent to D along generators g. D presents a
cuspidal edge E, which is the envelope of g (Fig. 15).
The curves C are normal to D and any hexagonal
subset (H) of (C) cuts D along an hexagonal lattice hd.

Fig. 15. - A curve C and the set of its orthogonal planes (Pl in Ml,
P2 in M2 etc...) which envelop the developable surface D and the
corresponding generators gl, g2... which are tangent to the cuspidal
edge E.

Consider a given point M in a plane P and a, one of
the principal vectors of the hexagonal array. One can
define in P the straight line t, set of the points T such
as MT = Âa, Â being any real number (Fig. 16). The
line t generates a surface T when M describes C

(Fig. 17). This surface is the envelope of the planes
normal to P along t. The surfaces r are therefore

developable. This means that, for a disçotic liquid,
the set of piles belonging to a row-line of the hexagonal

Fig. 16. - Representation of the hexagonal array h in a plane P
normal to the indefinite rods forming the hexagonal mesophase ;
t is a row-line of h. The normals m, m’, m" to the three principal
directions in M cut the generator g in three points ,u, ,u’, M". D is the
developable surface.

array forms a layer of constant thickness, which has
the shape of a developable surface (Fig. 17). These
layers of piles are separated by parallel equidistant
surfaces 6 whose normals m are in planes P (Fig. 17).
These normals are tangent to the surface D, which is
one of two caustics, the other one being at infinity.
There are three sets of layers of columns and their
normals at a point M touch D in three different
points p, ,u’, p", which are aligned along the generator
g of D, along which P is tangent. One easily verifies
that the cuspidal edges td of surfaces Q are curves on D,
which are parallel to principal lines of hd (Fig. 17).
The lines td are geodesics of the surface D.
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Fig. 17. - Representation of a layer i of flexible and parallel rods
of the hexagonal mesophase. T is cut by planes P along straight
lines ti, t2, etc..., associated with the corresponding generators gl,
g 2, ... of the surface D. The line te cuts a generator at its contact
with E ; td is the envelope of t and belongs to D ; the lines td form the
hexagonal array hd of D.

To summarize, any curve E allows the definition of a
developable surface D, generated by the set of its

tangents g. Planes P tangent to D have normal vectors
whose integral lines are the parallel C curves. Conver-
sely, from a given curve C one deduces E. Any hexa-
gonal system extracted from (C) forms layers which
follow a set of parallel developable surfaces i, whose
cuspidal edges are geodesics td in D. The curves td
form a regular hexagonal array hd.

. According to the shape or to the topology of D,
many cases can be considered D may have the topo-
logy of a Riemann surface, if E is an helix. It can be a
cone if E reduces to a point, and a cylinder, if the point
E is at infinity. In these two latter cases, the hexagonal
array hd can present translation and rotation defects.
The total rotation of generators g of D must be an

integer multiple of n/3. Burgers vectors must be

integer linear combinations of vectors a, a’ or a". An
example of such a surface D is developed onto a plane,
after having been cut along a generator go (Fig. 18) ;
the angle is + n/3. The position of the hexagonal array
must be such that one can join the two generators go
in register, to reform the developable cone. The posi-
tion of hd presents discrete constraints.

6. Degeneracy of the developable caustics D. -

The parallel stacking of layers of equal thickness leads
inevitably to the formation of defects in the regions
corresponding to the caustic surfaces. One must note
that the bend curvature is infinite all along the sur-
face D. Severe defects are introduced when one tries
to extend the hexagonal structure across D, in the

concavity of the surface. A very high energy is distri-

lbl 3

Fig. 18. - The hexagonal array hd of a conical surface D has been
applied onto the horizontal plane, after having been cut along the
generator go. The cuspidal edge is reduced to a point. The total
rotation of g in D is n/3.

buted all along D and one expects the degeneracy of
such surfaces in all possible cases. One solution can be
the reduction of D to one generator £5. The parallel
surfaces of the hexagonal structure are coaxial revo-
lution cones or cylinders. In a discotic liquid, the

piles of molecules form a set of coaxial circles around
the axis £5 (Fig. 19). This geometry corresponds
partially to that of + n disclinations. However, it is
not necessary in general that the axis £5 coincides with
a T2 or e2 axis.

Fig. 19. - Degeneracy of the surface D to a straight line à common
to the planes P. The curves C are coaxial circles ; à has been chosen
in the hexagonal array different from B2 or T2.

7. Comparisons with smectics. - There are obvious
analogies between mesophases formed by the stacking
of layers of equal thickness and mesophases formed by
the hexagonal packing of indefinite rods of equal
diameter. There is only one series of layers in the
first system and three series in the second one. Cer-
tain simple comparisons deserve to be illustrated.

Let us consider a glass cylinder and a mesophase
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which surrounds it, with definite anchoring conditions.
Let us suppose for instance that smectic A molecules

align parallel to the glass surface and normally to the
cylinder axis as indicated in figure 20A. The stacked
parallel surfaces can form cylinders, whose cross

sections are the evolute of the circular section of the

glass cylinder. It is not proven that such a texture is

energetically stable. This situation is only geometri-
cally conceivable. Let us now consider a discotic

mesophase around the glass cylinder, with molecules
aligned parallel to the glass surface. The hexagonal
array hd lying on the cylinder can be devoid of defects.
There is a discrete series of orientations of hd which
satisfy these conditions. There are also diameters of the
glass cylinder which allow one of the vectors a, a’

or a" to be normal to the cylinder axis. One finds
again the figure 20A. In general, a, a’, a" are oblique
and hd is formed by a triple set of parallel helices.

Fig. 20. - A : Set of parallel and equidistant involutes of a circle.
This can represent either smectic layers or parallel elongated rods
of an hexagonal mesophase around a glass cylinder, with definite
anchoring conditions. B : A Riemann surface generated by half
tangents to an helix. Parallel curves C are the normal lines to these
half tangents in this surface. The helix is thus the evolute of curves C.

The layers of the hexagonal mesophase are the sur-
faces formed by the sets of half-tangents t to the
helices td. The flexible rods in these surfaces follow
the curves C which are the parallel curves lying nor-
mally to the tangents t (Fig. 20B). The existence of a
Burgers vector and a rotation vector is obvious in
such distortions. This corresponds to the concept
of dispiration defined by Harris [15].

It has been indicated above that the developable
caustic D very probably degenerates. Similar conside-
rations have been discussed for smectics. In that case,
the problem is to know the surfaces whose normals

pass through two curves, corresponding to the degene-
racy of the two caustics. The general solution corres-
ponds to parallel Dupin’s cyclides, the two curves
forming a pair of focal conics [16]. For hexagonal
mesophases such as discotics and water-lipid systems,
one of the two conics is at infinity, the other one being
a straight line 5. The parallel surfaces are thus equi-
distant coaxial revolution cones or cylinders, a situa-
tion which is found in the vicinity of focal lines in
smectics A. Domains are limited in smectics A by
conical surfaces defined by a point of one conic and
an arc of the second one. In hexagonal mesophases,
if the second conic corresponds to the straight line b,
the limiting surface of a domain is a plane P. Domains
of smectics A are tangent along common generators
of the two limiting conical surfaces. In hexagonal
phases, the domains must have planes P in common.
The director n is parallel to molecules in smectics A

and one has generally : curl n = 0 and div n :0 0.
In the presence of dislocations, curl n is slightly difi’e-
rent from zero. The component of curl n parallel to n
corresponds to the density of screw dislocations and
the normal component to that of edge dislocations [17].
In non smectic hexagonal mesophases, n. curl n = 0
and div . n = 0 ; the presence of a bend corresponds to
n n curl n 0. The transverse edge and screw dis-
locations make div n and n. curl n slightly different
from zéro ; the presence of longitudinal dislocations
or disclinations do not change the value of div n or
curl n and more simply do not affect the field n. In
hexagonal phases devoid of dislocations one has
curl a = curl a’ = curl a" = 0 ; if q represents any
linear combination of a, a’ or a", one has also
curl q = 0. The density of longitudinal edge dislo-
cations is proportional to n. curl q, q being a vector
normal to layers and of constant length.

8. Discussion. - A parallel research on hexagonal
mesophases is due to Kléman [18]. It is shown in this
work that we admitted intuitively the existence of
planes P, which actually deserves a demonstration.
Kléman presents a more complete treatment of the
problem. The defects of the hexagonal mesophase
have been studied by Kléman and Michel [19, 20]
in the framework of the theory of homotopy
groups [21]. This study covers the main symmetry
groups known in liquid crystals. We find useful to
pursue the comparison between smectics A and hexa-
gonal (non smectic) phases in this context. In
smectics A, at each point M, the director is defined
by two parameters, say the longitude and the latitude
in an hemisphere representing P2, the projective plane.
A third parameter is necessary to indicate the position
of M within the layer thickness. The hemisphere is

easily transformed into a disc and the manifold of the



1305

internal states can be represented by a solid cylinder ;
two diametrically opposite points of the lateral surface
have to be identified, as points occupying equivalent
positions in the two limiting discs (Fig. 21). One
distinguishes three types of elementary circuits
called (1), (2) and (3). The circuit (1) corresponds to
the absence of topologically stable defects. The
circuit (2) represents dislocations and the circuit (3)
disclinations. All defects correspond to the composi-
tion of such circuits. The two subgroups of homotopy
are thus 1tt(SI) = Z and nl(p2) = Z2 ; Z being the
additive group of integers and Z2 the two-element
group of integers (modulo 2).

Fig. 21. - Representation of the manifold of intemal states of a
smectic A and of the submanifold corresponding to rotations in an
hexagonal liquid. The elementary circuit (1) represents the absence
of any topologically stable defect ; (2) corresponds to the presence
of a translation defect in a smectic A or to a rotation defect by an
angle Tr/3 (or 2 n/3), about an axis parallel to n. The circuit (3)
represents a Tr-disclination about an axis normal to n in both phases.
In the absence of polarity (n = - n ; a = - a) one has to identify
points symmetrical with respect to the horizontal middle plane.

In smectics A, the manifold of internal states is
of dimension 3. In hexagonal (non smectic) meso-
phases, the dimension is 5. The director is represented
by the hemisphere P2, transformable into a disc.
One must also define the orientation of a ; the corres-

ponding parameter varies from 0 to Tc/3 (or to 2 n/3
in the absence of a L6 axis). This allows the building
of a submanifold of dimension 3, in the form of a
solid cylinder with identifications of points similar
to those described in figure 21 for smectics A. Now,
the position of a point M in the hexagonal array can
be represented by a torus or, by a rectangle, with

identified opposite edges. The manifold corresponding
to hexagonal liquids is thus very complicated, the
products of certain operations not being commuta-
tive. Each discrete change of Burgers vector corres-
ponds to the passage to another class. One also verifies
that pathological defects, such as those described
in figure 6AB, figure 12 and figure 13, belong to a
unique class. The presence of any defect from this
class would be a proof of the existence of a L6 axis.
The theory of homotopy groups ignores the existence
of focal lines in smectics A. The layers have the shape
of revolution domes in the vicinity of focal lines [22, 23]
and are not recognized as topologically stable defects.
In contrast, focal lines in hexagonal (non smectic)
mesophases are represented by £5 axes, corresponding
to the coaxial alignment of perfect revolution cones.
These textures are topologically stable. The indefinite
rods of the hexagonal array form coaxial circles
about b. Such a configuration would not be stable for
a nematic liquid. There is an escape in the third dimen-
sion [21] as shown in figures 22A-C. Such a process is
impossible for hexagonal phases, since it introduces
translation defects, as shown in figures 22D-F. The
escape in the third dimension is possible for a smectic A.
The only point is that one has to start from a radial
distribution of molecules instead of a concentric one
as in figure 22. This escape is physically realized in
smectics A along the focal conics.
There is thus a profound difference between focal

lines in smectics and £5 lines in hexagonal phases,
which concerns the topological stability, despite
certain geometrical analogies. Another point must be
underlined. Thermotropic cholesterics present focal
lines in général. However, these defects have never
been observed in lyotropic cholesterics such as certain
concentrated solutions of synthetic polypeptides [1].
We suggest that the hexagonal order prevents the
formation of such defects. At short distance, the
reticular layers are developable and the formation
of revolution domes (as in smectics A and in thermo-
tropic cholesterics) is forbidden. At longer distance,
the high density of dislocations (namely screw dis-
locations necessary for the cholesteric twist) allow
very different shapes ; one observes concentric layers
in the spherulitic germs of these synthetic polypep-
tides. The formation of £5 lines is also difficult to

Fig. 22. - A, B, C : Escape in the third dimension in the case of a nematic liquid. A configuration of the type S = 1 [20] is continuously
transformed into a parallel alignment. D, E, F : A similar transformation in hexagonal systems involves translation defects and rotation
defects, which change the homotopy class ; a is one vector allowing to pass from one rod to one of the six first neighbours.



1306

conceive in lyotropic cholesterics, the twist being
absent in such defects. One must recall that spheru-
litic germs of lyotropic cholesterics present a radial
screw dislocation. The arrangement of layers around
this axis resembles that of a second type of focal
line [23]. The layers do not form domes, but a double
fold twisted along the radius. The director distribution
is continuous all along this defect of the cholesteric
arrangement [24]. The folded architecture of the
core is compatible with the presence of hexagonal
order and developable surfaces in small domains.

It appears therefore, that the hexagonal packing
in lyotropic cholesterics, formed by synthetic polypep-

tides, profoundly changes the texture and, especially,
prevents the formation of focal lines (with the excep-
tion of a very special type of focal lines). This study
has shown the importance of the concept of deve-
lopable surface, not only for the description of caustics
in hexagonal liquids, but also for the reticular layers
themselves.
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