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Résumé. 2014 Nous étudions un système dynamique dissipatif discret qui présente une transition vers la turbulence
par intermittence. Au seuil d’instabilité, ce modèle possède une structure d’homothétie interne analogue à celle
des modèles de bruits de Mandelbrot. Le fait que l’on obtienne un spectre en 1/f suggère que de tels spectres peuvent
tirer leur origine d’une dynamique déterministe à court terme bien que non prédictible à long terme, au c0153ur de
notre compréhension actuelle de la transition vers la turbulence.

Abstract. 2014 We study a discrete dissipative dynamical system which presents a transition to turbulence via inter-
mittency. At the instability threshold, this model displays a self-similar structure analogous to that of Mandelbrot’s
noise models. The 1/f type of spectrum obtained suggests that such spectra can originate from dynamics deter-
ministic in the short term though unpredictable in the long term, which is at the centre of the present understanding
of the transition to turbulence.
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1. Introduction. - Intermittency as a way to tur-
bulence has recently been the subject of experimen-
tal [1] as well as theoretical [2] studies. In this article
we present a simple but detailed analysis of a discrete
dissipative dynamical system which displays this

phenomenon and suggests a connection with the
well-known widely observed 1/f noise phenomenon.
In the experiments either physical [1] or numerical [3,
4], intermittency presents itself as a seemingly random
alternation of long regular or laminar phases and
short irregular or turbulent bursts (see Fig. la). Pre-
sent theoretical understanding rests on the theory
and numerical simulation of dissipative dynamical
systems [5]. Several examples are known which display
the intermittency phenomenon [3, 4, 6] ; one is the

Fig. 1. - a) Example of intermittent signal obtained from the
model defined by equation (1). b) Forgetting the underlying dyna-
mics, one can consider this signal as a succession of noises whose
distribution is of interest.

celebrated Lorenz system [3]. Another one, obtained
in modelling chemical reactions [6], is interesting
from another point of view since it presents an 1 If
spectrum close to the instability threshold; one of
our major points will be to show that this fact is not
accidental but on the contrary typical of one of the
différent types of intermittency already discovered.
Now a rapid glance at figurela is suggestive of figure lb
which is strongly reminiscent of excess noise in a
transmission line as pictured by Mandelbrot [7].
Such a random noise is better understood in terms
of the distribution of the duration of the intermissions,
the time intervals between two noisy events. On the
other hand, figure la was obtained from a model

(to be described below) which is predictable in the
short term though unpredictable in the long term.
Working out its statistical properties will reveal
that 1 /f noise can also have a deterministic origin.

In a first appendix we review briefly the essentials
of the transition to turbulence via intermittency and
we establish the connection with the model studied
below. A second appendix is devoted to a discussion
of the 1 /f spectrum described in reference [6] and to
some further implications.
Even if most of the discussion is developed at a

heuristic level, avoiding all delicate mathematical

question, we think it may shed some light on currently
still puzzling physical problems.
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2. The model ; some immédiate properties. - The
model consists in a simple iteration :

Justifications for its interest are postponed to appen-
dix I. As can be seen on figure 2, f maps the segment
[0, 1 [ twice on itself. The origin x = 0 is always a
fixed point. It is stable for E &#x3E; 0 : iterates of nearly
all starting points will converge to it. On the contrary,
when G &#x3E; 0 neither f nor f o f nor f o f o f, etc...
have stable fixed points ; let us see how the model
works in this case. Define x by f (x) = 1, assume
an initial condition xo close to the origin and let the
iteration proceed. The iterate xn first increases gently
but then more and more rapidly up to a point were

Fig. 2. - Graph of the transformation x - f (x). Each point has
two antecedents ; for x far from the origin no singularity is expected
in the invariant measure since the slope at either antecedent is
much larger than 1. On the contrary for x close to the origin, x’
and x are very close and one must have 03BC(x) ~ 03BC(x’) &#x3E; 03BC(x").

it becomes larger than ac. During this phase of the
motion, the iterate drifts regularly away from the
origin, we call it a laminar phase. Now due to the
discontinuity in the graph of f this monotonous
variation is suddenly interrupted ; a turbulent burst
occurs which may reinject the iterate in thé region
x  x, thus beginning a new laminar phase. Hence
the intermittent signal pictured in figure la.
Numerical results are obtained in starting the

iteration with some initial value xo and letting the
computer run, so they appear under the form of
temporal averages. Let us consider for example the
characteristic exponent [5] which conveniently measu-
res the amount of turbulence in the intermittent

regime : i.e. the extent to which trajectories are sensi-
tive to initial conditions and thus unpredictable in
the long term even if they are defined by a relation

which seems perfectly deterministic (eq. (1)). Here
the situation is particularly simple. An absolute error
ôxo on xo leads to an absolute error

on the first iterate Xi = f (xo) ; after N iterations one
has :

Let us define yN by

so that

the characteristic exponent y is simply the limit of yN
when N tends to infinity. It presents itself as a tem-

poral average. However, as in statistical mechanics,
theory more easily handles ensemble averages involv-
ing a certain probability density (measure) on phase
space. The temporal average of a given function g(x)

may be read as :

so that

presents itself as the probability density we are looking
for. It would remain to prove that it has good proper-
ties : independence with respect to the initial point
and stability against small stochastic perturbations
essentially [SbJ since it is clear from its very expression
that it is invariant under transformation f (a supple-
mentary iteration amounts simply to a shift in the

numbering of the iterates). A numerical estimate of
this invariant density can be easily obtained by count-
ing the number of iterates which fall in a small inter-
val around a given point in the course of a very long
run (see Fig. 3). However we would prefer to deter-
mine this probability density by analytic means.

The idea is to compute the effect of a repeated appli-
cation of transformation f on some initial measure
(for example the usual Lebesgue measure ,uo(x) = 1 ).
If the n th iterate is Jln(x), at step n + 1 one has :
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Fig. 3. - Invariant measure obtained from the numerical simu-
lation. For e = 0, the log of the number of iterates falling in a
section around x increases as log 1/x. For e * 0 here e = 1/1024,
this law is truncated at x N e. The aspect of the figure at the extreme
left results from the very small number of very long laminar phases
starting at very small xo which entered the statistics.

where E denotes the sum over all antecedents X’ of a
a

given point x under f : x = f (xa). The measure
we are looking for thus appears naturally as the fixed
point of the transformation :

In the present (quite simple) case its existence in the
intermittent regime (e &#x3E; 0) results from a theorem
[5c] due to the fact that 1 f’(x) 1 &#x3E; 1 everywhere.
Let us compute it explicitly. As can be seen from
figure 2. Each point has two antecedents one x’  x
and the other x" &#x3E; x. Far from the origin, say for
x - x, these two antecedents are also far from the
origin. dx’ jdx and dx"/dx are both of the order of 1/2
so that equation (3) which reads :

can be, fulfilled with Jl(x), M(x’), g(x") all of the same
order of magnitude j1. On the contrary when x is
close to the origin, x’ - x is also close to the origin
and dx’/dx - 1, while dx"/dx is of the order of 1/2.
Then equation (3) can be fulfilled only with

i.e. M(x) tends to concentrate at small x. Assuming y
smooth enough and expanding it, denoting J = x- x’,
one gets :

where C(x) _ M(x") dx"/dx is slowly varying and can
be considered as constant in this simple analysis.
The solution reads

As long as s is finite, the total mass M = jJ.(x) dx
is finite but it diverges as ln (1/E) when e -+ 0 +.
At threshold E = 0, the condition 1 f’(x) 1 &#x3E; 1 is
violated at the origin where f’(0) = 1 and there is no

non-singular invariant measure [5c]. NumeJical esti-
mates for M(x) as given by its temporal definition (2)
are plotted in figure 3. The finite duration of the long
run prevents observing experimentally a true diver-
gence at e = 0. In agreement with equation (4),
one observes that u(x) saturates below x - 1/e
when e &#x3E; 0.

Now let us use the invariant measure to determine
the characteristic exponent y. It can be calculated

through a mere integration on phase space

At the limit e - 0 one gets

The convergence of the corresponding numerical
estimate (the temporal average) is exceptionally slow

. for e small and it is very difficult to get y with high
precision but numerical experiments (Fig. 4) seem
compatible with the theoretical estimate (5).

Fig. 4. -The Lyapunov number y tends towards zero as 1/ln (1/e).
Convergence was very slow and required as many as 2 x 107 ite-
rations for the smallest e.

3. Self-similarity at the intermittency threshold. -
In this section we shall examine further the statistical

properties of the process defined by equation (1)
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and now understood as a random noise. In fact this
is possible because a laminar phase of given duration
is uniquely defined by its starting point. At E = 0
one has simply

Turning to a differential equation one gets

which integrates as :

The laminar phase, that from now on we shall call
an intermission, ends when xn &#x3E; 1 since due to the

discontinuity in the graph of f(x) the iterate can be
reinjected in the vicinity of the origin starting a new
intermission. The duration no of an intermission

starting at xo is then given by

for xo small enough. The number of intermissions
which last longer than no follows immediately since
they must begin at x  xo and since they will do so if the

dx"
antécédent falls in the interval x, âc + xo dx (x)
the weight of which is

so one has

This estimate is in good agreement with numerical
results presented in figure 5.
Formula (7) is the first manifestation of self-

similarity [7] in this problem. Another one is given
by the series of the lengths of the longest intermissions
as a function of their starting time. Indeed in a nume-
rical experiment the initial condition can always be
considered as the starting point of a laminar phase.
Now let n be the length of an intermission longer
than that of all other intermissions that took place
before it in the course of the experiment and let ti
be the starting instant of this intermission. Figure 6
shows that long intermissions occur only a long time
after the beginning of the experiment and that the
starting point t; and the length fi are roughly propor-
tional. This is easily understood if one assumes that
in an experiment involving N iterations the system
can explore a region of phase space such that

Fig. 5. - The distribution of intermissions of length n &#x3E; no
follows the hyperbolic Pareto law [7] nÕ 1. Deviations are observable
at both ends, first for no small due to the existence of an inner scale
the iteration step, and second for no large where statistics become
poor.

Fig. 6. - Statistical self-similarity clearly appears in this plot of
the length of the longest intermission, at a given time n as a function
of its starting time t;. Several different series starting at randomly
chosen initial values xo are given each showing a rough propor-
tionality between n and t; which suggest that the domain of phase
space allowed to the system at time N is restricted to x &#x3E; xi. oc 1 IN.
Notice that a simulation which presents only one laminar phase
ending at time N has to begin exactly at 1/N.

x &#x3E; xi. oc 1 /N and all the average properties of
the signal are to be calculated within this restriction.
In particular the average duration of intermissions
will be given by
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the average number v of noise bursts in an experi-
ment of length N will be

of the form Na with b = 1 - 0(In) giving the fractal
dimension of the noise according to Mandelbrot [7].
Again this is well verified for this model (see Fig. 7).

Fig. 7. - Growth of the number of laminar phases as a function
of the number of iterations. In order to observe the behaviour pre-
dicted by our simple analysis, one has to define laminar phases by
a minimal length nm much larger than the inner scale so that they
already belong to the self-similar regime depicted in figure 5. Here
we have taken nm = 10, taking nm = 1 would give v(N) oc N
without any logarithmic correction. Inset : n = N/v grows linearly
with log (N).

The number of events per unit time

tends to zero logarithmically. We denote it by ( ... po
to recall that it presents itself as a temporal average
evaluated in the course of a given experiment start-
ing at (n = 0, x = xo). Since ( n(N) &#x3E;0 tends to zero
as the number of iterations increases, the process
is not stationary. This sporadic character [7] should be
related to the fact that the invariant measure is non-
normalizable but this is special to the threshold
E = 0. Slightly above the threshold (s # 0), the process
will appear as stationary if it is observed over a suf-
ficiently large time, in practice a time much larger
than 1 /E. When e =1= 0, the relation (6) between a
starting point and the corresponding length of the
intermission has to be replaced by

which gives back (6) when xo » e and

or

in the opposite limit xo « e. Then one has

which gives (7) when no  lie and exp(- eno)
when no » 1 /E. Finally the averages length of inter-
mission reads

At the limit N  1 le one recovers formula (8) whereas,
when N tends to infinity, n tends to In (1/s). As the
number of iterations increases, the mean value of the
signal which is just 1 1-n then decreases logarithmically
according to (10) down to 1/ln (1/E).

Self-similarity is preserved at time scales smaller
than 1/6 which then plays the role of outer scale for
the process. (The outer scale is the scale at which

self-similarity is broken for an external reason, here
the fact that one is not exactly at the intermittency
threshold. The inner ’scale is the scale at which the

process is defined, here the iteration step).

4. 1/ f spectrum. - Let us now turn to the corre-
lations of the noise. In order to avoid difficulties
about stationarity and the existence of averages we
shall assume that e is slightly larger than zero but we
shall restrict to time scales much smaller than 1 /E
in order to remain in the self-similar regime. Then
it is legitimate to assume the validity of the Wiener-
Kintchine relations between the Fourier transform
of the autocorrelation function and the spectral
density of the process [8]. As usual the correlation
function reads R(t) =  x(0) x(ï) ) =  jc(0)  x(t) &#x3E;0 &#x3E;
where, as before x(t) &#x3E;0 is the average value of the

signal when its value at t = 0 is known, here when a
noise occurred at t = 0. So one has R(’r) ’" 1 /ln (r)
in the limit of large r. Instead of searching directly
the Fourier transform in the limit of small frequencies
it may be interesting to obtain its behaviour by a
qualitative dimensional argument. Let J(co) denote
the Fourier transform of R(’r) ; we have :

Now consider the dominant contribution of the first

period T = 2 nfm and replace the cosine by a square
wave, then
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i.e. (the number of busts during the 1 st half period)
minus (the number of bust during the 2nd half period).
So :

or replacing v by its value :

The same result could have been derived by a more
formal calculation starting with the distribution
function (7) [9] but this argument is instructive in that
it stresses the fact that the noise will present a non-
trivial behaviour at m - 0 only if it possesses fractal
properties. Indeed if v(T) was simply proportional
to T at the limit of large T, J( ())) would reduce to a
constant at m - 0, which will be the case when
a :0 0 for T &#x3E; 1 e or co  e. Now in the numerical

experiment, the spectral density is obtained directly
by Fourier transformation of the signal. Figure 8

displays the inverse of the power contained in a

spectral line against the frequency. The slight devia-
tion from a lit spectrum at the lowest frequencies

Fig. 8. - The power spectrum p(m) is obtained by Fast Fourier
Transforming successive series of 2 048 iterates. About 2 000 spectra
have been accumulated. Frequencies must be scaled to the maxi-
mum possible frequency rom which is just the inverse of the sampling
period. At threshold e = 0, the overall 1/f aspect of the spectrum
is well verified ; moreover the slight deviation at the lowest fre-
quencies is compatible with the logarithmic correction predicted
(see the inset).

seems compatible with the theoretical logarithmic
correction. In fact this correction is important in

order to make 1 J(m) dm convergent at co = 0 [9].

The process defined by (1) appears as the limit case
of a more general noise with fractal dimension £5
with 0  £5  1 and here £5 = 1 - 0(!n). Extending
the argument given above one would get J(w) ’" co-1
which is also integrable at w = 0. Since £5 cannot be
larger than 1 this naive argument cannot account
for excess noise with a power spectrum of the form
w -’, , 1 down to w = 0. Another limitation of the
argument developed above is discussed in appendix II.
Among different interpretations of 1 /f noise a

very old and popular one [10] involves the superposi-
tion of a continuous distribution of characteristic
times each giving a Lorentzian contribution to the
total spectrum :

The particular form p(i) = 1/T which leads to exact
1 /f noise is obtained if one assume a kind of activa-
tion process for t : T = To exp(E/Eo) and a uniform
distribution of energies D(E) dE * 00 dE, Do cons-
tant. In the process defined by (1) one could also
develop a similar argument :

i) assuming that correlations over a time i occur
when x(O) and x(i) happen to belong to the same
intermission of length t’ &#x3E; t,

ii) noticing that the number of such intermissions
is ’" 1/r, and

iii) assuming a Lorentzian contribution to the

spectrum, one would also get exact 1/f noise but the
derivation is clearly not satisfactory even if it leads
approximately to the correct result.

5. Conclusion. - In this paper we have studied
a quite simple model displaying intermittency, self-

similarity and a 1 Il spectrum. Statistical properties
of this model are rather easy to derive and theoretical
estimates are all in nice agreement with numerical
results. As explained in appendix 1 this model is not
very natural but it derives directly from a two-dimen-
sional model of transition to turbulence via inter-

mittency. This model was not amenable to detailed
analysis. The reduction to one dimension looked

justified but lead to slight, significant, discrepancies
between the theoretical predictions (5, 7, 9) and the
corresponding numerical estimates. The origin of these
discrepancies is not yet clear but the agreement observ-
ed here in the strictly 1-dimensional case definitely
shows that theoretical tools can work well and that
the reduction to 1-dimension is questionable.

In addition to this first answer, we have been led
to a novel insight on the problem of 1 /f-noise : our
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model works as a generator of random noise bursts
and we have proved that there may be a hidden cohe-
rence in the distribution of random noise bursts
due to the peculiar properties of dynamical systems
displaying intermittency. Indeed as shown in appen-
dix II, this is not special to the model studied above.
Self-similarity at the intermittency threshold leads

quite naturally to power laws for the power spectrum
of the noisy signal, even if work remains to be done
to predict accurately the exponent of the power law
and its validity domain in specific cases. In any case,
instabilities with an intermittent behaviour provide
the opportunity of explaining the structure of certain
random noises through short term deterministic

dynamics. Theories of 1 /f noise based on the incohe-
rent superposition of relaxation times of very diffe-
rent orders of magnitude may suffer difficulties from
their ad hoc character [11] and it is of interest to know
that other interpretations are available.
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practical aspects of 1/f noise and Y. Pomeau to

whom 1 am indebted for the major role he played in
our previous work on intermittency and for his cons-
tant interest and enlightening advice on the develop-
ments presented here.

APPENDIX 1

Intermittency in dynamical systems. - Recent
progress in understanding the transition to turbulence
rests in large part on the theory of differential dyna-
mical systems. Such systems can be explicitly derived
through modal decompositions of the macroscopic
equations of motions (Navier-Stokes, Oberbeck-

Boussinesq, chemical reaction diffusion equations,
etc...). One is mainly interested in asymptotic states
reached once transients due to initial conditions have

decayed. These asymptotic states may be stationary,
periodic, quasi-periodic or even chaotic. Bifurcation
theory is devoted to the study of transitions between
these different possible states. Turbulence has been

predicted to set in after a small number of bifurcations
only.
The detailed structure of the strange attractor

which accounts for turbulence is not resolved by the
general theory but left either for further study in

every specific case (the Lorenz model for example)
or for conjectures of broad enough generality (see
Y. Pomeau p. 135 in [2a]). In the course of the analysis
a theoretical tool named a Poincaré map often proves
useful. It looks similar to a stroboscopic analysis
of trajectories obtained in examining successive
intersections of trajectories with a well chosen surface
drawn in phase space. So the differential system is

reduced to a discrete time dynamical system : an
iteration. In this framework, the Hopf bifurcation
of a limit cycle (periodic state) towards a biperiodic
state can be accounted for by an iteration on a complex
variable z = x + iy = p exp iO of the form :

with e R and ç =1= 2 nkln, n -- 5 to avoid resonance.
Bifurcation theory shows that when  0 (more
precisely À cos ç  0) the bifurcation is supercritical,
i.e. there exists a non-trivial solution for B &#x3E; 0 and
the corresponding biperiodic state is stable. On the

contrary, when &#x3E; 0 bifurcation theory predicts
that the biperiodic state exists for e  0 (subcritical)
and is unstable ; but it cannot say anything more,
particularly about what happens for e &#x3E; 0. The

conjecture which accounts for intermittency is that
there is no longer any simple stable asymptotic
state and that the strange attractor that takes place
is such that the variable z of the reduced Poincaré

map (I.1) has the opportunity to fall again close to
the origin when it is far from it. This property can be
obtained in periodizing the 2-dimensional complex
plane by modulo conditions on components x and y
of z.

Close to the origin the role of the angular variable 0
3vàs thought unimportant and iteration (1.1) was
reduced to a 1-dimensional iteration for the modu-

lus p :

which leads to

Since the problem is 2-dimensional with rotational

symmetry the natural surface element is 2 Trp dp
and it is equivalent to study (1. 3) using p dp or to set
p2 = x in (1. 2) and to study it using dx. The rescaling
of x and the modified non-linear coefficient in (1)
when compared to (I.2) are purely matters of conve-
nience and do not affect the critical properties e --+ 0
of interest in this paper.
Numerical simulation on iteration (I.1) has given

y oc Ea with a positive, small and (weakly) dependent
on coefficient À, thus unambiguously différent from
the logarithmic behaviour predicted by (5). In the
same way, at the intermittency threshold e = 0 one
gets JY’(n &#x3E; no) oc nô 0 with fl also function ouf À
and slightly différent from 1 (cf. result (7)). Finally,
the average number v of noise bursts in an experiment
of length N increases as N’ with à strictly smaller than 1
in contradistinction with (9). Corrections to the 1-

dimensional reduction are probably important from
the conceptual viewpoint but seem to remain quite
small quantitatively speaking.
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APPENDIX II

1/f-noise in a differential dynamical system. z
In order to describe the transition to chaos in oscillat-

ing chemical reactions Yamada and Fujisaka [6]
have proposed the following differential model :

where j = 1, 2,..., N and wj = uj + ivj is a complex
variable. For N = 3, Co = - Ci = CZ = .J3,
elN = 0.21, this system presents a transition from a
limit cycle behaviour for a &#x3E; 0.212 to an intermittent
turbulent state for a  0.212 ; a 1/f-spectrum has
also been observed slightly below the intermittency
threshold. Studying a Poincaré map of the flow, we
have been able to show that this kind of intermittency
could be understood in terms of an iteration for a
certain variable x taking the form [ 12J :

close to the origin (+ suitable periodic conditions as
before). Absence of quadratic term and symmetry
under the change x - - x are linked to the permuta-
tion properties of (II. 2). An analysis similar to those
of paragraph 2 and 3 leads to :

with

with

with

Result (II. 3a) has already been checked for the discrete
case (II .2) (see [2b]) ; a similar confirmation in the
dif’erential case (11.1) will be difficult to obtain due
to the slowing down of convergence close to the
threshold and already annoying in the discrete case.
Numerical simulations at threshold (e = 0) agree
with (II.3b, c). As can be understood from the value
of the exponents, the process is very sporadic, noise
events become rare and rather grouped with groups
well separated by comparatively long intermissions.
The naive argument giving the exponent for the power
law of J(co) leads to expect J(w) ’" W-I/2 and not

Co . -1 as observed by Yamada and Fujisaka. However
a close inspection of the conditions of their numerical
experiments shows that their frequency window
lies too close to the inner time scale and does not
extend sufficiently far in the direction of low frequen-
cies so that the exponent may be modified and one
is not able to see rounding of the spectrum due to a
finite distance to the threshold (e = 0.09 at a = 0.200).
Trying to check the w - 1/2 law with iteration (II . 2)

has led to an important restriction about the repre-
sentation of the intermittent signal in terms of inter-
missions and noisy events which directly leads to that
prediction. It should be noticed first that for E = 0
the signal is strongly non-stationary and very sporadic
so that it is absolutely necessary to make e &#x3E; 0
to get rid of this difficulty and obtain reproductible
results. Thus the spectrum will saturate at frequen-
cies m - e but choosing e small enough will allow
the observation of the asymptotic power law in the
intermediate frequency range far enough from the
inner and outer scales. Over about two deaades we
have obtained

with

while at higher frequencies the apparent exponent
increases beyond 1. The différence between the

expected value 1 /2 and that observed 8 0.75 - 0.80
can be understood if one realizes that in the argument
of paragraph 4 we have deliberately ignored the
contribution of intermissions longer than 2 n/w
to the power spectrum at w. During an intermission
it was implicitly assumed that the signal was zero but
this is not the case. An intermission of duration no
contributes as a regular drift to all frequencies
m &#x3E; 2 nlno. A simple slope would give J(w) ’" W-2.
The power at frequency w is then a weighted average
of contributions coming from intermissions shorter
and longer than 2 Tr/0153. Hence the modified exponent.
A self-consistent analysis of this correction has not
yet been worked out. In principle it exists also in the
case of iteration (1) but the non-linear term is qua-
dratic rather than cubic so that it repells the iterates
much more vigorously away from the origin. As a
consequence the number of intermissions of len th
larger than no decreases as 1 /no instead of 1/7n’ 0
and this can explain that their contribution is negli-
gible at least in view of our results in figure 8.
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