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Résumé. 2014 On présente dans cet article le calcul de la susceptibilité non-linéaire au voisinage d’une transition à
deux photons sans élargissement Doppler. Dans le cas d’un système à deux niveaux, on donne une solution non
perturbative qui permet de prévoir des effets nouveaux sur l’indice, effets liés au transfert de population entre
niveaux fondamental et excité. Dans le cas d’un système plus complexe, on étudie à l’ordre le plus bas les effets
d’anisotropie induits par un faisceau sur l’autre faisceau se propageant en sens inverse. On montre enfin que les
conditions pour obtenir un régime bistable quand des atomes à l’intérieur d’une cavité Pérot-Fabry sont soumis
à un champ dont la longueur d’onde est proche d’une résonance à deux photons, sont relativement faciles à réaliser.

Abstract. 2014 We present in this paper a calculation of the non-linear susceptibility near a Doppler-free two-photon
transition. In the case of a two-level system, we find a non-perturbative solution. We deduce new effects on the
non-linear refractive index which are related to the change of the linear susceptibility because of the transfer of
atoms between the ground and excited levels. In the case of a more complex system, we study at the lowest order
of perturbation the anisotropy induced by one beam on the other. At last, we show that it is easy to observe a
bistable behaviour when atoms, inside a Pérot-Fabry cavity, interact with a beam whose wavelength is close to a
two-photon resonance.
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The problem of Doppler-free two-photon absorp-
tion has been considered in many papers [1]. On the
other hand, only a very small number of papers [2]
have discussed Doppler-free two-photon dispersion
which is a subject closely related to the previous one.
It certainly corresponds to the fact that Doppler-free
two-photon absorption has been mostly used for

spectroscopic purposes and in this case, it is generally
easier and more precise [3] to detect the excited atoms
by fluorescence or by ionization [4] rather than by the
absorption itself. This explains why the evolution
from saturated absorption spectroscopy to saturated
dispersion which has been observed in a neighbour
technique has little chance to occur with a great
extension in the two-photon domain. Nevertheless,
it seems interesting to calculate the formulae corres-
ponding to two-photon dispersion, firstly because it

may be possible that in some very particular cases the
dispersion may be more accurate than the other
detection mechanisms, secondly because the depen-
dence of the index of refraction upon the intensity
leads to new effects such as induced optical activity [2]
and birefringence, bistability...

The paper is divided into four parts. In the first
part, we perform a brief recall of the general formalism
and we calculate the refractive index of a travelling
wave when its wavelength is close to a two-photon
resonance. In the second part, we consider the case
where two waves of opposite directions interact in the
medium and we calculate the modification of the
refractive index of one wave due to the presence of
the other. In the third part we describe two effects
related with the interaction of the waves near a two-

photon resonance : the optical activity [2] and the
birefringence and we calculate the angular parameters
in the general case of a 7g -+ Je transition. In the
last part, we consider the problem of optical bista-
bility near a Doppler-free two-photon transition.

1. Refractive index of a travelling wave. -

1.1 EFFECTIVE HAMILTONIAN. - In order to describe
the two-photon absorption, we need at least three
levels : the ground and the excited states g and e and a
relay level j [3]. Nevertheless, it is possible in many
cases to omit the level j by introducing the two-photon
operator [3, 5] and setting up an effective hamilto-
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nian [6]. We now give a few details in order to clarify
our notations.

In the following, the calculations dealing with the
atom are always performed in the rest frame of the
atom.

We consider an atom with two non-degenerate
levels go (ground state) and 1 e &#x3E; (excited state)
of the same parity, and a certain number r of relay
levels 1 j &#x3E; of the opposite parity. This atom interacts
with an electric field whose value in its rest frame is

equal to :

The interaction hamiltonian, at the electric dipole
approximation, is equal to :

where D is the electric dipole moment of the atom.
In order to solve the density matrix equation :

(where Ho is the hamiltonian of the free atom and prel

corresponds to the evolution due to relaxation), we
assume that the following inequalities are satisfied :

(hcojg is equal to the energy difference between the
levels j and g and Q -’ 

1 is the evolution time of the
coherence pge in the interaction representation).

In that case we can integrate adiabatically the

équations giving ih d dt Pje and ih, d dt Pgj because the
populations pgg and pee and the coherence peg in the
interaction representation vary very slowly with time
(the other coherences Pjk where j and k are different
from g and e can in most cases be neglected). Reporting
the expressions obtained for Pgj and Pje in the equa-

d d 
... 

d 
b . 

.

tions giving ih dt Pee, 1ft Ut pgg an 1ft dt pge, we obtain,
at the secular approximation, an equation for the den-
sity matrix restricted to subspace g, e which is (in the
Schrôdinger representation) :

with

The energy of the ground state Eg has been taken equal to 0 and the Q and Q’ operators are those introduced in
reference [6] :

(It can be noticed that the energy denominator
- hi-» + Ee - Ho is practically equal to hiiJ - Ho
because Ee - 2 hw 1 is very small).
The hamiltonian is formally equivalent to that of a

spin 1/2 interacting with a static and a rotating magne-
tic field. The solution of such a system is well known,
we find in the case of a weak relaxation a damped
Rabi precession in the rotating frame. The Rabi

pulsation Q is equal to :

where s is the light-shift of the g-e transition [6]

In order to take into account the relaxation processes, .
we assume phenomenologically that :
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The steady state solution is :

where a is the saturation parameter

and ôÈ is the energy detuning from the two-photon

absorption resonance

1. Z POLARIZATION OF AN ATOM IN ITS REST FRAME. -
For the calculation of the polarization of the medium
and the refractive index, we need the mean value of D :

where use is made of Deg = 0.
We obtain pj, and pjg (as it was mentioned before) by

integrating adiabatically the equations (1) giving

ili :t Pje and ih d dt pgj. The values of Pje and pjg onlydt dt

depend on pgg, pge and pee which have been calculated
previously (see (8)-( 11 )). We find for  D &#x3E; :

This expression fort D &#x3E; contains terms oscillating at
3 m which correspond to frequency mixing and terms
oscillating at co. In the following, we only retain these
last terms which must be taken into account in order
to calculate the refractive index. Furthermore, we
neglect in the following the antiresonant terms (those
which correspond to an energy denominator equal to
- hw - Ho).
In the sections 1 and 2 we also assume that c is

real and that D is colinear to ~ (it corresponds, for
instance, to the case of a S - S two-photon transi-
tion).

Introducing the notations D = D.£ and Q = Q
we transform the expression (15) into : 

EE

Using Pgg = 1 - pee and the definition (7) of the light-
shift s, this expression can be transformed into :

The first term - Qgg E(t) corresponds to the usual
linear polarization. The term (4 s/) 6 2) pee E(t) is a
corrective term to the linear polarization which comes
from the modification of the populations of the states g
and e due to the two-photon transition. The last

expression is the term expected for two-photon dis-
persion because it involves the optical coherence p,,g.
Using the formulae (8)-(13), we obtain fort D &#x3E; :
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The first term off D &#x3E; (with a phase identical to the
one of the incident electric field) corresponds to the
real part of the polarizability x’ (i.e. the dispersion)
while the second term corresponds to the imaginary
part x" (i.e. the absorption). This last value is the one
which is classically obtained in the theory of two-
photon absorption [6]. The relations between x’ and
x" are clearly very different from the one encounted
in the theory of susceptibility for a non-saturated

single-photon transition. In particular the value for
which x" is maximum (ôÊ = 0) does not correspond
to the value for which the non-linear term of x’ (labelled

- r
xNL) is equal to 0 bE = s F’g Furthermore, the zeroF,
of xNL can be very sensitive to collisional processes
because generally reg and re have a different behaviour
with the pressure of vapour.
Up to now, we have not taken into account the ’ 

1

velocity distribution of the atoms. That will be done
in the next sections. However, because of the possi-
bility of cancelling the Doppler broadening in a two-
photon transition [1], we shall demonstrate that most

of the features found in formula (16) remain true
when the velocity distribution is taken into account.

1. 3 ATOMS IN A TRAVELLING WAVE. - In the case
of a dilute atomic vapour interacting with a travelling
wave, we have to transform the previous formulae
in order to take into account the spatial dependence
of the electric field and the velocities of the atoms.
The electric field is now equal to :

Because of the motion of the atom, z depends on t.

If we assume for the trajectory a straight path
z = VZ t + zo, we have to replace in the previous
formulae ÕJ by m - kVz (1). The values of x’ and i’
are obtained by transforming the formulae into the

, 

laboratory frame and by averaging over the velocities.
N, T, m and kB being respectively the number of atoms
per unit volume, the temperature of the vapour, the
mass of the atoms and the Boltzmann constant, we
find :

In these formulae bE = (1ïweg + s - 2 hw) is the

energy detuning from the two-photon resonance.

The term first in (17) corresponds to the linear

susceptibility XL of the vapour.
Up to now, we have not demonstrated that the

plane travelling wave can be a solution of the Maxwell
equations if two-photon processes are taken into
account. It is easy to show that 8(r) = 80 e‘kz (with k
independent of z) is a solution of

only if 1 îo is constant which means that the absorp-
tion must be negligible on a range of the order of the
wavelength. In that case, we can define an index

which is dependent on the amplitude Eo of the electric
field.

2. Atoms interacting with two travelling waves of
opposite direction. - 2 .1 POLARIZATION OF AN ATOM

INTERACTING WITH TWO WAVES OF DIFFERENT FRE-

QUENCY. - We consider an atom which interacts in
its rest frame with two electric fields whose polariza-
tions are parallel ton

In order to simplify the discussion, we perform several
assumptions on the relative values of Mi and W2 :

(i) 1 Wl - W2 1 Teg(1 + a 2)1/2 (width of the opti-
cal transition).
The condition shows that we can separate the pro-
cesses corresponding to the absorption of two photons
Wl, of two photons W2 and of one photon à§i and one
photon W2’

If this condition is fulfilled, it implies that the essential
contribution to the non-linear polarizability has its
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origin in the quasi-resonant absorption of two diffe-
rent photons (Wl and W2)’ This can be understood
because Weg - 2 ôi is equal to

which is roughly equal to W2 - W l’

If this condition is fulfilled, we can use the same
two-photon operators Q and Q’ (defined for an

average value of (JJ ml + 2 m2 .

If those three assumptions are valid, we can as in section 1.1 derive an effective hamiltonian :

Performing the same calculations as in section 1, we obtain the mean value of the electric dipole moment D &#x3E;.
We separate in ( D &#x3E; the components oscillating at Col« D &#x3E;,6,,) and W2« D &#x3E;&#x26;2)’ For instance, we obtain for
 D &#x3E; roI : :

with

There are two minor differences between this value of

z D &#x3E;Wl and the one obtained in a travelling wave
(formula (16)). The non-linear dependence of  D &#x3E;
which was proportional to Qge 1212 is now propor-
tional to 6ge 1 2. Moreover the correction of the

dispersion due to the transfer of population (sr eJ r e)
is also multiplied by 2. These two factors 2 ’have the
same physical origin. They come from the fact that
it is now possible for the atom to reach the excited
state by two different ways [3] : absorbing first C-01
and then W2 or absorbing the photons in the opposite

order. At those two ways it corresponds a factor 2
on the coherence effects and a factor 4 on the popu-
lation effects.

2.2 ATOMS IN TWO TRAVELLING WAVES OF OPPOSITE
DIRECTION. - We now consider moving atoms

interacting with two travelling waves propagating
in opposite directions :

We assume that the conditions (i), (ii), (iii) of para-
graph 2.1 are valid for each atom in its rest frame.
We can then find as in paragraph 1.3 a complex
susceptibility. We have two essential terms in this

susceptibility, the first corresponds to the Fourier

component at mi, the second to the one at W2’ For
instance, we obtain for X(w 1) = XI = X’ + ix’[ the

following results :

ÔE being equal to 1i( Weg

These expressions are similar to the ones obtained
by Liao and Bjorklund [2] but take into account

terms which are of higher order in electric field. As in
this previous work we obtained a susceptibility at the
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pulsation mi which depends on the magnitude of the
other field e2.

It can also be noticed that we have the following
relation : g2 = /2 g2 which corresponds to the fact
that we have to absorb the same number of photons
of each wave in order to excite the atoms.
As in section 1.3, we can show that the plane

waves 91 exp(kl z - mi t) and Î2 exp i(k2 z + ro2 t)
are solutions of the Maxwell equations if the absorp-
tion can be neglected. We then find a refraction index
ni 1 which is at the lowest order in the electric field

only function of the intensity /2 of the opposite
wave [2].

2.3 ATOMS IN A STANDING WAVE : 1 SMALL ENERGY
DETUNING. - We now consider the case where the
two oppositely travelling waves have the same ampli-
tude and the same frequency in the laboratory frame.
It corresponds to the case of a standing wave. If the
energy detuning n(roeg - 2 co) is small compared to
the Doppler width of the two-photon transition, we
can apply the results of the previous section with no
essential changes.

If the Doppler width ku is large compared to the
energy detuning 1 roeg - 2 ro 1, it means that for most
of the atoms, in their rest frame, the assumptions of
paragraph 2.1 are satisfied. The pulsations in this
frame &#x26;1 1 and ii 2 are respectively equal to w - k V,
and ro + k Vz and 1 Wl - &#x26;2 1 = I 2 k VZ 1 is gene-
rally larger than 1 roeg - à§1 - &#x26;2 1.

If the Doppler width is larger than the natural
width of the g-e transition (even with saturation),
the first assumption is also satisfied for most of the
atoms. The number of velocity groups for which the
hypothesis are not satisfied being very small, we can
use the results of paragraph 2.1 with the further
simplification that col i = ro2 = co. We obtained in the
case of two opposite waves of same amplitude
?1 = 92 = 9) :

with

The first comment that we can perform on these
formulae is that we can obtain a very large value of x’
because the cancellation of the Doppler broadening
permits to obtain the same response for all the atoms.
In particular for a small value of bE( ’" 1ïr eg) the non-
liner part of the susceptibility is about k VI r eg
(k V being the Doppler width) larger than the value
calculated in a travelling wave.

It is also possible to observe here that the relations
between x’ and x" are different from those obtained
in the single-photon case. If x" keeps a lorentzian
shape, its maximum being at

x’ has not the usual shape of a dispersion curve (see
Fig. 1), in particular it must be noticed that the value
for which xNL = 0 differs from to.,, ,. As noticed

previously the behaviour of x’ comes from the fact
that we take into account in our calculations the modi-
fication of the linear susceptibility due to the variation
of population of the ground and excited levels.

Fig. 1. - Value of the non-linear susceptibilities /’ (full line) and
X’ (dashed lines) as a function of the frequency detuning

in the case of the 5S-5D two-photon transition in Rb for T = 200 °C.
The curves a, c and e correspond to a relaxation rate for the optical
coherence fgg equal to r e/2. The curves b, d and f to feg = 2 Te.
The curves a and b correspond to an incident power 7 equal to 

*

0.05 W/MM2@ the curves c and d to I = 5 W/mm2, the curves e and f
to 1= 5 x 102 W/MM2. In this last case, the value of x" is too small
to be shown on the same scale as X’. It can be observed that for large
value of I and of TegJre, x’ keeps a sign practically constant in the
region where its value is important.

If the energy detuning is small compared to the
Doppler width and if the absorption is negligible on a
range of the order of a wavelength, the same argu-
ment as above shows that the standing wave

2 E cos kz cos wt is a solution of the Maxwell equa-
tions and we obtain a refractive index equal to

/2013201320132013 7JI + x’ = 1 + x/2 in the case of a vapour.
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2.4 ATOMS IN A STANDING WAVE : LARGE ENERGY
DETUNING. - In the case of a large detuning, the
condition (ii) of paragraph 2.1 is no more valid. It
means that all the energy detunings 1ï(weg - à§ 1 - W2),
n(weg - 2 Wl), h(co,,g - 2 W2) are now of the same
order of magnitude. It is now difficult to find an
exact solution because we have to take these different

processes into account simultaneously. Moreover,
we show hereafter that the standing wave (in that
situation) is generally not a solution of the Maxwell
equations. More precisely the spatial dependence of
the polarization is different from the one of the

standing wave and it is not possible to define a refrac-
tive index. We can interpret the difference with the
previous situation in the following way : the Rabi
period (which is close to (weg - 2 o3)- 1) is very small
compared to the time of flight of the atom between
two nodes of the standing wave (time - (ki7)-’).
Because the polarization arises from a non-linear

process, it follows that the spatial dependence of the
polarization is different from the one of the standing
wave. Such an effect does not occur if the assumptions
of the previous section (2.3) are valid ; in this case, the
time of flight (k v) -1 1 is short compared to the Rabi
period and the motion of the atom averages the inten-
sity variations of the standing wave [6]. As we have seen
above, it results in the possibility to obtain an index
for the standing wave.

In the case of an energy detuning large compared
to the Doppler width, it is not possible to obtain an
exact solution for the Maxwell equations because the
susceptibility x now depends on the position. However,
as it is shown in Appendix, for a dilute vapour contain-
ed in a cell of dimension L we obtain a quantity n
which has the same behaviour as the refractive index if

1 fi - no 1 LIÂ « 1 (no is the usual refractive index and
ÎI. is the wavelength). If the field is assumed to be the
sum of two oppositely propagating waves of ampli-
tude El and E2, the value of n is equal to (see Appen-
dix) :

We can notice that at this lowest order in electric field,
the effective index looks as the sum of the contribu-
tion to the index of the travelling wave 1 alone and
the contribution to the index of wave 1 perturbed by
wave 2. It means that we simply add the effect of
dispersion due to the detunings 1i(weg - 2 roI) and
1i(weg - - W2)’ In this last case the factor 2 has
its usual origin from the two possible paths for

absorbing the different photons (roI) and (ro2)’

3. Case of différent polarizations .for the two beams.
- In the previous section, we have discussed the

problem of the interaction of a standing wave with
an atom near a two-photon transition. It was possible
to attain an exact solution with a non-perturbational
treatment because of the two important assûmptions :

(i) we have considered two non-degenerate levels,
(ii) we have considered the same polarization for

the two oppositely propagating travelling waves.

However, there are many situations where these
assumptions are not valid. For these cases, we present
below a perturbational treatment and we obtain
the refractive index at the lowest order in electric
field. We then describe two different types of aniso-

tropy which can be induced by one beam on another
beam of different polarization.

3.1 THEORY OF THE SUSCEPTIBILITY. - We consider
an atom with a ground level g of angular momentum
Jg (the sublevels are labelled according to their magne-
tic quantum numbers mg). The excited state e has an
angular momentum J,,. In its rest frame the atom
interacts with two waves propagating in opposite
directions

where E1 and E2 can be complex polarizations. We
assume for the present section the same hypothesis as

) in paragraph 2.1.

In order to find the component of the electric dipole moment oscillating at frequency W2, we perform a
calculation identical to the one already done in paragraph 1.2 and we obtain :

The second term of this expression corresponds to the usual linear susceptibility. In the following we focus
our attention in the first term : the non-linear part of  D(W2) ) labelled DNL(W2) ). By evaluating ( m,, 1 P 1 mg &#x3E;
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at the lowest order of perturbation (the ground level is assumed to be not polarized), we obtain :

We have introduced in this formula the symmetrical two-photon operator [5]

E2 is the polarization orthogonal to E2 (which means that E2. E2 = 0) in the plane orthogonal to ez (direction of
propagation of the waves). In theory, we should introduce a component of  DNL(ro2) &#x3E; along e.,. However the
application of the formulae demonstrated below for the component along E2 shows that the component along
Oz is equal to 0. So we don’t keep it in the formula. The circular frequency m is equal to (à§ 1 + w2)/2. Apart from
the anisotropic terms, the difference between (24) and the formula obtained previously in the non-perturbational
theory (§ 2 .1) comes from the fact that all the effects related to the light-shift and the saturation are now neglected.

We can obtain a further simplification in the expression of  DNL(W2) &#x3E; by introducing the standard compo-
nents of the two-photon operator [5, 7J (see formula (13) of [5])

- 

v 
.

where Pe and Pg are the projectors on the eJe and gJg subspaces. The coefficients a9(E1, E2) are presented in [5].
Reporting this expression of egQs EZ in formula (24) and using the orthogonality relation of the Clebsch-

Gordan coefficients, we find (this demonstration is very similar to the one presented in the case of absorption
in [5], § 1. 3 .1 )

It is possible to obtain an explicit value for the summation over q. Some values have already been reported [5],
the other ones can be calculated easily using a theory identical to the one developed in [8]. We find (the coefficients
a9 are equal to 0 [5]) :

(In order to demonstrate this last formula, we have used E2.E2 = 0). Thus the formulae (25) and (26) permit to
calculate the angular dependence of the non-linear susceptibility without any difficulty (2).

For the sake of simplicity, we assume now that the intensity of one beam is much larger than the intensity
of the other (for instance Ii &#x3E; /2)’ In that case, the polarization E1 of the beam 1 is only very slightly modified
during its propagation and we can take it as a constant.

It appears obviously on formula (25) that the dipole moment  DNL(W2) &#x3E; varies linearly with the electric
field 92. Thus we can define a refractive index for the wave 92. We can also (because of this linearity) add two
solutions 82 and 62 (provided that /2 and /2« Il) to find another solution.

Our problem consists in finding the eigenvalue of the tensor of susceptibility (see formula (25)). We now
solve this problem for two important particular cases : the case where the intense beam E1 is circular and the case
where it is linear.

(2) In order to obtain the susceptibility x, we must come back to the laboratory frame and then average on the velocity distribution
(see section 1.4). We assume in this section that the two oppositely travelling waves have wave vectors of the same order of magnitude
such that the residual Doppler effect 1 kt - k2 1 V is much smaller than reg which permits to simplify the average over the velocities.
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3.2 POLARIZATION ROTATION INDUCED BY A CIRCULARLY POLARIZED BEAM. - We assume that the intense

beam 1 is circularly polarized (£1 = e+ for instance). By applying formulae (25) and (26), it appears immediately
that the eigenstates of the tensor of susceptibility correspond to the two opposite circular polarizations. More
precisely, if we assume that 1 Weg - 2 W » reg, we find the following values for the refractive index n+ and n-
corresponding to a polarization E2 identical to e+ or orthogonal to it (e_)

no being the ordinary index at this wavelength.
It appears obviously that the refractive index corresponding to the two opposite circular polarizations e+

and e- are practically always different. It follows that if the beam (2) has a linear polarization at the entrance of
the cell, this linear polarization rotates during its propagation in a way identical to the case of the Faraday effect.
This effect has been observed by Liao and Bjorklund [2] in the case of the 3S1/2-5S1/2 transition in sodium. It
must be noticed that the effect is not restricted to the case of a S-S transition (even if it is the most obvious case
because  eLe Il Q 2 Il gLg &#x3E; = 0 and that n+ = no). This effect occurs for almost all the transitions. In particular
if Jg =1= Je only the tensor of rank k = 2 couple the ground and the excited states and it is easy to see that the non-
linear part of the refractive index is then 6 times larger for n+ than for n -.

Addition of hyperfine coupling can be dealt with in the same manner as in reference [5].
3. 3 BIREFRINGENCE INDUCED BY A LINEARLY POLARIZED BEAM. - We now assume that the intense beam 1

is linearly polarized (E1 i = ex for instance). By applying formulae (25) and (26), we find that the eigenstates of the
tensor of susceptibility correspond to the polarizations ex and ey. We find

The refractive index for waves polarized parallel to the axes Ox and Oy are practically always différent. We thus
obtain a birefringent medium.

4. Bistability near a doppler-free two-photon tran-
sition. - The dependence of the index of refraction
with the intensity may also lead to the observation of
bistability [10]. The possibility of observing bistability
near a two-photon resonance has already been sug-
gested in a nice paper of Arecchi and Politi [11].
However, even if these authors were aware of the
interest of the standing wave pattern in order to elimi-
nate the Doppler broadening, their theory is performed
for the case of a travelling wave in a ring cavity. Fur-
thermore, they essentially consider the case of two-
photon absorption bistability. We feel that two-

photon dispersive bistability is easier to observe

experimentally. For instance, if the light-shift s is
different from 0, as it is usually the case, it is not

possible to find a situation where the absorptive part
appears alone (see formulae (21) and (22)). On the
other hand, there are many experimental conditions
(see Fig. 1) where x" is closed to 0 while x’ has an
important value.

Many Doppler-free two-photon experiments are
performed inside a Pérot-Fabry cavity [9]. Such a
system close to a two-photon resonance is potentially

bistable (which means that for the same input power
in the cavity, one may observe different outputs accord-
ing to the history of the system). Up to now, bistability
has not been observed in these conditions because
the density of the atoms (or the power of the laser)
was not sufficient. But, as we shall demonstrate it

hereafter, a bistable behaviour can occur for several
two-photon transitions in alkalis using commercial
c.w. dye laser.

By comparison with previous experiments on
bistability performed with an atomic vapour [10],
the Doppler-free two-photon experiments present
several advantages :
- because the energy detuning from the two-pho-

ton transition is the same for all the atoms [12], all
the atoms (3) will have the same behaviour. They will
contribute either to the dispersion or to the absorption
in the same way ;
- the formulae for the refractive index are more

(3) We neglect the small fraction of atoms which can absorb two
photons of the same progressive wave.
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simple in the Doppler-free two-photon case because
the average on the Doppler distribution can be

obviously calculated. The atomic system, and in

particular its response, is thus easier to understand
and we can get more information on the bistable
device itself.

In order to precise in which experimental conditions
bistability can be experimentally observed, we perform
hereafter a calculation of the order of magnitude of the

dephasage ô 0 = n 2 - 1 (where n2 is the non-linear part
c

of the refractive index and 1 is the length of the cell).
At the lowest order in electric field n2 is equal to
(see formula (28)) :

with

1 
- - - -- - 

c:&#x3E; - 1 

1

In many experimental situations, it is more convenient
to use a Pérot-Fabry with spherical mirrors instead
of a Pérot-Fabry with plane mirrors. In the case of a
gaussian beam, the intensity is not uniform and the
index of refraction n2 is now depending on z. For the
present discussion we do not consider the problem
of self focussing and we just calculate the value of the
dephasage ôP along the axis of symmetry of the
gaussian beam :

To calculate bP we use the value (29) of n2 with

where P is the power of the laser and W(z) is the radius
of the gaussian beam (more precisely it is the distance
from the axis where the electric field is divided by e)

The waist Wo is the smallest value of W and
zR = nWJIÂ. We find for ôO :

We observe that if 1 &#x3E; ZR, i54&#x3E; has practically reached

its asymptotic value :

From an experimental point of view it appears that
there are only two factors which can be modified : the
power P and the density N of atoms. If one increases
the focussing, the value of bl/&#x3E; will not increase very
much if the higher terms in power of the intensity
(see formula (21)) can be neglected.

In order to observe a bistable behaviour we must
attain a value of bl/&#x3E; of the order of 2 n/F where F is the
finesse of the Pérot-Fabry (P being the power inside
the cavity).
A rough calculation performed in the case of the

5S1/2-5Ds/2 two-photon transition in Rb (Â = 7 779 Â)
shows that those conditions can be attained with
F - 20, an incident power of 0.1 W and a pressure of
rubidium of the order of 10-2 torr, the frequency
detuning from the resonance being equal to 30 MHz.
These conditions can be attained easily and we expect
to obtain soon an experimental confirmation of the
theory.
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about the manuscript.

Appendix. - In the case of an energy detuning
large compared to the Doppler width, it is possible to
perform the calculations by making the assumption
that the atom looks still [6]. The reason for that is that
the atom undergoes a lot of Rabi precessions between
two nodes of the electromagnetic field. In that case,
we can apply formula (16) but with an electric field
î which is now dependent on z. It results in a suscep-
tibility x(z) which is dependent on z. More precisely,
we split x(z) into two terms, the linear susceptibility XL
which does not depend on z and the non-linear term
iCNL(Z) - X(Z) - XL-
We now try to find an approximate solution for the

Maxwell equation for the electric field :

This equation can be written as :

with :

Using the Green function
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where FO(z) is the unperturbed electric field (which
means the field without any atoms). Its value is

equal to :

Because of the dependence of x°(z’) on 1 Eo(Z’) 12 it can
be easily shown that most of the integrated terms
oscillate with L while only one term grows monotoni-
cally with L. This last term is preponderant if the
dimension of the cell L is much larger than 1/ko
(which is of the order of the wavelength). This condi-
tion is usually fulfilled in our experiments in the

optical domain. We define :

If the exact solution is close to îo(z), we obtain an
approximate value of the correction using the Born’
approximation which consists in replacing in (A .1)
X(z’) t(z’) by its unperturbed value XO(z’) 90(z’) (4).
We assume that the vapour is contained inside a cell

limited by the planes z = 0 and z = L. The field
outside the cell is equal, at the Bom approximation,
to :

At this approximation, the electric field, outside the
cell, takes the simple value (we assume that there is
no absorption) :

As we neglect absorption, it is easy to verify that ôk
and bk’ ei(lpt-lpÛ are real quantities (it is a consequence
of the dependence of x(z’) on 6(z’) 12). If ôkL and

r :: Î ôk’ L are small compared to 1, we can interpretE1/E2
the quantity (1 + ix) (with x « 1) as the beginning of
the expansion of eix. By this method, we can define
two pseudo-refractive index n 1 and n 2, one for each
wave propagating in the medium :

Those pseudo-refractive index can be used to calcu-

late the apparent optical length of the medium as
long as the previous conditions are fulfilled. Using the
relations (16), (A. 4), (A. 5), we obtain at the lowest
order in the electric field :

and a symmetric expression for n2.

(1) As the non-linear susceptibility x(z’) depends on z’ through
the value of the electric field 6(z’), the notation x°(z’) means that we
perform the calculation of x[6(z’)] with the unperturbed value of the
electric field : XO(z’) = X[to(z’)].
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