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Résumé. 2014 On calcule les coefficients de Clebsch-Gordan pour les représentations irréductibles M x M de la
structure du bêta-tungstène.
Abstract. 2014 The Clebsch-Gordan coefficients are calculated for M x M irreducible representations in the beta
tungsten structure.
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1. Introduction. - The binary intermetallic com-
pounds having A3B composition and the fl-tungsten
or A-15 structure are of significant theoretical interest
and outstanding practical importance. Compounds
such as Nb3Ge, Nb3Sn, Nb3Al, V3Ga, V3Si, crystal-
lizing in A-15 structure possess the highest transition
temperatures to the superconducting state that have
been observed [1-6].

Theories of structural phase transitions, applied to
A-15 compounds, were proposed by Birman [7] and
Gorkov [8] and discussed in [9-13]. In several com-
pounds with the A-15 structure the phonons at the
M point of the Brillouin zone become soft leading
to lattice instability and eventually to a distortive phase
transition [14].

In recent years much attention has been directed
to the Clebsch-Gordan (CG) coefficients of the crystal-
lographic space group representations. In particular
Birman et al. [15-17] have shown that the matrix
elements of the first order scattering tensors are

precisely certain CG coefficients or prescribed linear
combinations, the elements of the second order tensor
are particular sums of products of CG coefficients.
The matrix elements of the effective Hamiltonian are

products of appropriate CG coefficients times sym-
metrized tensorial field quantities [18].
The calculation of CG coefficients for space groups

can be done by several methods [17, 19-25]. For a
computation of CG coefficients or scattering tensors
an elaboration of the selection rules is a first necessary
step. The selection rules for the double space group

0’(Pm3n) of the A-15 structure have been deter-
mined [26, 27] and checked with an output of the
computer program written for determining the reduc-
tion of the Kronecker products of the irreducible
representations of crystallographic space groups [28,
29].
The present paper deals with the problem of cons-

tructing basis functions for the representations which
are contained in the Kronecker product of two irre-
ducible space group representations. We computed the
CG coefficients of the single-valued representations
X x X, M x M and R x R for the space group Oh
[30].

2. Calculation of the Clebsch-Gordan coefficients

using matrix éléments of small representations. -
For the crystallographic space group representations
with wave vectors ka, k,, k§,, satisfying wave vector
selection rules

the Clebsch-Gordan coefficients

are defined°as coefficients between the basis functions

ael’ and â ° 1 Yâ ’ I of the representations of dimen-
sions dim (1") and dim (l) x dim (1’) respectively
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Berenson, Birman et al. [21, 22] have shown that the
CG coefficients for representations of a space group
can be calculated from the small irreducible repre-
sentations dkl, dk’ 1’, dk"l" of the little wave vector

groups [31].
The block of CG coefficients for a = a’ = (7" = 1

can be calculated from

Here h is the order of the wave vector group of k"
and the summation runs over

i.e. the intersection of the wave vector groups of k,
k’ and k" satisfying wave vector selection rule of

eq. (1).
The (a, a’, 6") blocks of CG coefficients are obtained

from the U111 1 block by matrix multiplication

where the canonical wave vectors satisfy k + k’ = k"
modulo a vector of the reciprocal lattice, and

Here { !  T_, } is one space group operation which
rotates the (1, 1, 1) block into (a, u’, a") block so that

The translations t. = ta + RL wherer,, is a fractional
translation in eq. (6) and RL is a lattice vector.

3. Clebsch-Gordan coefficients for M x M in 03 -
We compute the Clebsch-Gordan coefficients for the
single-valued representations of the nonsymmorphic
space group Oh(Pm3n). We use the Miller and Love
(M-L) [32] numbering of the space group symmetry
operations as given for the cubic group in their table 1
on p. 123, and M-L canonical wave vectors, given on
p. 129. We use M-L irreducible representations of the
wave vector groups, computed from the M-L gene-
rators by a computer program [33].

3.1 M x M. - We use kM = (1, 1, 0) nlaL as the
first M wave vector, see table I. The space group Oh

Table 1. - Coordinates of the wave vectors to the

symmetry points of the Brillouin zone, aL is the cubic
lattice constant.

can be decomposed into cosets with respect to

G(M) = GkM

The wave vectors satisfying the selection rule

km + kM = kr of table II are shown in table III.

From the vectors

Table II. - Leading wave vector selection rules,
LWVSRs, and intersections of the wave vector groups
of O3h.h.

and from coset representatives of eq. (8) the space
operations { 9_, 1 r_, } and {k ! tk }, { P- I tk },
{ pk» tk-, } are calculated and are shown in table III.
The first wave vectors satisfying the selection rule

5 km + 9 km = km are as shown in table III,

Hence for channel M we have now

We transform by these space operations the small
representations [26, 27]
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Thus in the summation in eq. (4) the ordered group
elements in the first factor, transformed from dkl,
are dkM (1, 3, 4, 2, 25, 27, 28, 26), in the second factor,
transformed from dk’l’, are dkM (1, 4, 2, 3, 25, 28, 26,
27), and in the third factor, transformed from dk"l",
are dkM (1, 2, 3, 4, 25, 26, 27, 28). We perform sum-
mation on the right-hand side of eq. (4) and we obtain
the U111 block of the CG coefficients.
The operations { ({J 1: 1 T_, } and { ok tk }, ok, 1 tk

{ ({Jk" k } calculated from the coset representatives
of eq. (8) and from the wave vectors of eq. (9) and (10),
are shown in table III. There the third column which
follows from the wave vector selection rules gives the
indices au’ u" numbering the blocks of CG coefficients.
The fourth column in table III gives a separate number-
ing in channel M. There are in channel T three blocks
of CG coefficients given in tables IV and V, orthogonal
to six blocks in channel M, given in tables IV and VI.
The computed CG coefficients for Mi x Mi ( j = 1, 2,
3, 4) have been checked by the Sakata method [20].
For numbering the CG coefficients of the full group

representations M5 ± x MS t we use in tables V and VI
an additional, second, set of indices aa’ a" obtained
by adding 3 to the first set.

3.2 DESCRIPTION OF TABLES OF CG COEFFICIENTS. -

In the tables of CG coefficients we use

In table VI the entries not written explicitly are zero.

4. Use of tables. - The tables of CG coefficients
can be used to obtain symmetrized linear combinations
of products of basis wave functions [17, 22, 34, 35].

For space group representations Dk(l), with basis
functions (Pk(’), and Dk’(l’), with basis Y’,al’, whose
Kronecker product Dk(l) 0 Dk’(l’) contains up to

several times the representation Dk"(l"), with basis

Y’ âl’, one basis function Q,â"y can be expressed
according to eq. (3).

As a particular example we give the symmetrized
linear combinations of products of basis functions
which occur in

Table III. - Wave vector selection rules and the symmetry operations for calculating the (a, a’, 6") blocks of
Clebsch-Gordan coefficients for M x M.

Table IV. - Clebsch-Gordan coefficients for
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Table V. - Clebsch-Gordan coefficients for M_5 ± x M5±.

Table VI. - Clebsch-Gordan coefficients for M5 ± x M. ±.

From table VII of reference [30] we have

For the two-dimensional representation r 3+ occurring twice, the basis functions are
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For the three-dimensional representations r 4- and r 5 - the basis functions are

v

For X1 x X1 = [M1-] we have from table VIII of reference [30]
1

For R4 x R4 = r 3 - from table XII of reference [30] we have
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5. Applications. - In an effort to try to understand
the properties of the superconducting compounds
crystallizing in the A-15 structure much attention
has been offered to the electronic bands and phonon
modes at points of highest symmetry in the Brillouin
zone. Gorkov et al. [8] proposed a theory based on the
supposed proximity of the Fermi level to the X1,2
electron bands at the X-point on the Brillouin zone
boundary.
Achar and Barsch [14] developed a theory of the

phonon dispersion relations for compounds with
A-15 structure, in particular V3Si and Nb3Sn. The
results exhibit the observed softening of the TA mode
in [110], and of the LA mode in [100] direction, leading
eventually to a lattice instability.

Jaric and Birman [36] analysed the polynomial
invariants of the Oh space group. Also they examined
by group theoretical analysis possible lower symmetry
phases arising from the A-15 structure [11].

Birman et al. [18] constructed the effective mass
Hamiltonian at the X-point band edge, using the CG
coefficients for Oh deduced from those for Oh. Ting-
Kuo Lee et al. [37, 38] introduced a three-dimen-
sional effective mass model for the electronic structure
of A-15 compounds, based on the six-dimensional
irreducible representation R4 of the space group Oh.
By locating the Fermi Level near the maximum

of the density of states a free energy has been obtained
which accounts quantitatively for normal state phy-
sical properties of the A-15 compounds. For the

explicit construction of the effective Hamiltonian
matrix the generalized k.p method was used, exploit-
ing the method of invariants, first given by Luttinger
[39] and elaborated by Bir and Pikus [401.
The construction can be performed by use of the CG

coefficients and the symmetry adapted components
of tensorial field quantities K.’. According to Birman
et al. [18] the effective Hamiltonian matrix is

Here the reduced matrix elements al" are constants

independent of a, a’ and a".
The Clebsch-Gordan i.e. vector coupling coef-

ficients by their definition enable one to obtain the
correct symmetry adapted bilinear combinations of
functions and thus permit one to make explicit use
of symmetry of the problem.
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