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Résumé. 2014 L’état d’équilibre d’un fluide tournant soumis à son interaction gravitationnelle est déterminé par des
équations non linéaires. Les solutions d’équilibre, paramétrées par le carré du moment cinétique, présentent des
bifurcations accompagnées de brisures de symétrie. D’hypothèses très générales on déduit des règles de sélection
concernant les brisures de symétrie qui peuvent apparaître dans ce problème. Les bifurcations sont du même type
que celles à la Landau qui apparaissent dans les transitions de phase du second ordre. La méthode est illustrée par
l’exemple simple d’un fluide incompressible animé d’une rotation globale et une nouvelle famille infinie de bifur-
cations est trouvée. Cependant les règles de sélection sont plus générales ; elles s’appliquent aussi aux modèles qui
représentent la rotation d’une étoile de façon plus réaliste.

Abstract. 2014 The equilibrium of a rotating self-gravitating fluid is governed by non-linear equations. The equili-
brium solutions, parametrized in terms of the angular momentum squared, exhibit the phenomenon of bifurcation,
accompanied by spontaneous symmetry breaking. Under very general assumptions, a set of selection rules can be
derived, which drastically restrict the patterns of symmetry breaking that are allowed to appear. Bifurcations of
this kind are similar to second-order phase transitions à la Landau. The method is illustrated by the simple example
of an incompressible fluid in rigid rotation. However, the selection rules are more general; they apply also to
models which approximate a rotating star more realistically.
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1. Introduction. - The phenomenon of bifurcation
of solutions, encountered in non-linear eigenvalue
problems, is closely related to that of spontaneous
symmetry breaking. Numerous examples in bifur-
cation theory [1] suggest that, when a bifurcation
occurs in a stationary problem, the symmetry of the
new solution is lower than the symmetry of the solu-
tion it bifurcates from, even though the symmetry
of the governing equations remains unchanged [2].
We propose to examine this connection within the

framework of an old problem of astrophysical interest :
the equilibrium of rotating fluid masses held together
by gravitation [3]. In the particular case of an incom-
pressible, homogeneous fluid in rigid rotation, the

equations of hydrostatic equilibrium form a set of
non-linear equations for the surface which bounds
the fluid at equilibrium. These equations depend
upon the parameter J2, the square of the angular
momentum, and are invariant under the group D ooh [4].
For 0  J2  0.384 436 [5], the equilibrium surface
is also invariant under D.h (Maclaurin ellipsoids).
As the angular momentum squared increases beyond
the critical value 0.384 436, new solutions appear,
whose invariance groups are subgroups of D.h.
The first of these is the set of Jacobi ellipsoids, inva-
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riant under the subgroup D2h of Dooh. Other solutions
are known, bifurcating both from the Maclaurin and
Jacobi sequences, but a rigorous classification of all
possible solutions is still missing.
The aim of this paper is to give such a classification,

using as a criterion the type of symmetry breaking that
accompanies the bifurcation. More precisely, we

address ourselves to the following problem : given
a solution of the equations of hydrostatic equilibrium
and its isotropy group, find the possible isotropy
groups of the solutions which bifurcate from it, and
the values of J2 at which the bifurcations appear.
Our investigation is strictly limited to the equilibrium
of the fluid mass ; stability is not examined here [6].
The plan of the paper is the following. In section 2

we write the equation of hydrostatic equilibrium,
then derive from it a linearized equation for the
deformation by which, starting from a given equili-
brium solution, new solutions may be obtained.

Polynomial deformations of ellipsoidal solutions are
discussed in detail. In section 3 the group-theoretical
description of symmetry breaking is used to obtain,
under very general assumptions, the list of all possible
patterns of symmetry breaking that may accompany
bifurcations from the Maclaurin and Jacobi sequences.
These results are used in section 4 to compute explicitly
the bifurcations corresponding to polynomial defor-
mations of the lowest degree associated with each
type of allowed symmetry breaking. In addition to the
known bifurcations, a new infinite family of bifur-
cations from the Maclaurin sequence is found,
corresponding to a D.h breaking. The connection
with the theory of second-order phase transitions
and the general applicability of the method to cases
which approximate more realistically a rotating star
(compressible fluid with differential rotation) are

discussed in section 5. The parametrization of ellip-
soidal solutions is described in the appendix.

2. Basic équations ; polynomial solutions. - Con-
sider a homogeneous incompressible fluid of given
mass and volume, rotating rigidly about a fixed axis
with angular momentum J. We will assume that in the
coordinate system in which the fluid is at rest the only
forces are the gravitational and centrifugal forces.
The fluid is assumed to occupy a connected volume,
bounded by the surface

S(x) = 0 . (2.1)

We adopt the convention that S(x) &#x3E; 0 inside the
fluid.

2.1 EQUILIBRIUM EQUATION. - In the corotating
system, the equations of hydrodynamics reduce to the
equations of hydrostatic equilibrium [5]

is the sum of the gravitational and centrifugal poten-
tials. The gravitational potential, satisfying Poisson’s
equation

and the boundary condition
is given by

Taking the 3rd axis along J, the centrifugal potential is

where

is the corresponding moment of inertia.
Equation (2.2) must be integrated subject to the

boundary condition

whence it follows that the fluid boundary is an equi-
potential :

This is an equation for the function S which determines
the boundary at equilibrium, dependent upon the
parameter J2. We shall call equation (2.9) the equi-
librium equation and its solutions S(x ; J2) equilibrium
solutions.

. 

Let us show that an ellipsoid is an equilibrium
solution. We set

where

Then, in terms of the functions (Xil...in(81, 82’ 83) defined
by equation (A. 3),

and equation (2.9) yields
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from which we deduce

Equation (2.15) always admits the trivial solution
el = 82. However, if the angular momentum squared
exceeds the critical value 0.384 436, a new solution,
with 81 * 82, appears. The continuous set of equi-
librium solutions obtained by varying continuously
the angular momentum [by equation (2.14) the e’s
are functions of j2] form the Maclaurin (81 = 82)
and Jacobi (e1 * B2) sequences. These are illustrated
in figure 1, where the squares of the polar and equa-
torial eccentricities 

of the equilibrium ellipsoid are plotted versus the

angular momentum squared.

Fig. 1. - Ellipsoidal equilibrium solutions. Polar eccentricity
squared (a) and equatorial eccentricity squared (b) versus angular
momentum squared. Solid curves : Maclaurin sequence. Dashed
curves : Jacobi sequence. The dots indicate the Maclaurin-Jacobi
bifurcation (see table II) and the next bifurcation on each branch
(see table III).

2.2 BIFURCATION EQUATION. - We want to find
whether new solutions of the equilibrium equation,
différent from ellipsoids, exist, and to determine the
values of J2 at which they bifurcate from the Mac-
laurin and Jacobi sequences.

Given an equilibrium solution S(x ; J2), new solu-
tions may be obtained from it by applying to the fluid
a static deformation. Such a deformation is conve-

niently described in terms of a vector field ;(x),
giving the displacement of the fluid element at point x :

where À is a real parameter. In particular, the fluid
surface (2. 1) will be deformed into

where

Only first-order deformations will be considered-here
then

We require that the deformations leave invariant
the density, the centre of mass and the angular momen-
tum of the fluid. To first order in À, the displacement
must then satisfy the conditions

n being the unit vector along the rotation axis. A

displacement field satisfying equations (2.21)-(2.23)
will be called admissible. Since the defining equations
are linear, the set of admissible §’s is a vector space 9J..
Under the displacement (2.17) the potential changes

according to

where

The term VF represents the change in the gravitational
potential due to the deformation of the surface. There
is no corresponding term for the centrifugal potential
since, to first order in À, the moment of inertia remains
constant as a consequence of eq. (2.23).

In order that the deformed fluid configuration be
in equilibrium, eq. (2.9) must hold for the modified
potentiel of eq. (2.24) and the deformed surface (2.20).
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This yields the condition

Equation (2.26) represents a linear equation for the
first-order displacement field § which deforms the
initial equilibrium configuration of the fluid,
S(x ; J2) = 0, into a new equilibrium configuration,
S(x, J2) = 0. Equation (2.26) will be referred to as
the bifurcation equation.

An admissible displacement field § will be called
trivial if, on the surface S(x ; J2) = 0, it lies in the

tangent plane to this surface, i.e. if

The set of trivial §’s forms a subspace 9Y, of Va. We
can now prove the following.

Indeed, integrating by parts and using eqs. (2.21)
and (2.28), we have

From this theorem it follows immediately that a

trivial displacement satisfies identically the bifurcation
equation. Such trivial solutions do not deform the

original surface and will be discarded. More precisely,
we will look for solutions of eq. (2.26) in the quotient
space COa/COt. Such solutions will be called bifurcation
solutions.

2. 3 POLYNOMIAL DEFORMATIONS OF ELLIPSOIDS. -

We will now examine in detail the case in which the
fluid surface is an ellipsoid (Maclaurin or Jacobi)
given by eq. (2.10), and the displacement field §
is a polynomial in x. We denote by

a polynomial scalar field which, on the ellipsoid
S(x ; J’) = 0, is proportional to the normal compo-
nent of §. Equation (2.19) then reads

so the polynomial P is the surface deformation. We
remark that for the ellipsoidal surface (2. 10), equa-
tion (2.30) implies P(O; J2) = 0.
We now want to find a vector deformation §

corresponding to a given surface deformation P.

Since every polynomial P has a unique decomposition
as a sum of homogeneous polynomials Pn of degree n
we choose

Like the §’s, the surface deformations P have to

satisfy a set of admissibility conditions :

The integrals are over the domain S(xi ; J2) &#x3E; 0.
One can verify that eqs. (2.33)-(2.36) are equivalent
to eq. (2 . 21 )-(2 . 23). In particular the two eqs. (2.35),
(2. 36) express the conservation of angular momentum.

Equation (2.30) associates to every trivial vector
information a trivial surface deformation Pt which
vanishes on the surface S(x ; J2) = 0. Hence

One can now prove the following.
Theorem : If P is a polynomial of given degree and

parity, then VF[EP] is also a polynomial of the same
degree and parity.
The proof is elementary, but rather involved;

we sketch below the main steps. Since F[§] is a linear
functional, it is sufficient to prove the theorem for the
case in which the components of § are monomials
of degree n - 1, viz. of the form

Then, the theorem holds for the first few values of
n &#x3E; 1 [7], which suggests a proof by induction. So,
assuming it to be true for a degree n - 1, we will show
that the same follows for degree n. We use the identity
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where Cn is a coefficient, Rn-2j(x) is a polynomial of
degree lower than or equal to n - 2 j, and fIn/2]
denotes the largest integer smaller than or equal to n/2.
This enables us to write

Now we use in the right-hand side the equation [8]

[here f(x) is an arbitrary function], and the fact [9]
that Fr[S"J is a polynomial of degree 2 n + 2. The
theorem then follows from eq. (2.40) by simple power
counting.

Let us denote by en) the vector space of polynomials
of degree n and parity Ç. In section 3 we will show that
the polynomial deformation P belongs to such a

space iS(n). The importance of the above theorem
resides in having established that the correspondence

is a homomorphism of (T into ("’). Consequently,
the bifurcation equation (2.26) may be regarded as
an equation for the polynomial deformation P.

This is a convenient point of view for the discussion
of symmetry breaking, so let us write explicitly the
bifurcation equation in this form. For the ellipsoidal
equilibrium solutions, eqs. (2.3) to (2.15) imply that
the potential at equilibrium is

Equation (2.27) then becomes

where I[P] is defined by eq. (2.42). [For polynomials
of degree n  4 this f-transform can be calculated
explicitly from Chandrasekhar’s identities [7].] On
the other hand, for polynomial deformations eq. (2.26)
is satisfied if and only if

R(x) being an arbitrary polynomial. Solving the
bifurcation equation in the form (2.45) amounts
now to the identification of polynomial coefficients.
The term bifurcation solution will be used for a

solution P(x ; J2) of the eigenvalue equation (2.45) 
in the quotient space S/S, where Ta and Tt are, in the
vector space of polynomials P, the subspaces of the
admissible and trivial polynomials respectively.

3. Sélection rules for symmetry breaking. - We
now proceed to discuss the symmetry properties of the
equilibrium and bifurcation equations and their non-
trivial solutions, in order to determine the patterns of
symmetry breaking that may appear at bifurcations.
This will be done by using the powerful formalism of
group theory, which only recently has been applied
to bifurcation problems [23, 24]. We will briefly
recall some basic notions [10], then apply them to our
specific problem. 

3. 1 GROUP-T’HEORETICAL DESCRIPTION OF SYMME-
TRY BREAKING. - We consider an equation having
the general form

#(U, Jl) = 0 , (3.1)

where u(x) is the unknown function, and y is a real
parameter ; Ç/ is a smooth map, otherwise arbitrary.
Equation (3.1) is assumed to be covariant under a

group G, in the following sense. Let g be an element of
G, and T(g) the 3 x 3 matrix which represents its
action on the three-dimensional Euclidean space :

Then, its action on any function u(x) is represented by
a linear operator 0 fi defined by

Equation (3. 1) is said to be covariant under G if the
action of this group commutes with the map rji, i.e. if

An immediate consequence of covariance is that,
if u is a solution of eq. (3.1) for some value of the
parameter J1, then Og u is also a solution for the same p.
The set of all solutions obtained from u by the action
of G is called the orbit of u [11].
The solutions of eq. (3.1) are, in general, not

invariant under G ; this is the phenomenon of spon-
taneous symmetry breaking. Given a solution u,
the elements of G which transform u into itself form a

subgroup H of G called the isotropy group, or little
group, of u. If u has the isotropy group H, then
u’ = tJg u has the isotropy group H’ = gHg-1, i.e. H
and H’ are conjugated subgroups of G. Therefore,
the isotropy group H of a given solution u charac-
terizes, up to a conjugation in G, the whole orbit of u,
which will be denoted by the symbol G/H. The fore-
going discussion referred to a fixed u, but now it can
be extended to all values of J1. The set of all orbits of
the same type (i.e. having the same little group, up to a
conjugation) is called a stratum. A symmetry-changing
bifurcation point at a certain critical value of the

parameter J1 corresponds to a critical orbit marking
the boundary between two adjacent strata.

Let us now apply these considerations to the equi-
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librium equation (2.9). This equation is covariant
under the group Dooh, generated by the rotations
about the direction of the angular momentum, the
reflexion through a plane containing this direction,
and the reflexion through a plane perpendicular to this
direction at the centre of mass. An equilibrium
solution S(x ; J2), invariant under a subgroup G
of D ooh generates, under the action of D ooh, an orbit
Dooh/G ; the whole stratum is obtained by varying the
parameter J2. The classical ellipsoidal solutions

generate two types of orbits, hence two strata. One
stratum is the Maclaurin sequence, the corresponding
isotropy group being D ooh itself. The other stratum is
the Jacobi sequence ; in this case the isotropy group is
the subgroup D2h of Dooh, generated by the reflexions
through the three symmetry planes of the triaxial

ellipsoid. Calculating explicitly the other orbits of
equilibrium solutions is a formidable task which we
do not attempt hère ; instead, we will give a simple
and systematic method for finding, in the two strata
of ellipsoidal solutions, the critical orbits correspond-
ing to bifurcations.

The bifurcation equation was obtained by lineari-
zation of the equilibrium equation near a given equi-
librium solution S(x ; J2) having an isotropy group G
or, more precisely, by linearization near an orbit

D ooh/G [12]. Hence, the bifurcation equation, the

admissibility conditions for the polynomial defor-
mations and the definition of trivial deformations
are automatically G-covariant. To any bifurcation
solution P(x ; J2), invariant under a subgroup H of G,
will then be associated, by the action of G, an orbit
G/H. The problem is to find all the possible isotropy
groups H of the bifurcation solutions, i.e. the sub-

groups of G onto which the symmetry may be broken
at a bifurcation.

A decisive step is made by remarking that the bifur-
cation equation, the admissibility conditions, and the
definition of trivial deformations, in addition to being
G-covariant, are linear. Therefore, any G/H orbit
of bifurcation solutions generates a vector space
carrying a linear representation of the group G. We
shall make the specific assumption that, for any given
value of J2, this representation is irreducible. (We
call accidental degeneracy the appearance of a reducible
representation. The meaning and validity of the

assumption that there is no accidental degeneracy
will be discussed in section 5. In section 4 we show, by
explicit calculation of the lowest-degree bifurcations,
that accidental degeneracy is indeed not present in
this problem.) This assumption imposes restrictive
conditions on the subgroups onto which the symmetry
may be broken, viz. any H must be the isotropy group
of a non-trivial vector of an irreducible representation
appearing in the action of G on polynomials. The
next step is therefore to study the irreducible repre-
sentations of the groups D.h and D2h, their isotropy
groups, and their covariant polynomials.

3.2 IRREDUCIBLE REPRESENTATIONS OF THE GROUPS

D2h AND D oob. - Let us consider first D2h, the

symmetry group of a triaxial ellipsoid. The principal
axes of the ellipsoid will be labelled by an index
i = 1, 2, 3. The group D2h consists of the eight ele-
ments

here E is the identity, ri denotes the rotation by an
angle 1t about axis i, ai denotes the reflexion through
the principal plane perpendicular to axis i, and 1
is the inversion through the centre. These elements

; form a group under the commutative composition
laws

where (ijk) represents a permutation of (123).
D2h is an Abelian group, hence its irreducible

representations are all real and one-dimensional.
The whole group being generated by the three
reflexions ui (i = 1, 2, 3), the irreducible represen-
tations may be conveniently labelled by the eigenvalues
(j = ± 1 of these operators. To each irreducible

representation corresponds only one isotropy group
H of non-zero vectors, which coincides with the kernel
of the representation (i.e. the set of elements of the
group represented by the identity). The most general
polynomial which transforms according to a given
irreducible representation of D2h is of the form [26]

Here 0(xf, x’, x23) is an arbitrary polynomial invariant
under D2h, and cp(x) is a given polynomial, invariant
under the isotropy group H corresponding to the
irreducible representation.
The symmetry group of an axially-symmetric

ellipsoid, denoted by Dooh, is an infinite group,

generated by the rotations r3(w) by an angle w about
the third axis (the symmetry axis), and the reflexions
U3 and 61. It is customary to introduce the notation

Here (J v(a» denotes the reflexion through the « vertical »
symmetry plane of azimuth w/2, Uh is the reflexion

through the « horizontal » symmetry plane, and

rh(w) denotes the rotation of angle n about the
« horizontal » symmetry axis of azimuth w/2. The
four sets

are all groups under the usual composition laws of
rotations and reflexions [13]. Their union is D ooh,
the symmetry group of an axially-symmetric ellipsoid.
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Each of the groups Coov, Cooh and Doo is a proper
subgroup of Dooh; Coo is a proper subgroup of each
of them. All the other proper subgroups of D ooh are
finite.
The irreducible representations of Dooh are all real,

either two-dimensional or one-dimensional. In the
two-dimensional ones the generating elements are

represented as follows :

Here m is a positive integer (m = 1, 2, ...), and
(3 = ± 1. These representations are conveniently
labelled by the doublet (m, (3). The two representations
that would obtain from eq. (3.loj for m = 0 are
reducible; they decompose into one-dimensional
irreducible representations in which the generating
elements are now represented as follows :

Here Cl = ± 1 distinguishes between the two irre-

ducible representations corresponding to m = 0 and
the same (3. The one-dimensional irreducible repre-
sentations will be labelled by the triplet (m = 0, (3’ (l)-
To each one-dimensional irreducible representation

of D ooh corresponds only one isotropy group H, which
coincides with the kernel of the representation ; this is
not true for the two-dimensional representations,
for which H is determined only up to a conjugation,
and is larger than the kernel. The most general poly-
nomial which transforms according to a given irre-
ducible representation of D ooh is of the form

Here d = 1, 2 is the dimension of the representation,
Oi(X2 + x2, x23) are arbitrary polynomials invariant
under D ooh, and (pi(x) are given polynomials, invariant
under the corresponding isotropy group H.

In table 1 we list all the irreducible representations
of the groups D2h and Dooh. For both groups the head
entries indicate the irreducible representations
(labelled as described above), the corresponding
isotropy groups H (denoted by their classical names
[4]), and the explicit form of the invariant polynomials
(p [26].

3.3 SELECTION RULES. - These results may be
summarized in a set of selection rules for symmetry
breaking at bifurcations, indicating which patterns
of symmetry breaking are forbidden under the assump-
tion that accidental degeneracy does not occur. The
contents of these selection rules, which are presented
schematically in table I, is discussed below.

Table I. - Irreducible representations of the D2h and
Dooh groups.

1) The only subgroups of D2h and Dooh that are
allowed as isotropy groups of bifurcation solutions
are those listed in table 1 ; any other subgroup is for-
bidden. This eliminates exactly half of the subgroups
of D2h, viz. Cs(k), C2(k), S2 and Cl = { E }, (k = 1, 2,
3). In the case of Dooh the forbidden subgroups are Coo,
Cmv, Cmh, S2m and Dm (m = 1, 2, ...). It is interesting
to note that the forbidden isotropy groups are always
smaller than the allowed ones. In other words, the
absence of accidental degeneracy leads in a natural
way to minimal symmetry breaking.

2) When only polynomial deformations are consi-
dered, the subgroups Cooh and D 00 of Dh are also
forbidden, because they do not appear in the action
of the group on polynomials.
Symmetry considerations do not impose any restric-

tion on the degree of the polynomial deformation P(x) ;
indeed, in eqs. (3.7) and (3.12) the 9’s are arbitrary
polynomials. However, once the degree n has been
fixed, new selection rules come into force :

3) All the isotropy groups for which the ç’s are
of degree greater than n are forbidden. (Example :
Dmh and Dm-1,d are forbidden if m &#x3E; n.)

4) All the irreducible representations of D2h and
Dooh have definite parity = ± 1 (the parity of the
ç’s in table I). This forbids the isotropy groups with
the wrong parity, i.e. with , =1= ( - 1)", eliminating
half of the subgroups in table I, both for D2h and Dooh.
The selection rules represent a powerful instrument,

which drastically reduces the list of possible types of
symmetry breaking at bifurcations. Whether the
allowed types of breaking actually occur is a dynamical
question which can be answered only by explicitly
solving the bifurcation equation. If there is no solution,
the bifurcation, although allowed kinematically (i.e.
from the point of view of symmetry breaking), is

dynamically forbidden (i.e. is incompatible with the
equation of hydrostatic equilibrium).

4. Lowest-degree polynomial bifurcations. - From
the foregoing discussion the following practical pro-
cedure for the calculation of bifurcations has emerged.
Given the isotropy group G of the original equilibrium
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solution [12], table 1 lists all the possible isotropy
groups H of the bifurcation solutions. Once the degree
n of the polynomial deformation has been chosen,
the most general form of an H-invariant admissible P
is found from eqs. (3.7) or (3.12), table I, and

eqs. (2.33) to (2.36). The r-transform of P can be
calculated explicitly [7] ; then, identification of the
coefficients in the bifurcation equation (2.45) yields

a system of linear homogeneous algebraic equations
for the set of coefficients { À } which parametrize P.
The bifurcation solution is found by solving this

system.
This procedure is now illustrated by explicit compu-

tation of the bifurcations corresponding to polyno-
mial deformations of the lowest degree compatible
with each type of allowed symmetry breaking. For

Table II. - Second-degree bifurcations from the Maclaurin and Jacobi sequences.

(*) This spurious solution does not correspond to a bifurcation ; see the text.

Table III. - Third-degree bifurcations from the Maclaurin and Jacobi sequences.
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n = 1, no non-trivial admissible P exists. For n = 2
and n = 3 the situation is summarized in tables II and
III, respectively. In both cases the head entries indicate
the isotropy groups G of the original sequences
(D ooh or D2h), the isotropy groups H of the bifurcation
solutions (as given in table I), the admissible poly-
nomial deformations P (parametrized in terms of a set
of coefficients { À }), the bifurcation equations (indi-
cated by their number in the text), and the bifurcation
solutions (the values of J2 at which they occur, and
the corresponding eccentricities squared e2 and n2).
The types of symmetry breaking listed in tables II

and III are examined below ; in each case we write
explicitly the bifurcation equation and indicate its
solution. The two infinite families of bifurcations from
the Maclaurin sequence associated with the Dmh and
Dmd symmetry breakings [14] are discussed at the end
of this section ; only the first one is found to be dyna-
mically allowed.

4.1 SECOND-DEGREE BIFURCATIONS FROM THE JACOBI

SEQUENCE. - 1) When H = D2h there is no symme-
try breaking. The most general admissible P is of the
form

yielding

where, in terms of the functions
defined by eq. (A. 4),

Equation (2. 45) then requires

A more convenient form of this system of equations is

Using the sum rules (A. 7), we find that eq. (4. 5) is an
identity. Equation (4.6) may be cast in the form

where the B’s are defined by eq. (A. 5). Using the
definition (A. 3) and the integral representation (A. 2),
this can be transformed into

where (p is a function that never vanishes. Therefore,
eqs. (4.4) have no solution on the Jacobi sequence,
where 81 =F 82.

2) Next, we examine the breakings onto

The corresponding second-degree polynomial defor-
mations are

where (ijk) is a permutation of (123). Then

and eq. (2.45) can be satisfied if and only if

For k = 1, 2 this equation has no solutions [15],
this is seen immediately by writing it in the form

Pi3 = 0 , (i = 1, 2), (4.13)

and using the fact that Bi3 &#x3E; 0 (see Appendix). On the
other hand, for k = 3 eq. (4.12) is satisfied identically
all along the Jacobi sequence ; compare with eq. (2.15).
However, this solution is not related to a bifurcation.
The deformation

represents in fact a rigid rotation of S about the
direction of J. The original and deformed surfaces lie
on the same Dooh/D2h orbit and therefore describe the
same physical state [11].

4.2 SECOND-DEGREE BIFURCATIONS FROM THE MAC-
LAURIN SEQUENCE. - 3) There exists no non-zero

second-degree admissible P corresponding to the case
H = Dooh.

4) For H = D2h, the bifurcation equation is obtain-
ed by taking 81 = 82 in eq. (4.7), whence

This gives the Maclaurin-Jacobi bifurcation ; compare
with eq. (2.15).

The bifurcation equation is obtained by taking
8 1 = 92 in eq. (4.12) for i = 2, j = 3. We have shown
that there is no solution [15].

4.3 THIRD-DEGREE BIFURCATIONS FROM THE JACOBI

SEQUENCE. - 6) The case H = C2v(k) (k = 1, 2, 3),
is more involved and therefore more illustrative.
The most general P is of the form
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with the restriction

imposed by the conservation of the centre of mass.
We note that when

equation (4.17) reduces to a trivial deformation.

Calculating the f-transform [7] one obtains

where Qi(k), (i = 0, 1, 2, 3), are linear forms in the three
independent parameters Â(’), (m = 1, 2, 3). Equation
(2.45) requires that

written in the form

these relations form a system of three linear, homo-
geneous equations for the three parameters Àm(k).
Explicitly, they may be written as

where

Equations (4.23) have a non-zero solution if and only
if

This condition turns out to be satisfied identically
not only all along the Jacobi sequence, but also for any
values of the e’s. Indeed, using the sum rules (A. 7)
one finds that the sum of the three columns in the
determinant in eq. (4.25) is zero :

The origin of this disease is traced down to the presence
in our equations of the trivial deformation (4.19).
To cure it, we may choose anyone of the Â’s equal
to zero, which is equivalent to removing from eq.
(4.17) a trivial deformation proportional to xk S [16].
For the remaining deformation to be non-trivial, all
the second-order minors of the determinant in eq.
(4.25) must then vanish. Omitting the proofs, which
are elementary but tedious, let us state the main

results. All the second-order minors Dl:l are pro-
portional :

The y’s are functions of the e’s that never vanish.

Equation (4.25) then factorizes into

where, by the sum rules (A. 7), X(k) is identically zero.
Removing this spurious zero, the bifurcation is given
by the equation

In terms of the eigenvalues of the matrix Clm(k), all this
boils down to the fact that one eigenvalue is identically
zero, whereas the zeros of the other two eigenvalues
are given by eq. (4.29). Once a solution of this equation
is known, the coefficients À,k) (up to an arbitrary
common additive constant) are found as the compo-
nents of the corresponding eigenvector of Cl(.k). A
numerical calculation shows that, on the Jacobi

sequence, eq. (4.29) admits a solution only [15] for
k = 1 ; the corresponding eigenvector is

This is the bifurcation to the famous pear-shaped
figure of Poincaré, invariant under C2,(I).

whence

Equation (2.45) is satisfied only if

or equivalently

Using the positivity of the B’s, one concludes that the
D2 bifurcation does not occur [15].

4.4 THIRD-DEGREE BIFURCATIONS FROM THE MAC-

LAURIN SEQUENCE. - 8) When H = Coov, the third-
degree admissible P is obtained by setting À1 = Â2,
91 = 82 in eq. (4.17) for k = 3. It is sufficient, there-
fore, to look for solutions of eq. (4.29) in this parti-
cular case; there are none [15].

9) For H = Dih [14], the polynomial deformation
is again a special case of eq. (4.17) : À1 1 = À2, el = 92,
and k = 1. Then, eq. (4.29) factorizes into
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where

Each factor in eq. (4.35) yields one solution. The
associated types of symmetry breaking are found by
computing the corresponding eigenvectors. The solu-
tion

represents the breaking onto D1h.
10) The bifurcation to H = D3h is obtained from

the other solution of eq. (4. 35) :

11) For H = D2d, the bifurcation equation is

(4.34), with E1 = 82. There exists no bifurcation of
thistype[15].

4.5 HIGHER-DEGREE BIFURCATIONS FROM THE MAC-
LAURIN SEQUENCE. - Finally, let us examine the
bifurcations from the Maclaurin sequence accompa-
nied by symmetry breaking onto the subgroups Dmn
or Dmd (m &#x3E; 2) [14]. As before, the discussion is
restricted to the lowest-degree polynomial deforma-
tion compatible with the breaking.

where cm(x) = Re (xi + ’X2)’, one obtains

Here lm) stands for â 1...1 with m indices 1 and A;r is
a function that never vanishes. To satisfy eq. (4.41)
one must have

The bifurcation equation (4.42) has one solution for
each m &#x3E; 2. The solution for the first few values of m
are given in table IV. It seems that only the m = 3 and

Table IV. - Lowest-degree bifurcations from the
Maclaurin sequence corresponding to symmetry break-
ing onto Dmh groups.

m = 4 bifurcations were known : see [19] chap. 6 ;
see however [30] for a related work.

13) When H = D.d, the lowest-order polynomial
deformation is

yielding

where â 13 + 1 stands for a1...13 with m indices 1 and
one index 3. The bifurcation equation is

In terms of the positive fi’s defined by eq. (A. 5), this
may be written in the form

showing that there are no Dmd bifurcations [15].

5. Concluding remarks. - In the scheme presented
here, the calculation of bifurcations is based on two
general assumptions : the absence of accidental

degeneracy, and the arbitrary choice of the degree
of the polynomial deformation. We would like to add
a few comments on the meaning and justification of
these assumptions. 

It has been shown [27] that the Maclaurin-Jacobi
bifurcation is similar to second-order phase transi-
tions, as described by the Landau theory [28]. We now
extend this point of view to an arbitrary bifurcation.
Let us consider the fluid in a configuration bounded
by the surface S(x) = 0, where S(x) is a polynomial
in x. Its energy is a functional of S, depending also on
the angular momentum squared ; we denote it by
E[S] (J’). For each value of J’, the equilibrium
solutions are given by the minima of E, the lowest
minimum corresponding to stable equilibrium. The
covariance group of the equilibrium equation, Dooh,
acts on the space T of real polynomials by an ortho-
gonal representation. Thus, T is a real Hilbert space,
and the energy becomes a real-valued function on S ;
we denote it by E(J’, §), where § stands for the vector
coordinate of S in T.

Let now S(x, J’) be an equilibrium solution, and
the subgroup G of Dooh its isotropy group. We denote
by T(G) the representation of G on T, which can always
be decomposed into irreducible representations. Cor-
respondingly, T decomposes into a direct sum of

subspaces  ; here a labels the factorial represen-
tations (direct sums of equivalent irreducible repre-
sentations) appearing in the decomposition of T(G),
and n labels the irreducible representations inside
each factorial representation. An expansion of the
energy in the coordinates of S, around the minimum
corresponding to the equilibrium solution considered,
is of the form
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Here Ç0153, is the vector component of § in the subspace
T(an) ; for simplicity, the minimum of the energy has
been chosen as origin. There are no linear terms in the
expansion (5.1), and the quadratic terms may always
be brought to normal form (a sum of squares) by an
orthogonal transformation.
The point § = 0 will no longer be a minimum if one

of the coefficients of the quadratic terms vanishes,
i.e. if for a certain label (an) one has

This equation determines the subspace T(0152n) in which
the bifurcation occurs, and the corresponding critical
value of the angular momentum. Of course, one cannot
a priori rule out the possibility that eq. (5.2) hold
simultaneously for two, or more, values of a. However,
satisfying several different conditions with one value
of the parameter J2 would be a casual coincidence
(accidental degeneracy) which, if it happened, would
require a separate discussion. We have shown by
explicit calculation that this is not the case in our

problem.
The label n, which distinguishes between equivalent

irreducible representations, is related to the degree
of the arbitrary polynomials 0 in eqs. (3. 7) and (3.12) ;
it is convenient to identify it with the degree of the
polynomial deformation P. Intuitively, a large angular
momentum is needed to sustain against gravity a
configuration bounded by a complicated surface.

Hence, for a given a, the critical values of J’, given
by eq. (5.2), are expected to be increasing functions
of n.

Assuming that an appropriate algorithm, is avai-
lable one could go beyond the linearized equation
(2.27), and determine not only the bifurcation points,
but the complete sequences branching off. The whole
game could then be played again, to find the bifur-
cation points on these new sequences, etc. In the
absence of accidental degeneracy, minimal symmetry
breaking is expected at each bifurcation. The proce-
dure must eventually terminate when the isotropy
group of the bifurcation solution reduces trivially to
the identity. At this point all the symmetry of the
problem has disappeared, and the method loses all
its predictive power.

Actually, the method becomes inapplicable even
before all the symmetry has gradually been lost by
the mechanism of spontaneous symmetry breaking.
The cause is the onset of dynamical instability, which
leads to non-stationary phenomena [6]. (In our

problem it would lead to the fragmentation of the
fluid mass.) Then, dynamical details such as fluctua-
tions, impurities, etc., become important, and the
ensuing symmetry breaking is typically maximal.
Unlike stationary bifurcations, dynamical instabilities
are perhaps similar to first-order phase transitions.

In order to simplify the numerical calculations
which illustrate the method, homogeneity, incômpres-

sibility and rigid rotation have been assumed, thereby
reducing the degrees of freedom of the fluid mass to
the degrees of freedom of its surface. In order to build
a more realistic model for a rotating star, these assump-
tions must be relaxed. New degrees of freedom can
then be excited, such as changes of volume and internal
motions. Nevertheless, the equations of motion remain
Dooh-covariant, and the foregoing discussion of sym-
metry breaking - in particular table I and the selection
rules - remain unaffected.
The authors are grateful to one of the referees for

his remarks and for pointing out other works [29],
[30], [31] where group theory methods are applied
to astrophysical problems.

Appendix

Parametrization of ellipsoïdal solutions. - Let the
fluid have mass m and, in the corotating system, be
bounded by an ellipsoidal surface of semi-axes a,,
a2, a3. We adopt a special system of units, in which
the unit of length is a = (al a2 a3)1/3, and the unit
of moment of inertia is (2/5) ma2 ; angular momentum
squared is measured in units (12/25) Gm3 a, potential
in units 3 Gmla, and energy in units (3/5) Gm2/a,
where G is the gravitational constant. Then, the

energy of the fluid is

where cl, 92, B3 are the squares of the semi-axes, J2
is the square of the angular momentum, and

A convenient description of the fluid’s properties
at equilibrium is given in terms of the infinite set of
parameters [17]

where nk is the number of times the index k appears
in the string il, ..., i". In particular, the f-transform
of a polynomial is again a polynomial (see section 2),
whose coefficients are simple functions of the a’s [7].
Equation (2.12), which gives the gravitational poten-
tial at an internal point of a fluid, is such an example.
To simplify certain calculations, it is useful to

introduce the quantities
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and

Combining the definition (A. 3) and the integral
representation (A. 2), it is easy to show that the B’s
are always positive, a property which is needed in ’ 
certain proofs.
A set of useful identities satisfied by the a’s is

obtained by observing that cxit...in is a homogeneous
function of degree - (n + 1/2), i.e. that

Applying Euler’s theorem one obtains

Equations (A. 7) will be referred to as sum rules.

i Finally, let us remark that the equilibrium equa-
tions (2.14) and (2.15) can be obtained by requiring
that the energy (A .1) have a local extremum with
respect to variations of the e’s, subject to the addi-
tional conditions (2 .11 ).
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