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Résumé. — Des considérations de symétrie montrent qu’un cristal liquide cholestérique soumis a
l’action d’un gradient de vitesse, doit étre le siége d’une polarisation électrique. La flexoélectricité

donne une explication a ce phénoméne.

Abstract. — From symmetry considerations it is possible to deduce that velocity gradients ought
to induce electric polarizations in cholesteric liquid crystals. We show that flexoelectricity can be

responsible for such a phenomenon.

1. Introduction. — In the hydrodynamic regime,
cholesteric liquid crystals exhibit the same features
as smectics A (composed of chiral molecules), that is
the translational symmetry is broken in one direction
of space, and the local point group relevant to the
problem is C_, [1, 2]. One novel consequence of these
‘considerations is that by shearing a cholesteric liquid
crystal in certain ways, it is possible to induce an
electric polarization in definite directions of space.
To see this, one wants to write a relation such as :

Pi = j’i'k akV (1. 1)
J! J

where P; is the polarization density, V; the barycentric
velocity of the fluid, and 4, is a third rank tensor. In
a cartesian reference frame, and if z is chosen to be
parallel to the helix axis, the non zero components
of the tensor are :

Ay = — 4

xyz yxz >
/lxzy = - )'yzx >
Azxy = - A’zyx .

This coupling differs from piezoelectricity in the
fact that it is not an equilibrium process : the fluid
nature of cholesterics and smectics requires the use
of velocity gradients rather than strains.

The polarization density resulting from a shear has
already been observed in smectics A built up of chiral
molecules (3). The phenomenon was interpreted [3, 4]
as a pretransitional effect within the framework of a
Landau theory of the S, to the S¢ (chiral) transition.
More precisely the velocity gradient induces a tilt
of the molecules within each layer, and the polariza-
tion results from this tilt.

In cholesteric phases, the situation is different and
we will show in the second section that flexoelectricity
may be used to understand the occurrence of such a
phenomenon. In the third section, we give the detailed
calculation of the hydrodynamic motions linked to
the shear and justify the equations used in section 2.
We conclude by giving order of magnitude considera-
tions which suggests that this effect should be obser-
vable experimentally. A shear induced polarization
has indeed been previously reported [5] but the geo-
metry used in this experiment is in principle inconsis-
tent with the symmetry considerations developed
above.

2. The link with flexoelectricity. — In the first
section, we considered the properties of a cholesteric
in the hydrodynamic limit (that is on a large scale
compared to the periodicity of the structure). We
propose here a microscopic calculation of 4, ;, consider-
ing that a cholesteric behaves locally like a twisted
nematic (6, 2). It is known from nemato dynamics [2]
that velocity gradients exert a torque on the director,
which depends strongly on the very orientation of this
director with respect to the shear. A homogeneous
shear should then induce a tilt of the molecules (out of
the cholesteric planes) modulated with the periodicity
of the structure (Fig. 1). This tilt involves both a
splay and a bend of the structure, but since these
two vectors are even functions of the director field,
they have non-zero macroscopic (that is averaged
over a large number of periods) values. In turn, a
mean electric polarization results from the flexoelec-
tric phenomenon.
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FI1G. 1.— Solid batonnets : unperturbed configuration of the optical
axis. Dashed batonnets : perturbed orientation due to the hydro-
dynamic torque exerted by 0, V.. Note that the tilt angle « is maxi-
mum when the optical axis lies along x and zero when along y :
it is modulated at the spatial frequency of the structure. The resulting
0 od° .
splay d° % and bend a e exhibit a constant component along y,
which is the source of the induced polarization via the flexoelectric
coupling.

Let us describe the cholesteric with :

0 _
d} =cosqgqyz,

unperturbed helix ¢ d? = sin g, z,

d? =0,
d,=cos(qgoz + V).
d, =sin(qgoz + ¥).
d, =a.

perturbed helix

The deformations from the ground state are express-
ed by the angles ¥ and «; ¥, although entering the
problem is not very interesting since it contributes
only to the twist deformation. The tilt out of the
planes o, involves both splay and bend deformations.

In the hydrodynamic limit, the dependences on x
and y due to boundary conditions may be neglected,
and the only important variable is z (0x = dy = 0).

If a shear flow 0, V¢ is imposed on the liquid crystal,
a tilt is induced according to the relation :

@2.2)

The detailed derivation of this equation and the
detailed expression of y} and § will be given in the
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next section. The left hand side expresses the response
of the director, and the right hand side the torque
exerted by the shear flow. The latter is obviously
periodic in space, as previously claimed and illustrat-
ed in figure 1.

Furthermore, the shear is obtained by moving the
glass plates defining the sample boundaries and it is
convenient to impose a motion periodic in time, so
that :

0, Vi) = (0,V5) e 2.3)
which leads to :
a = 7(0,V7) cos (g 2) 2.9
%)
1= -
(K33 + K1) g5 + gy 0
if one assumes a3 = 0| (2.5)
The resulting splay and bend vectors are :
S, =d, 0.d, b, =4d,0,d,
S<S,=d,04d, b <b, =d, d0,d, (2.6
S, =d, 0,d, b, =d,0,d,.
To first order in 0, V¢
Sx = %qO X Sin (2 9o Z) asze
S, = — do xsin® (40 2) 0,V
S, =0
: 2.7
by =740 xsin (2902) 0,V
by =+ qdo X COSZ (qo Z) asze
b,=0.
And eventually :
(8D =Xb)>=X8.>=<Kb)>=0
GoX ~ 1re (2.8)
(=8> =<b)> =70V
The flexoelectric polarization is given by [7] :
P = f,dDivd + f,d.V)d 2.9
(we use notations defined in [8]) which gives :
P =P, =0
Ji— J
P, = qox—l—z—laxV;. (2.10)
Thus we find :
lxzxzizzxz(); }'yzx=qoxfi-%ﬂ' (211)

This polarization is fundamentally different from
the one observed with chiral smectics C (3) in similar
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experiments : this latter ohe results from the modula-
tion of the Y angle, and exists only to the extent
that there is a macroscopic polarization in the ground
state of those materials. In particular, it vanishes
when the director is perpendicular to the helical
axis, which is the definition of cholesterics.

The next point is the occurrence of the difference
(fL — f)) in (2.22); it has been argued in [9], that
there was only one flexoelectric coefficient (f, + f)
in nematics and smectics A, (f, — f)) being indistin-
guishable from surface polarization terms. However,
the phenomenon we describe here is typically bulk,
and cannot be confused, with surface polarization
effects (see appendix I). The contradiction between
these two statements is only apparent : the proof
proposed in [8] is valid to the extent that we deal
with small deviations of the director with respect
to a uniform equilibrium distribution. The cholesteric
ground state does not obey the uniformity require-
ment, and the argument developed for nematics and
smectics A is not valid here. This is interesting since
it allows us to measure f, and f independently
(for instance, starting from a nematic, one could
measure (f, + f|) with the interdigital technique [9]
and (f, —f)) using the technique we describe here
with the same compound slightly doped with an
optically active molecule).

The last remark is that whereas one expects and
finds an S dependence for (f, + f), an S? law is
predicted for f, — f, from equations (2.9) and
(4.5) of reference [8] since it is essentially given by
the Meyer dipolar contribution, and the anisotropic
part of the quadrupolar contribution (!).

3. The hydrodynamic equations. — A similar pro-
blem has already been investigated by Leslie [6],
who was mainly interested in studying a (non linear)
steady state solution (0d/0¢t = 0). We are here concern-
ed with a linearized problem, in which the perturba-
tion is a periodic function of time (0/0t = jw);
this allows us to find a closed solution to our problem,
whereas in the general case this is not possible.

We have shown in section 1 that three independent
geometries corresponding to the three externally

(*) The anisotropy of the quadrupolar contribution, due to the
Lorentz field corrections, has been pointed out to us by the Sofia

group.

oo
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applied shear (0, V7, 0V, 0, V) have to be investigat-
ed. In the incompressible cholesteric, the variables
arey, a, V,, V,, ¥V, and P (V is the barycentric velocity
of the fluid, P the pressure and the coupling with
the temperature is omitted). It must be noted again
that boundary perturbations do not extend outside
a region of linear dimensions of the order of (I1/q,)
and hence in the hydrodynamic limit the only relevant
parameter is z.

One needs to satisfy the momentum and mass
conservation equations, and the' director equation.
The mass conservation (incompressible fluid) equa-
tion gives (3.1) : 0,V, = 0 (or V, = 0; except when
the applied shear is 0.V¢, in which case 0,V, = 0
implies the absence of any counterflow in the z
direction).

Furthermore, the z component of the momentum
conservation equation provides the definition of
pressure, so that we are left with four equations and
four unknowns :

+ 9, = ki3 50 — kyy 02 3.2
dY g. — d? g, = ks, 02, (3.3)
0,0, = 0,0, =0 (3.4

g; is, in Leslie’s notation, the dissipative part of the
director body force. Its actual expression depends on
the particular case under study. The last two equations
(3.4), do not involve reactive terms which are second
order (2) and inertial terms which are negligible.
They may be integrated to yield :

3.5

a and b are constant numbers independent of x, y
and z (the factor { is included for convenience).

We now have a set of four coupled linear equations,
and six unknown parameters. a and b have to be
determined from boundary conditions. As we will
see the relevant one in the hydrodynamic limit is
that V must remain finite as the size of the sample
goes to infinity.

CASE a. — 0,V; # 0.

The set of equations (3.2, 3, 5) exhibit the detailed
form

AR + K3 g5 0 — kyy bfza = —ay,dx°0,V, — o3 dl 0.V, — a, d2o.ve (3.6)

"1 %% =ky 02Y — 71 4o V (3.7

(g + (3 + ) d7%) 0.V, + (g + 3) dx® dy° 3,V + (g + (6 — ot3) dO?) 0,VE + 2015 dY %% =a (3.9)
(00 + 26) d2 d9 0,V + (o + d2(og + 1)) 0,1, + (g — 2 A2 dP OV + 20, d0 D = b (3.9)

(3.7) expresses the convection of v due to the velocity parallel to the helical axis.
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From (3.8) and (3.9) we find ,V, and 0,V as a function of 0, V¢, da/dt, a and b. Plugging them back into
(3.6), we obtain :

o
Vim + ks g3 o — kyy 02 = 9d0 0,V — ~2 (ad® + bd°)
ot 21 y

(3.10)
. 202 of | .
=9 — m =9 — ”—b- is the splay viscosity 3.11)
as(o, + otg — a3) (0 + 0tg — 3)
= —q = — 0y + 3 ——= 3.12
’ 2 (03 + oy + ) g ’ 2, ( )
1y is @ Miesowicz viscosity (see for instance reference [2]).
Equation (3.10) shows that « is a periodic function of period 2 IT/q,, and hence (with
0. V() = 0,V /™)
using this o value in the expressions for 6,V and 8,V one gets :
2 jous yood??
0.Ve=Qouny)™" {— 0,V (o, + ag + a3(d®? — d%?) + =
2 m) { “(“ e R Py
o, o3 wd??
+ afo, + (a3 + ag) d°% +j - s —
(4 ’ o n[(K11 + K33) % + jy} o]
joc§ Oy @ ) 0 70 }
+b — —1)dld (3.13)
(ﬂb[(Ku + K33) ¢ + jyi o] ¢
0V, = Qagny) ' 420.Vd°d oy oy (1 — L
» = Goan) { » oo ( K T k) 0 + o
: 2
Jo4 O3 @
+ ad? d? < - — 05 — )
Y \ml(K1y + K33) ¢ + iy @] ° ’
2 02
) oy 0% ad,
+b(oc + (03 + ag) d2? + j L — )} (3.19)
o n[(Kyy + K33) 4 + i @]

According to (3.13), the averaged value of 9,V and 0,7, over a large number of periods is non zero ; this
is an unphysical situation since a vanishingly small shear cannot induce an infinitely large velocity (0,V, = Const.
V, = (Const.) z).

The conditions { 0,V, > = {9,V, > = 0allow us to calculate a and b :

o (oc + ag + Jta 30 )
. “\* Ky + K@+ o
a= 0.V

3.15
+oc3+<x6+ Jog 03 @ (3-15)
o -
¢ 2 2y [(Kyy + Ka3) 2 + i} 0]
b=0
and eventually :
(Kiy + K33) g5 + jyi o
with
. O3 0ty O
03 — 0g — jO —
Yoo g o3 } ¢ no[(Ki1 + K33) g3 + jyi o] G.17)
Va 22 a3 + o a, 03 » )
oy + >

J ;
2np[(Kyy + K33) 5 + i @]
This is precisely the proof of equation (2.4).
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CASE b. — 0,V¢ # 0.

In this case V, = 0; on the other hand, a reaction
velocity 6V,(2), V,(z) modulated at the spatial fre-
quency of the structure is still allowed. The problem
then is formally identical to the former. One finds :

—  uncoupled to the shear.

yo BdOVE 51
(Kiy + K33) g0 + jyi o
~ O3 0y
y"—a +oc6+oz3 Jawo
¢ 2 2n[(Kyy + K33) ¢° + j¥i]

(3.19)
CASE ¢. — 0, V; # 0.

Y is coupled to the shear but not « and no polariza-
tion effect is to be expected.

Using the results of section 2, one can summarize
the results of section 3 in the following way :

fJ_ - f|| ’)7a
A’yzx = - ﬂ‘xz_v = 4o 2 .S
2 (K1 + K33) g0 + jyvi @
— A = Jfi— Il 12
/lyxz_ — Axyz = 9o ) "y
2 Ky + Ks3) g0 + yio
Agyy = — Agy = 0.
(3.20)
Conclusion. — This shear induced polarization

effect will be of practical importance only to the extent
that it is measurable. An experiment well suited to
seek it has been developed by Pieranski, Guyon and
Keller, to investigate the chiral smectic C phase (3).
The geometry could correspond either to case a,
or b (figure 2). The induced polarization gives rise

(]
,/ Z, f{
/v I
Y} )
7y A WAL
VA
/
/ II// ”’ /
"y n
/ '
/7 !
/ 1 I'4
/7
FiG. 2. — Parallelepiped cholesteric sample subjected to shear

(the arrows represent the velocity of the sample holders). The

two helices show the two directions of the cholesteric axis leading

to a non-zero polarization. This induced volume polarization

creates a surface charge at the sample boundary which is the
measurable quantity.
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to surface charges, which are directly measurable
with non contact techniques (3).

Q= _f P,dS = S, 3.V,

(S = surface of the sample defined by y = P/2)
or for order of magnitude purposes (o3 ~ 0) :

o %2 0<V7 U= M)

0~ —
(K33 + Ku)‘@'z +Jy @ 2

In the high frequency limit (y; @ > (K33 + Ky{) 43
which seems appropriate to get large values of 4.V,
and to avoid the 1/f noise in detection systems) :
with :

1

go =3 x 10*cm™' (one micron pitch)

T 2 ~1072
)

(one micron excursion of the holding plates, for a
sample thickness of 1072 cm, as in reference [5])

S =Sy

S 10"*esucm”

1

S ~ 1072 cm?
one gets :
Q0~3x10"%esu.

Such a charge should be measurable since it corres-
ponds to a 1 mV voltage on a one hundred picofarad
capacitance, typical for this type of experimental
arrangement.

Experiments in well controlled geometries are
currently underway (E. Guyon, P. Pieransky and
L. Petit private communication) and will provide
the first evidence of the direct flexoelectric effect in
conventional liquid crystals.

Acknowledgments. — It is a pleasure to acknowledge
stimulating conversations with E. Guyon and to
thank H. Gasparoux for his constant encouragement.

Appendix I. — The experiment described in this
paper consists of detection of the surface charges
resulting from the existence of the bulk polarization :

do* = P,.dS, (A.1)

(dS; surface element pointing out of the sample).
The question is to know whether or not it is possible

to obtain surface charges from surface polarizations.
Symmetry considerations allow us to write :

dP; = 4; dS; (A.2)
dP; is the surface polarization, 4;; has the symmetry
properties of the bulk. For instance, quadrupolar

densities 0 lead to such a relation with 4;; = § i
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The corresponding surface charge, will arise from
the divergence of (A .2) :

Ne 6

but 1,, = 4,d, d, and

s _ 02 _ 702
dop. = — 0,(4;; dS)) . (A.3) do® = — 4,190 | dx <:ys I;lSy . A.5)
Ops =
More precisely in the hydrodynamic limit : P
dops = — 0, | 4,,1dS, (A.4) which is the point stated in section 2.
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