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EFFECTIVE HYPERFINE HAMILTONIAN
IN HOMONUCLEAR DIATOMIC MOLECULES.

APPLICATION TO THE B STATE OF MOLECULAR IODINE

M. BROYER, J. VIGUÉ and J. C. LEHMANN

Laboratoire de Spectroscopie Hertzienne de l’E.N.S. (*),
24, rue Lhomond, 75231 Paris Cedex 05, France

(Reçu le 14 décembre 1977, révisé le 16 février 1978 et accepté le 23 février 1978)

Résumé. 2014 Le Hamiltonien hyperfin effectif est étudié pour les molécules diatomiques homo-
nucléaires. A l’aide de l’algèbre des opérateurs tensoriels irréductibles, les termes de perturbation
du second ordre dus aux Hamiltoniens dipolaires magnétiques et quadrupolaires électriques sont
calculés et le résultat est exprimé sous une forme concise. Ces calculs sont appliqués à l’état B de la
molécule d’iode : les valeurs expérimentales des constantes du couplage spin-spin scalaire et ten-
sorielle sont interprétées. De plus, on montre que la valeur de la constante de couplage octupolaire
magnétique récemment publiée ne peut pas correspondre à la réalité et que des termes jusqu’ici
négligés devraient être introduits dans le Hamiltonien hyperfin effectif.

Abstract. 2014 The effective hyperfine Hamiltonian is studied in the case of homonuclear diatomic
molecules, using irreducible tensorial algebra. The second order perturbation terms due to the magne-
tic dipole and electric quadrupole Hamiltonian are calculated in a compact form. These calculations
are applied to the B state of molecular iodine : the experimental values of the scalar and tensorial
spin-spin coupling constants are interpreted. Moreover it is shown that the recently published magne-
tic octupole coupling value for the B state is unrealistic and also that some other terms must be
introduced in the hyperfine Hamiltonian.
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1. Introduction. - With the recent development
of narrow band lasers, it is possible to measure hyper-
fine structures in the excited states of diatomic mole-
cules with great accuracy. As is well known, the
hyperfine Hamiltonian of molecules violates the

Born-Oppenheimer approximation. Therefore, it may
couple different molecular electronic states. Such

perturbations are generally much more important in
excited states than in ground states since the density of
electronic levels is much higher. The problem of the
interpretation of the hyperfine structure in excited
molecular states is therefore closely related to the

problem of such perturbations. For example, in the
B3nOJ state of I2, many parameters which have been
measured can be understood by a second order

perturbation of the electronic molecular state : spin
rotation constant, tensor spin-spin, scalar spin-spin,
magnetic octupole, Landé factors, chemical shift,
etc... However, up to now, no global theory of the
effective hyperfine Hamiltonian has been made and

(*) Laboratoire associé au Centre National de la Recherche

Scientifique.

usually one simply selects in the literature the terms
needed to fit the experimental results. In this paper a
detailed derivation of the effective hyperfine Hamil-
tonian in a homonuclear diatomic molecule is pre-
sented. Our theory will be limited to second order of
perturbation and the results will be applied to the B
state of 12 -

2. Hyperfine Hamiltonian. - The origin of the
hyperfine molecular Hamiltonian lies in the inter-
action between the electric and magnetic multipoles
of a nucleus with the electric and magnetic fields
created by the electrons and the other nuclei. Due to
parity conservation inside the nuclei, only the even
electric ones and the odd magnetic multipoles are non
vanishing. Moreover, the Wigner-Eckart theorem

implies that the only existing 2k-poles are those for
which k  2 Ii where h is the spin of the considered
nucleus.

Let us first consider the terms involving the inter-
action between the nuclei and the electrons. We will
restrict ourselves to diatomic homonuclear molecules.
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2. 1 INTERACTION BETWEEN ELECTRONS AND NUCLEI.
- This interaction can be written :

Ruz(1) is the hyperfine interaction between the
electrons and nucleus labelled 1 ;

Jehf(2) the hyperfine interaction between the elec-
trons and nucleus labelled 2.

Moreover, Jehf contains all the multipole inter-
actions :

where

XMD is the magnetic dipole Hamiltonian
XEQ is the electric quadrupole Hamiltonian
RMO is the magnetic octupole Hamiltonian
JCEH is the electric hexadecapole Hamiltonian

a) Magnetic dipole term.

0 kw(1) is the interaction energy between the
orbital electronic momentum and the magnetic mo-
ment of nucleus 1.

The summation is over all electrons.

/lB and MN are respectively the Bohr magneton and
the nuclear magneton. y. is negative and MN positive.

We use the SI unit system I
are dimensionless.

pe is the momentum of the electron e and rIe = re - rb
ri and re being respectively the positions of nucleus 1
and electron e.

e ku(1) is the interaction energy between the spin
of the nucleus 1 and the spins of the electrons

gs is the Landé factor of the free electron. Se is the
spin of electron e.

0 JeFI(l) is the Fermi contact interaction energy :

These three magnetic dipole terms have all the same
tensorial form and by using the Wigner-Eckart
theorem, 3CMD(l) may be written :

where
are spherical tensor operators of rank 1.

fl) Electric quadrupole term.

rp, 0p and (p, being the radial and angular coordinates
of the protons p inside the nucleus.

91 e, qJle being the angular coordinates of the vector r 1 e,
and e the charge of the electron.
As for the case of JCMD(l), we may apply the Wigner-

Eckart theorem and write XEQ(L) as :

Qq (I1 ) and V2 -qÜ,,(I» being spherical tensor operators
of rank 2.

y) Other multipole terms. - We do not explicit in
any detail Xmo and £EH, but by application of the
,Wigner-Eckart theorem, they may be written :

Qk(Il) and Vq (je(1)) are spherical tensor operators
of rank k.

2.2 INTERACTION BETWEEN THE TWO NUCLEI. -

a) Magnetic dipole term. - The magnetic moment of
one nucleus interacts with the orbital angular momen-
tum of the other nucleus and both magnetic moments
interact together.

Xj,(I, 2) corresponds to the spin orbit and spin
other orbit interactions between the two nuclei in
motion. HIR(1, 2) is equal [1] ] to :

Z is the charge of the nucleus, MN its mass number,
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Z 
N 1 is dimensionless. R is the an lar momen-JMWN ;:t /-lis dimensionless. R is the angular momen-MN ( 2

tum of the two nuclei. R = J - L - S where J is
the total angular momentum of the molecule, L the
total orbital angular momentum of the electrons,
and S the total electronic spin. r 12 = r2 - r,

where 1 = Il + 12 is the total nuclear spin.
JeI112(1, 2) is the direct spin-spin interaction bet-

ween the two nuclei :

i) Electric quadrupole term. - The quadrupole
of one nucleus interacts with the gradient of the
electric field created by the charge of the other

Q’(1) and Qq2(2) have been already defined.

rl2, 012, (Pl2 are the spherical coor4inates of the
vector r12. We have evidently

We must also take into account the interaction
between the two electric quadrupoles of the two
nuclei JeQ1Q2(1, 2). This term is very similar to the

magnetic dipole-dipole term Jel112 and is proportional
to

Similarly we have also the interaction JeoM(l, 2)
between the octupole of one nucleus and the magnetic
dipole of the other or the magnetic dipole due to the
rotation of the molecule, etc...

As we will see in the next paragraph (Table I),
these last terms are negligible.

y) Order of magnitude of the hyperfine terms. -
We express here the various terms as a function of the
mass energy of the electron mc2, the fine structure
constant a, the charge number Z, the electron to

proton mass ratio m/M.
rN is the radius of a nucleus, rig the distance between

a nucleus and the electron e, r12 the distance between
the nuclei. ao is the Bohr radius.

Some dimensionless factors of the order of unity are
neglected. The electric 2k-pole is taken equal to er’ N
the magnetic 2k-pole to MN rN l.
The results are given in table I.
The third column gives numerical evaluation of

these terms in the case of iodine (Z = 53). The atomic
fine structure is used to evaluate  a3Ir 3@ &#x3E;(the order
of magnitude being the same for molecular wave

functions) ; the atomic magnetic octupole is used to
evaluate ( a5lrl,, ). r2is taken from Schwartz [17]

rl2 is taken from molecular results [5] r,, ;--z 3 Â.
The shielding effects due to the core electrons have

not been taken into account. These effects will reduce
the direct interactions terms between the two nuclei.
The fourth column contains the values of the

parameters observed in the ground state of atomic
iodine.
The simplifying assumptions that we have made for

our estimations imply that the results can be wrong
by a fraction of one order of magnitude. Evidently
the selection rules have not been taken into account :
for instance the I.L term of the hyperfine structure
that we find of the order of 2 x 109 Hz will be zero
in an Q = 0 state (as noted below).

2.3 CONCLUSION. - As a conclusion of this

paragraph 2, we can write the hyperfine Hamiltonian
as :

Xhf(l) involves the interaction between the electrons
and the nucleus 1, Xhf(2) the interaction between the
electrons and the nucleus 2, Jehf(l, 2) is the direct
interaction between the two nuclei.

Moreover, we have shown that order of magnitude
, of the various terms can be easily given.

3. Matrix éléments of the différent terms of JChf.
For all calculations which are presented in this paper,
we use as a basis set of vectors 1 S; A, 1, Q, v ; J ;
(/1/2)I;F;Mp)wherel = Il + I2 and F = 1 + J.
A, S, f, Q are the usual molecular quantum numbers.
This means that we use a Hund’s case a representation
but our results are easily generalizable to a case c
,representation. v is the vibrational quantum number
or eventually it is a continuous index for a continuum
of dissociation.

3. 1 SYMMETRY PROPERTIES OF THE MATRIX ELEMENTS.
- Since the molecules under consideration are homo-

nuclear, the rotational levels are ortho or para and
therefore the I values are restricted :
For example for 7B = 12 = 3/2 the ortho states
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TABLE 1

Order of magnitude of the hyperfine terms

(") The measured atomic fine structure is used to estimate  1 Ir 3 ..
(b) The measured octupole constant is used to estimate  l Ir’. &#x3E;.
(C) Taken from reference [11].

correspond to I = 1 and 3, and the para states to
I = 0 and 2. For h = 12 = 5/2 (as for 1271), ortho
states correspond to I = 1, 3, 5, para states to I = 0,
2, 4.
The unperturbed electronic wave functions of

homonuclear molecules are even (g) or odd (u) with
respect to the centre of the molecule. However, the
hyperfine Hamiltonian is not invariant by reflexion
of the electrons with respect to the center of the

molecule, therefore it can couple u and g electronic
states.

By using only symmetry considerations one can
show [2] that :
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Since it does not involve the electrons, JChf(L 2)
does not have the same symmetry properties :

but

It is easy to see that these relations ensure that Jehf
does not violate the Pauli principle of symmetry and
antisymmetry of the total eigenfunction by exchange
of the two identical nuclei. For example ortho and
para rotational levels of two u states cannot be

coupled by Jehf. But the ortho rotational levels of a g
state can be coupled with the para levels of a u state.
As already pointed out by Herzberg [3], the ortho or
para character is no longer absolutely meaningful
in presence of a hyperfine structure.

3.2 CALCULATION OF THE DIFFERENT MATRIX ELE-
MENTS. - We want now to obtain the matrix elements

of Jehf between two electronic states which may or

may not be different, in order to perform a second
order perturbation calculation. This type of calcula-
tion has been already made by Freed [4] in the case of
heteronuclear molecules when only one of the nuclei
has a nuclear spin. Freed’s results are evidently valid
for a homonuclear molecule if we use the basis set

To obtain the matrix elements of Jehf(l) in the good
basis set 1 SAIQvJ(/1 12) IFMp&#x3E; one has to use the
usual angular-momentum algebra. The results are

the following. They are derived for a neutral homo-
nuclear molecule in which A, S, E, Q and J, I, F are
integer.

oc) Matrix elements of Jehf(l). - Jehf(l) may be
written :

where X’(1) is a tensorial interaction of rank k bet-
ween the nucleus 1 and the electrons (see paragraph 2)

fk(l, Q’, Q) depends also upon S, A, S, A, v, v’, etc...
This dependence is here suppressed in order to sim-
plify the notation. In fact fk(1, Q ’, Q) contains the
electronic reduced matrix elements of the hyperfine
interaction of rank k and also a Franck-Condon

integral. If the electronic reduced matrix elements are
almost independent of r12, the intemuclear distance,
fk(l, Q’, Q), is proportional to the Franck-Condon

integral ( v ’ 1 v &#x3E; to a good approximation. The detailed
expressions of fI (1, Q, Q ’) and f2(l, Q, Q ’) are given
in table II.

Expression (3) is very similar to the formula which
should be obtained for a 2k-poles hyperfine interaction

in àn atom. However, the 3j symbol 

and the 6j symbol do not appear in the

corresponding formula in the case of atoms. The 6j

symbol corresponds to the coupling

of the two nuclear spins Il and I2. The 3j symbol

appears when a tensorial operator

of rank k has to be averaged over the molecular
rotation. This is the case of the magnetic and electric

fields (or their derivatives) created by the electrons
at the position of the given nucleus.

If we consider a molecule in a given electronic 
state (Q’ = Q), every electronic physical operator
(for example the magnetic field created by the elec-
trons) must at first be averaged over the electronic
motion, the nuclei being assumed to be at rest, and
then averaged over the nuclear motion (vibration
and rotation). As a result of the averaging over the
electronic motion and of the cylindrical symmetry
around the internuclear axis, only the longitudinal
part of the various electronic operators does not
vanish. For instance, the only non-zero component of
the magnetic field created by the electrons is along
the internuclear axis. The averaging over the vibration
is straight forward. The averaging over the molecular
rotation introduces the 3j symbol of formula (3).
The existence of this 3j symbol has an important

consequence: Since for odd values

of k, the 2k-polar interactions vanish for odd values
of k in a molecular state Q = 0. This property may be
illustrated by the following classical and rather naive
argument. If Q = 0, J the total angular momentum
of the molecule (nuclear spin excluded) is perpendi-
cular to the internuclear axis, and the rotation axis
of the molecule is therefore perpendicular to the
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TABLE Il

Expression ofll(l, (1’, Q ) and 0//2(1, S2’, Q )

DÂ,Â(I) is the reduced matrix element ofJCs/1) :

G A’A(l) is the reduced matrix element of JeLI(l) :

Ks’ ’ (1) is the reduced matrix element of JeFI(l) :

(PB is negative)

internuclear axis. Under these conditions, if the longi-
tudinal part of an electronic operator changes sign
when the molecule is rotated by 180°, the averaged
value of this operator will be zero. For instance, this
is the case for the magnetic field created by one electron
along the internuclear axis. However, this is not the

case for the gradient of the electric field created by one
electron at the nuclei.

In conclusion, in molecular states Q = 0, the hyper-
fine interaction of rank k vanishes to first order for odd
values of k. For such states, the second order hyper-
fine terms are particularly important.

0) Matrix elements Of JChf (1, 2)
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The first part of XIR cannot couple different electronic states

The second part is very similar to XLI(l). But it does not couple u and g states and it is diagonal in I :

This last term is PB/MN - 2 000 times smaller than XIL(L) and can be neglected in a second order perturbation
calculation.

Xj,,,(I, 2) is diagonal for the electronic eigenfunctions because it contains only the coordinates of the
nuclei (r12). The matrix elements of Xi I, have been derived by Bunker [5] :

(there is a misprint in the 6j in Bunker’s formula).
In the same way JCEQ(1, 2) is also diagonal for the electronic eigenfunctions because it contains only the

coordinates of the nuclei. The matrix elements Of £EQ (1, 2) are easily derivable using the known matrix elements
of the spherical harmonics in the rotational eigenfunctions basis (see for instance Ref. [6]) :

where

It must be remarked that inside a given electronic
state Q, Je EQ (1, 2) has exactly the same dependence an
I’ I, J’, J, F as Je2(1) (see formula (3)). We would
have similar considerations for RMO(1, 2), XQlQ2’
JCEH(L, 2). In conclusion, JChf(l, 2) is essentially dia-
gonal with respect to the electronic wave functions
and its off diagonal part may be neglected. Therefore
we will drop it in our second-order perturbation
calculation and discuss its influence at the end of the

paper.

4. Second order perturbation theory. - As already
noted, it is especially important to consider second-
order perturbation theory when Q = 0 since in this
case the only important diagonal term is due to

JeEQ(k = 2). However, we derive the theory for any
value of Q.
The perturbing Hamiltonian can be written :

where ’tJ is the off-diagonal term of the molecular
Hamiltonian which does not contain the nuclear

spin I. 9J contains mainly the fine structure Hamil-
tonian and the off diagonal part of the rotational

Hamiltonian 
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If the fine structure Hamiltonian is too large, the
appropriate basis set is a case c one in which the fine
structure Hamiltonian is already diagonalized. In

fact, we will write now the molecular eigenstates
1 QvJ/F). In these conditions, the results will be
available for the Hund case a and the Hund case c,
the difference between the two coupling cases appear-

ing only in the calculation of the electronic reduced
matrix elements.

Up to second order effects, the matrix elements of
the effective hyperfine Hamiltonian in a given rota-
tional vibrational level of a diatomic homonuclear
molecule are therefore given by :

were p ) is a perturbing level of energy Ep.
As has been already noted, JChf (1, 2) is not consi-

dered at second order since it is essentially diagonal
for the electronic eigenfunctions.
We shall assume in our calculations that

DEhf being the total hyperfine structure. In the case
of an accidental coincidence between two interacting
hyperfine structures, the situation would have to be
studied by an exact diagonalization of the total
Hamiltonian.
The perturbing levels | p &#x3E; may be the ro-vibrational

levels belonging not only to other electronic states
but also to the state under consideration. | p &#x3E; may
be written
The second order term involving 9J twice is of no

interest in our problem since it takes the same value
for all the hyperfine sublevels. Let us consider now
the other second order terms.

4. 1 THE CROSS TERMS

CU’ operates only between states for which AI = 0

and AJ = 0 and it accounts only for the coupling
between two différent electronic states. Since the

matrix elements of cU do not depend on I and F, the
second order terms of this type have the same I and F

dependence as the diagonal matrix elements of

Jek(i). However they may be sometimes identified,
for instance when the diagonal matrix element of
Jek(i) vanishes. Moreover systematic measurements
of the hyperfine splittings as a function of v and J
may also give some evidence of the existence of such
terms : the perturbation may vary with v and J.

For instance, if CO’ is the off-diagonal part of the
rotational Hamiltonian, it must be linear in J.

4. 2 THE CROSS TERMS

The calculation of these terms are tedious and are
detailed in appendix I. We give here only an outline
of this calculation and some explanations giving the
physical insight of this problem.
We have to consider the following terms :

Let us note :

The summations on I’ and J’ are the summations
on the hyperfine structure and on the rotation of the
molecule. As we will see, it is generally possible to
carry out these two summations and this is sufficient
to obtain the angular properties of je"’(i,j). There-
fore, in the following part of this paragraph, we will

consider that S2’ and v’ have fixed values and omit

temporarily the summations over f2’ and v’.
As we have seen in paragraph 2.1 JC’(i) may be

written :
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However, if we limit ourselves to the matrix ele-
ments of JC’(i) between two given electronic states

1 Q ) and 1 Q’&#x3E;, the Wigner-Eckart theorem insures
that jeB0 may be written :

where Je is the total electronic angular momentum of
the molecule, and Vq (Je) an irreducible tensor ope-
rator acting on Je. Q’-q(li) is an irreducible tensor

operator acting on the nuclear spin h of nucleus i.

g(Q, Q) depends upon the considered states ) Q )
and | Q’ &#x3E;.

If it is now assumed that the energy difference
between the neighbouring rotational levels is much
smaller than the energy différence between states

|1 Q) and | Q’ &#x3E;, the energy denominator which

appears in formulae (9) and (10) can be factorized and
the summations on I’ and J’easily made. In the course
of these summations, we use the closure rules :

Under these conditions, a cross term Xkk(i@ j) is

equal to :

Now we can take advantage of the usual mies of
the decomposition of the various tensor operators
Qq(Ii) Qq,(Ij) (or V:(Je) V::(Je)} on an irreducible
tensorial basis set. In the course of this decomposition,
terms of the following type arise :

is an irreducible tensorial ope-
rator of rank K constructed from the tensorial contract

product of Q’(1j) and Qk’(Ij). The same notation is
used for the operators vk(Je) and V"(J,,).

All tensorial orders K in agreement with the triangle

At this point, we must distinguish two types of
terms :

The tensorial ope-i

rators are all equivalent for any
values of k and k’ and they are proportional to

Q5Q(Ii). This is just the Wigner-Eckart theorem.
In the same way, the tensorial operators

are all equivalent and proportional to VQ (Je). There-
fore formula (13) becomes :

We obtain an important result : the second order terms
involving the same nucleus twice have the same angular
dependence as the first order term. Physically this is

easy to understand : in the present case, even at second
order, we have always an interaction between the
nucleus i and the electronic cloud. Such an inter-
action can be decomposed in scalar products of
different tensorial orders.

proportional to

The tensorial operators (Q k(Ii) Q Qk(Ij»I-’Q with
i e j are different operators for each set of k and k’
values. These terms will give angular dependences in
the effective hyperfine Hamiltonian which do not exist
at first order. This is easy to physically interpret :
a cross term k(l) Jek’ U) creates, at second order,
an interaction between nucleus i and nucleus j through
the electronic cloud. The interaction evidently depends
on k and k’.
The result of the exact calculation performed in

appendix 1 is the following :
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and with i "# J

In (16), e = 1 if the two electronic states 1 Q &#x3E; and
1 Q’ &#x3E; have the same symmetry u or g and e = - 1

if they have opposite symmetry.

5. Discussion of the results. - We would like to
discuss the main contributions which correspond to
k = 1 or 2 and k " = 1 or 2.
As already noted, the terms as jcik’ are difficult to

distinguish from the first order terms Jek. Indeed if we
compare expressions (3) and (15), the term of rank K
in (15) has exactly the same dependence in I, I", J, F
as the first-order term Jek for k = K in (3). If K = 0,
the corresponding term is independent of I and F
(I" = I) and has no interest, all the hyperfine sublevels
being shifted by the same amount.

On the contrary, the cross term jekk gives tensor
components of rank K which can indeed be distin-
guished from the first order terms of the same rank
k = K. The jekl’ term involves a 9j symbol which
is absent in the direct jek term. In the present case,
the term corresponding to K = 0 has a dependence
in I.

Table III summarizes all the terms which appear
when k = 1 and 2 and k’ = 1 and 2.

It must be noted that some terms involving nucleus 1
and nucleus 2 vanish. Indeed the 9 j symbol

TABLE III

This table gives all the terms appearing in the second order perturbation theory
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is equal to zero if K is odd, / and I" having the same

parity. Similarly,

equal to zero if odd. For example if
the non vanishing terms in

correspond to 
they correspond to .

Moreover, since is equal to zero if

0 = 0 and K is odd, the terms corresponding to odd
values of K are absent in this case.

In principle, all the terms of different rank K but
originating from the same terms of the Hamiltonian
are related by simple algebric relations. This is clear
from formula (15) and (16). For example, let us discuss
the two terms of rank 0 and 2 arising from JCMD(),
JeMD(j) with i "* j in a state f2 = 0. The corresponding
matrix elements can be written following the notation
of Bunker [5] :

1J represents the scalar spin-spin interaction (1JII.12)
and dE the tensorial spin-spin interaction

The relationship between ô and dE depends upon the
perturbing states. Table IV gives the results for the
different possible cases :

TABLE IV

The studied level is a 0; level. We assumed

all the signs in columns 2 and 3 are changed.

Evidently if several perturbing states interact, the

relationship between b and dE may be difficult to
infer a priori. However, from the experimental results,
it is in principle possible to know the nature of the
perturbing state or states.

Fi%plly a further point must be noted. The method
used fiere for the calculation (the separation between
the term Je(l,l) or ickk’ and the terms jckk’ or Je(2,1»
presents an apparent difficulty :
The summation on I’ is made through intermediate

eigenstates 1 (2’ v’ J’ J’ F) which may violate the
Pauli principle. It is clear that the total contribution
of such states which do not exist must be zero. This is
insured by relations (1). However, for Jett2) alone this
contribution is not zero, neither for Jel: l) etc... It is
zero only for JC + Je(2,2) + (1,2) + Hkk(2,1)- This
method enables the calculation of the effective
Hamiltonian to be made without knowing the per-
turbing states.

6. Effective hyperfine Hamiltonian in the B 3II ou+
state of molecular iodine. - Some precise results
have been recently published [9], [10], [14], [16]
concerning the hyperfine structure of some levels of
the I2 B and X states. It seems interesting to apply our
formalism to these experimental results. As both of
these states verify Q = 0, the theory is the same for
the two states but the second-order terms of the

perturbation theory are necessary only for the B state
because the perturbing states are very much closer.

6.1 FIRST-ORDER TERMS. - As alreay noted,
when 11 U, JC’(i) is different of zero only if k is even.
Therefore :

The nonvanishing first order terms are the elec-
tric quadrupole and hexadecapole interactions for
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Jehf(l) + Jehf(2). Their matrix elements are given
in table Va.
The first order terms of JChf(l, 2) are nonzero

(even if their ’order is odd). The magnetic dipolar
interactions Je1R(1, 2) and 2) have the follow-
ing matrix elements

The matrix elements of JCEQ(L, 2) are, inside an elec-
tronic state, proportional to those of JeEQ(l) + JeEQ(2).
Usually the two terms are not distinguished, the usual
eqQ constant including both of them.
We should take into account also the matrix

elements OFXO,D, + JeD102 and JeQ1Q2 etc... As shown
in table 1 these terms are negligible.

6.2 SECOND ORDER TERMS. - We are now going
to treat the terms resulting from the second-order
perturbation theory. The perturbing terms are cU,

and

For the B3 lloû state, CU’ is the off-diagonal part of the
rotational Hamiltonian :

’lJ cannot couple u and g states neither f2 = 0 and
Q’ = 0 states. Therefore it can only couple the Où
state to an 1 u state. The matrix element is :

The order of magnitude of’BJ is 1 000 MHz for J = 1,
and cU is linear in J. JCMD(I) and EQ(i) are of the order
of 1 000 MHz. JChf(l, 2) is essentially diagonal with
respect to the electronic eigenstates and has no effect
in these second order terms. MO(i) and JCEH(i) are too
small to be considered in a second order theory ;
however, since JeMo(i) has no first order term, we
consider the cross term ’BJ - J~Mo() which is the

biggest term involving J~Mo()-
a) Terms of the form cU - Jek(i). - The cross

term V - (XMD(l) + JeMo(2)) gives an effective dipo-
lar magnetic term which can be written CE I.J. Its

matrix elements are proportional to those of X,,(I, 2).

The matrix elements of the cross term

are proportional to the first order term arising from
JCEQ(L) + 3CEQ(2). They are included in the same term.
As this term is proportional to J, this gives a depen-
dence in J to « eqQ ».
The cross term ’U - (JCmo(l) + 3Cmo(2» gives an

effective octupole o0 whose matrix elements are

proportional to those of the first order term RMO( 1 , 2).
00 = (OO)E + (00)1, In fact (oO), is negligible
(see table I).

P) Cross terms Jek Jek’. - We limit our investi-

gations here to k and k’  2. As shown in table III,
many terms arise. But as Q = 0, only the terms with
even values of K do not vanish.
The terms jekk’ which involve the same nucleus

twice, may be included in the electric quadrupole or
hexadecapole first order term (depending if K = 2,
or 4), as their matrix elements have the same I, I", J, F
dependence.
We are going therefore to focus our attention on

the jekk’ which involves both nuclei.
i) k = k’ = 1. This is the second order magnetic

dipole Hamiltonian. Its contribution has been given
down in formula (17). The term with the ô constant is
alone of its kind but the term with dE can be grouped
with the Je/l, 2) term which has the same II" JF
dependence.

ii) k = 1, k’ = 2 or k = 2, k’ - 1. There is no
contribution from these terms when Q = 0 as is shown
in table III.

iii) k = k’ - 2. This is the second order electric

quadrupole Hamiltonian. Three terms arise corres-
ponding to K = 0, 2, 4. They are given in tables Va
and Vb with the constants e, f, h. The constant h has
two origins, that noted here and the direct interaction
between the two quadrupoles of the two nuclei JeQIQ2.
Therefore h = hE + hD. In fact hD is negligible
(see table I). The effective hyperfine Hamiltonian
resulting from all these effects is given in table Va.
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TABLE Va

Effective hyperfine Hamiltonian. We have taken into account the fact that I and I" have the same parity

The expression of the various constants which appear
is given in table Vb.

6. 3 COMMENT AND COMPARISON WITH EXPERIMEN-

TAL RESULTS. - OE) Tlle « eqQ » constant. - It appears

clearly that the quadrupole coupling constant « eqQ »
is contaminated by various terms.

The observed value of « eqQ » in the B’ II oû state
of 12 is about 500 MHz [10]. The two main contri-
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TABLE Vb

Expression of the various constants.

butions are XEQ(L) + JeEQ(2) and JeEQ(1,2), the

latter being evaluated at about 30 MHz (sec table I ).
The « eqQ » is also contaminated by terms

due to several sources. The contamination due to

JCMD(I) - JCMD(I) is of the order of dE (see formulas (15)
and (16) and tables V) and dE -:t 100 kHz [5], [10]. The
contamination by JCEQ(I) - XEQ() should probably
be of the same order of magnitude. The contamination

by cU - (XEQ(l) + XFQ(2» depends on J and should
have also the same order of magnitude for J = 1

(as for J = 1, cU ;t xmo * X,Q).
The decontamination of « eqQ » would need a pre-

cise study of this quantity as a function of v and J.
However the first order term « eqQ » could also pre-
sent some dependence in v and J, and the contami-
nation will be very difficult to observe.
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P) The C = CE + CD constant. - The CD constant
can be easily evaluated

This value is very small, and almost negligible.
C has been measured [9] in the B state for about 10

vibrational levels and is of the order of 30 kHz for
low v values. It increases drastically with v and
reaches 950 kHz for v = 62. This is interpreted as a
perturbation by a dissociative state having the same
dissociation limit as the B state.
A theory of this effect has been published [9] and the

observed values of C are rather well represented by the
formula

where Ev (cm-’) is the vibrational energy inside the B
state; Ee is an energy very close to the dissociation
limit of the B state (E, = 4 400 cm -1 ).
The perturbing state responsible for CE is necessarily

a lu state because U does not couple Sl = 0 to Q = 0
states, neither u to g states. It is most probably
the ’l ’ state of configuration 1 441 or the 31+ state
of configuration 2 332 of reference [15] (see Fig. 1 of
this reference). The Landé factors and the chemical
shifts g l of the levels of the B3 IIou+ state of I2 are also
interpreted as due to the same perturbing states.

y) The d = dD + dE constant. - dD is also eva-

luated to have a very low value of :

dE has been measured only for two vibrational levels,
v’ = 11 and v’ = 43 of the B state. The results are

given in table VI. If the perturbing state for dE is the
same as for CE, the ratio dE/CE must be approximately
constant. This ratio can be estimated :

At the present level of accuracy, this relation seems to
be well verified.

However, this verification is not really conclusive
as there are only two experimental results. As XMD can
couple the 3 II OJ+ state not only to lu states but also
to 0-, 0’ and lg states, the dE term may be due to
states other than the lu responsible for CE. In this case,

there should not be any relationship between CE
and dE.

b) The ô constant. - The b constant has been
measured on the same levels as d and the results are

given in table VI. We have shown in table IV that the
perturbation of a 0+ state by a lu ,state lying above in
energy gives the results b  0, d  0 and à = 2 dE.
The ratios ôlde given in table V are very different

from 2. If we suppose that the B state is perturbed not
only by a lu state but also by a Og state lying above in
energy, then à and dE are sums of two terms, of
opposite sign for b, of the same sign for dE. Such an
hypothesis, which explains the anomalous bidE value
could be confirmed with more experimental results.

Finally, all the calculations made have not consi-
dered the terms involving the e, f, h constants. This
may have changed the b and d values which were
obtained by a least squares fit method.

s) The e, f, h constants. - To our knowledge, they
have never been considered until now in the literature

although in the case of the B state of 12, they must be
of the order of magnitude of b and d. This results from
the fact that JCEQ XDM. The calculations made to
interpret the hyperfine structure should try to take
into account these 3 new terms. The only real limi-
tation to do this lies in the following fact :
The hyperfine structure of the ground and the excited

states are extracted from a spectrum consisting of 15
or 21 intense lines at most. With this limited infor-

mation, it is difficult to fit too high a number of
constants.

il) The magnetic octupole oO = (OO)E. - This term
arises from V - (Xmo(l) + MoO) perturbation.
We can estimate the (OO)E term by using the values
of CE, as the perturbing state is necessarily the lu
because ’ü is involved here :

We can estimate Xmo and JeMD from the measu-
rements done in the iodine atom ground state 2P3/2 [11] ]

We deduce :

TABLE VI

CE, dE and ô values for the two levels v = 11 and v = 43. The results are taken from the papers of Landsberg [14].
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For instance, in the level v’ = 43, J’ = 12, CE has
been measured [10], [14], CE = 180 kHz. Therefore
the order of magnitude Of(OO)E is 0.5 Hz.

Ezekiel et al. [ 10], [ 16] have published a measurement
of oO in this level (let us note that their Hamiltonian
was not quite correct). Their result is 1 or 2 kHz

depending on the publication [10], [16]. Our estimate is
rough, but the result of Ezekiel et al. seems unrealistic.

ç) The hR term. - This term contains two contri-
butions : the first order term of the hexadecapole
interaction, and the second order quadrupole inter-
action. From tables III and V and formulas (15)
and (16), it is evident that this last term is of the order
of magnitude of the e, f, h constants. The direct hexa-
decapole term is difficult to estimate as it cannot be
measured in the 2P3/2 state of the 127 1 atom (J = 3/2).
As it results from the evaluation carried in table I,
the order of magnitude of the direct hexadecapole
interaction could be 1 kHz.

7. Conclusion. - We have derived the effective

hyperfine Hamiltonian for a homonuclear diatomic
molecule in a Hund’s case a representation. The
results are summarized in formulae (15) and (16) and
in table III. All the terms originating from the same
terms of the Hamiltonian are related. The relation
between them depends on the nature of the perturbing

states : if the perturbing states are known, this relation
is easily calculable (see formulae (15) and (16)). If they
are unknown, the experimental values of the various
term give precise information conceming the possible
nature of the perturbing states as is illustrated in the
case of the ratio ôld.

Finally, all these theoretical results are applied to
the B3 H., state of 12. From the experimental values
of the related ô and d constants, hypotheses are
formulated about the perturbing states. The terms

arising from the second order quadrupole Hamil-
tonian are introduced (constants e, f and h). Up to
now these constants e, f and h have never been consi-
dered but they can be of the same order of magnitude
as band d. In contradiction with recent papers [10], [16],
we conclude that with the present precision of the
experimental results, it is impossible to observe a
magnetic octupole interaction in the B state of 12.
On the contrary, it could be possible to observe e, f, h
and even hJC the hexadecapole term. It is not clear
a priori that e, f and h are negligible compared to d
and b. If they are, it could probably be proved by a
computer fit. However the presently available experi-
mental results are insufficient since only two levels have
been studied with high accuracy. A systematic study
of the hyperfine structure in the B state as a function
of v and J would be necessary to clarify definitively
this problem. ,

Appendix I. - EXACT CALCULATION OF FORMULAE (15) AND (16). - In order to perform this calculation,
we define two irreducible tensor operator basis sets "OTkand ,, Tk where the first operate on the orbital coor-
dinates of the electrons and of the nuclei and the second on nuclear spin coordinates.

01"J’Tkhas non vanishing matrix element only between states  Q ’ J’ 1 and 1 QJ), and l’IT: only between
states  (h 12) l’ 1 and 1 (Il 12) 1 &#x3E;.

They are orthonormalized as follows :

and

The matrix elements of the scalar product are obtained by formula 7.1.6 of Edmonds [6] :

From the normalization condition it may be shown that :

and

If Po,,, is the projector on the subspace 1 QVJI &#x3E;@ jek(i) the multipole interaction of rank k for nucleus i can
be replaced by :
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The consequences of relations (1) are :

and

We must calculate second-order terms of the type :

where i and j represent nucleus 1 or nucleus 2

The product "’ T k Q"T k’ may be developed on the irreducible tensor operator basis set "T’

This result is a straightforward application of formula 6.2.8 of Edmonds [6] :

Finally after the summation on q and q’, one obtains :

1. Summation on l’. - To go further into the calculations, we must differenciate between two types of
terms : the terms involving the same nucleus X"’(1, 1) or X"’(2, 2) and the cross terms Jekk’(l, 2) or JC"’(2, 1).

1.1 TERMS INVOLVING THE SAME NUCLEUS Xkk’(i@ i).

(We have used formula (A. 2)).
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With formula 6.2.12 of Edmonds [6], we may write : 1

1.2 TERMS INVOLVING THE NUCLEUS 1 AND THE NUCLEUS 2. - For jekk or JC kk’ the result is that of
expression (A.4) multiplied by (- 1)1"’ e, where F = 1 if the two electronic states Q and S2’ have the same

symmetr) (u or g) and 8 = - 1 if they have opposite symmetry (Q’ and Qg or Q’ and Q,,).
Now we use the formula :

2. Summation on J’. - Here we must again differenciate between two situations.

2. 1 THE PERTURBING STATES ARE THE NEIGHBOURING ROTATIONAL LEVELS OF THE SAME ELECTRONIC
STATE. - Q = Q’ and v = v’.

The energy denominator is small and depends drastically upon J’, its sign changes with J’. No simple
summation on J’ is possible in this case. All the tensorial orders K consistent with | k - k’ 1  K  k + k’
arise. In fact, our decomposition in irreducible tensor operators has no clear advantage in this case : the electronic
reduced matrix elements contained in fk or fk, are the same arising in the diagonal term ofjek and Xk’ . The energy
of the perturbing levels are well known. And the exact calculation of the hyperfine splitting is possible without
introducing new parameters.

If the perturbing levels are the neighbouring vibrational levels of the same electronic state, the contribution
of these levels is very small because Qv’ 1 Qv &#x3E; = 0 and because the electronic reduced matrix elements of Jek
generally have only a small dependence on r12, the distance of the two nuclei. Depending of the different cases
the contribution of these terms may be either neglected or included in the terms of paragraph 2.2.

2. 2 THE PERTURBING STATES BELONG TO OTHER ELECTRONIC STATES. - In this case, the energy of the

denominator is generally of the order of thousands of cm-’. The summation is performed over the different
rotational levels of a given electronic state Q. The selection rule is J - k  J’  J + k if k  k’ and
J - k’  J’  J + k’ if k’  k and we will apply our theory to small values of k (1 or 2). Therefore, it seems
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reasonable to assume that In expression can be taken out

of the summation.

Let us use the formula 2.19 of Rotenberg’s book [7] :

The final results are :

and with i j

We recall that :
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