
HAL Id: jpa-00208756
https://hal.science/jpa-00208756

Submitted on 4 Feb 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A phase transition-like instability in static samples of
twisted nematic liquid crystal when the surfaces induce

tilted alignments
G. Porte, J.P. Jadot

To cite this version:
G. Porte, J.P. Jadot. A phase transition-like instability in static samples of twisted nematic liquid
crystal when the surfaces induce tilted alignments. Journal de Physique, 1978, 39 (2), pp.213-223.
�10.1051/jphys:01978003902021300�. �jpa-00208756�

https://hal.science/jpa-00208756
https://hal.archives-ouvertes.fr


213

A PHASE TRANSITION-LIKE INSTABILITY IN STATIC
SAMPLES OF TWISTED NEMATIC LIQUID CRYSTAL WHEN

THE SURFACES INDUCE TILTED ALIGNMENTS

G. PORTE and J. P. JADOT

LETI-MEP, CENG 85 X, 38041 Grenoble Cedex, France

(Reçu le 22 juillet 1977, révisé le 24 octobre 1977, accepté le 27 octobre 1977)

Résumé. 2014 Ces dernières années on s’est beaucoup intéressé aux structures en hélice dans les
cellules à cristaux liquides nématiques (NLC). Cet article rapporte le comportement de telles struc-
tures lorsque les surfaces induisent non pas l’orientation planaire classique mais des alignements
homogènes inclinés. On montre alors que la torsion totale est égale à 03A0, il existe une valeur critique de
l’angle d’inclinaison aux surfaces pour laquelle la structure en hélice se transforme spontanément
en une structure non twistée. Cette transformation présente toutes les caractéristiques d’une transition
de phase qui peut être soit du premier soit du deuxième ordre suivant les valeurs des constantes
élastiques du matériau. La confirmation expérimentale a pu être obtenue pour le MRBA. 

Abstract. 2014 There has been, in recent years, a great interest in twisted orientation patterns in
static samples of nematic liquid crystals (NLC). Here we investigate the behaviour of such structures
when the limiting surfaces induce not planar alignment but homogeneously tilted alignment. It is
shown that when the overall twist is equal to 03A0, there exists a critical value of the tilt angle at the sur-
face where the expected twisted structure spontaneously transforms into a non-twisted orientation
pattern. This transformation presents all the features of a phase transition, which can be either of
first or of second order depending on the set of elastic constants of the material. Experimental confir-
mation has been obtained with MBBA.
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1. Introduction. - In a theorical investigation [1],
Leslie showed that in a classical twisted nematic cell
with planar alignment on the limiting surfaces, non-
parallel distorted twisted orientation patterns might
be observed instead of the classical parallel twisted
orientation pattern when the relative values of the
elastic constants of the nematic material lie in a certain

range. That is to say that in such a case, the equilibrium
conformation of the nematic medium is obtained when
the optic axis in the bulk is not parallel to the limiting
surfaces but slightly inclined. However such a situation
will not be obtained unless the twist elastic constant is

large compared to the other two and thus is not to be
expected with common nematic materials.

But if one allows the surface alignment to be tilted
rather than planar, such non-parallel twisted patterns
will be obtained with materials as common as MBBA.

In a recent paper [2], it is reported that. by suitable
prior treatment of the solid surfaces, it is possible to
produce homogenous alignment of the NLC where
the tilt angle 00, with respect to the normal of the
surface, is not n/2 (planar alignment) but may vary
over the whole range 0  00  ir/2, depending on the
surface treatment. If one now rotates one plate in its

own plane through an angle 2 Qo, the alignment
directions of the two surfaces no longer coincide and a
conformation which is bQth twisted (2 Qo overall

twist) and tilted, is obtained. It is clear that since 0o,
the tilt angle on the surface, is no longer n/2, 6(z), the
tilt angle in bulk, has no reason to remain equal to 00.
And, although the set of elastic constants of the
material certainly influences 6(z), our main parameters
are the surface tilt angle 6o and the overall twist 2 Qo,
and our problem appears quite different from Leslie’s.
This communication aims to describe the behaviour of
such conformations while 00 and ço vary.
More precisely the purpose of this work is to deter-

mine under which conditions (00, Qo), 6m, the tilt angle
at the centre of the gap, reduces to zero : it is clear that
when such conditions are obtainç4 the expected
twisted conformation III described in. figure la is

replaced by the untwisted orientation pattem III’ given
in figure 16.
A first, rather straight-forward exact calculation

of 6m as a function of (00, Qo) can be performed in the
ideal case where the Frank-Oseen constants of the
material are such that 
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FIG. 1. - a) Description of the twisted configuration III ; b) Des-
cription of the non-twisted configuration III’.

it is then possible to dérive what happens when K11 is
allowed to differ from K33 as occurs 8in the case
of MBBA (K11 = 0.62 K33, K22 = 0.5 K33). The

required conditions are :

- 2 Po = ’Tt,
- 00 smaller than a critical value 80x which

depends on the elastic constant of the nematic material.
Otherwise it is shown that the transformation of

conformation III into conformation III’ is similar to a
second-order phase transition.

Good experimental agreement is obtained with
MBBA sandwiched between glass plates treated with
octyl amine at low surface concentration.

In a later section we briefly give some insight into the
behaviour of this transition in the general case, and
show that it definitely becomes first-order when
2 K22 &#x3E; K33.

2. General équations. - Since the criterion of
existence of III or III’ is energetic one has to study the
elastic energy of the NLC sandwiched in the cell. The
existing configuration is then the one of lower energy.

It is convenient to choose a right-handed coordinate
system with the z-axis perpendicular to the plates, and
such that the origin is equidistant from the solid
boundaries.
The director vector n which defines the local orien-

tation of the NLC, is projected on the three axes :

The thickness 2 h of the sample is small compared to
the dimensions of the plates and variations of the
orientation parallel to the solid surfaces seem unlikely.
Therefore the elastic energy of the NLC reduces

classically to :

with

Writing that Wel is extremum leads to the equations :

where the prime denotes differentiation with respect to
the z coordinate.

In our problem, both surfaces induce the same tilt
angle 00 on the NLC ; we must write :

The second pair of boundary conditions is given
by 2 (po, the total twist angle from one plate to the
other.
While the conditions in our experiments correspond

to (po = n/2, we prefer, as a first step, not to restrict
this angle to that particular value and to write :
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As was suggested [2] by the observation of configura-
tion III’, a solution O(z), cp(z) which satisfies the

particular equations (6) : 

would a fortiori satisfy the general equations (4). Thus
whatever the boundary conditions (0o, Qo) are, confi-
guration III‘ always appears as an extremum for Wel.
On the other hand, a configuration where 0(z)

remains constant while (p(z) varies alone would lead to
the following set of equations :

which can be simultaneously satisfied only if :

Thus, except in the case of very special boundary
conditions (00 = n/2 for instance), an orientation

pattern where 0 remains constant with respect to the z
coordinate will not be an equilibrium configuration.

In the general case where both O(z) and cp(z) may
vary, the equations (4) integrate to yield :

Since our problem is symmetrical with respect to
the z = 0 plane, a regular solution for equations (9)
will have the properties :

and thus :

Clearly, equations (9) remain different from (6) as
long as a is strictly positive. The regular solution 0(z)
of (9) must then satisfy the condition :

and in particular :

Given such a solution, if one continuously modifies
the boundary conditions so that 0m --&#x3E; 0, the finite
boundary conditions imply that simultaneously a - 0.
Then (9) continuously reduces to (6) and the equi-
librium configuration III continuously transforms
into III’. 

1

If one combines equations (9), it follows that :

A necessary condition for a solution of this type is
that the right hand side of equation (15) remains

positive, and thus holds in the range where G(O)
increases monotonically with 0. This condition

implies :

where 0n is defined by :

Since solutions where 00 &#x3E; 0n will be such that
0. &#x3E; 00 our transition will not occur in this latter
range, and solutions corresponding to equation (15)
are the only ones of interest. (15) yields solutions in
which O(z) decreases monotonically from 6o at the
surface to 0. at the centre of the gap ; and they take
the form [ 1 ] :

Within our boundary conditions :

As in Leslie’s problem, (20) is important since it
determines 0. as a function of 00 and Qo. Since

equation (20) is rather difficult to manipulate when
F(o) and G(0) are fully developed, we prefer as a first
step to study an ideal case where :

and

From the solution of this case, we then derive the
behaviour of the transition when K11 is allowed to
diffèr slightly from K33, as it does for MBBA :

and

3. The ideal case where Ktt 1 = K33 = 2 K22 . -
With such elastic constants, equation (20) takes the
rather simple form :
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With the aid of the first substitution :

the integral becomes :

and with the aid of the second substitution :

J becomes :

where t/J 0 is such that :

Introducing elliptic integrals of first and third kind :

Then, for any given value of 00, one can draw the curve

and the expected solutions for equation (23) will be
given by the intersection of curve (27) with the hori-
zontal straight line :

Since the existence and nature, of the expçcted
transition depends on the behaviour of (27) around
8m = 0, we derived the following limited development
of Q( (oo, om) :

around 0. = 0. 
B

From (29) one immediately obtains the following
results : 

- lim (Q(Oo, 0m) = 7r = (Po. and does not depend
om&#x3E; 0 2 . .

on 00; 

- lim a(Q(OO, om)/aem is a monotonically increas-
8m40

ing function of 00 in the range [- oo, n/2]. The value
(Jox where it changes its sign is given by the équation :

At the opposite end of curves (27) one can show
that :

while

With these results, the set of curves given in figure 2
have been drawn with the aid of an electronic cal-
culator.

FIG. 2. - Curves (p(OO, 0m) corresponding to the ideal case where
Kll = K33 = 2 K22.

We clearly have to consider two independent
parameters.i.e. 00 and (po corresponding to the boun-
dary conditions, 00 defines the.curve ç(00 , 0Q while Qo
de fines the straight horizontal line ç = constant = Qo,
The intersection of those two curves gives the values

of 0m where Wel5is an extremum.
Since our problem is to find what happens when 00

varies while, Qo lis fixed, we treat the three following
cases separately :

a) Qo  Qox = n/2. - The fine Q === Qo will cut

cross the cuves Q(0o, 0Q in one only point where
0m = om2 (oo). 
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Thus in case where Qo  QoK we clearly have two
extrema for Wel(Om) respectively :

and

The problem is then to know which one is the
minimum. The comparison could be performed by
using equation (9) and injecting the obtained value of a
in the expression of W,,,. Since such an operation is
forbiddingly complicated it is more convenient to
make the following continuity considerations.

Wel(Om) may reasonably be considered as a conti-
nuously differentiable function of 0.. On the other
hand the case where (po = 0 is obvious and we have :

and

Within the preceding continuity assumption, it can be
deduced that a W/aem 1 Oo, ç =. 0 is negative on the
right hand side of the curve Q(Oo, 0.) and positive on
the other. Then points of the curve ç(00, 0m) where
this function increases with 0. are maxima for Wei-
while the minima correspond to the points of ç(00, Om)
where aQ/aom  0.

Since ôç(00, °m)/aom t °m2 is negative, Om2 is the
minimum for Wel(om while 0. = 0 is the maximum,
and the energy diagram given in figure 3 can be drawn.
Clearly as long as (po  n/2, 8m2 reaches 0 while 0.
itself decreases to zero : a phase transition may not be
expected for such overall twists.

b) (po wo = n/2. - As long as 00 &#x3E; 00. the
point m2 sti exists and for the same reason as in the

-III

FIG. 3. - Energy diagram Wel(Om) when the overall twist 2 Qo
is smaller than n.

preceding case, it represents the absolute minimum
for WOOQo(Om).

While 00 decreases down to 00,, om2 quickly falls to
zero. And when 00 is smaller than 00k, Om2 no longer
exists and the equilibrium configuration is obtained
when 0,,, = 0. Since 0m continuously decreases to zero
while ho - 00., the phenomenon is typically a

second-order phase transition. The energy diagram,
which can be obtain in the same way as in the preceding
case, is also typical of a second-order phase transition
(Fig. 4).

FIG. 4. - Energy diagram Wel(0m) when the overall twist 2 Q0
is equal to n. 

c) (Qo &#x3E; (Po, n/2. - The same type of consi-
derations would, in this case, indicate a transition of
first-order. 
However the physical significance of such overall

twists 2 Qo greater t4gn. n must first bc discussed.
Figure 5 describès sùclî a situation for a right-twisted
conûguration : it immediately àppears that the corres-
ponding left-twisted , configuration such that :

This later configuration is therefore’ less distorted
and would take the place of jhe former through the
nucleation and motion of a low energy bulk integral
disclination line such as the . AB line in figure. 8.

Through this process we are thus driven back to the
case where 2 (Qo  n and ; as pointed out in a) : no
transition can be expected in this case. , 
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RIGHT TWIST

LEFT TWIST

FIG. 5. - Description of a misaligncd sample : right twist
2 Qo = n + Aç &#x3E; n ; left twist 2 Qo = n - Aç  n.

FIG. 6. - Curves qY(00, 0Q for the material MBBA (Kl 1 = 0.62 K33 ;
K33 = 2 K22)’

The results of this discussion can be summed up as it
follows :
- Qo  n/2 : configuration (III) is stable for any

value of 00 and there is no transition.
- Qo = n/2 : (III) is stable when oo &#x3E; 00. while.

(III) is stable when o0  00k, and the transition is of
second order.
- Qo &#x3E; Te/2 : spontaneously transforms into

Qo  x/2 by changing the sign of the order parameter.

4. The case where K11 K33 2 K22 = K33- 2013
These conclusions havé been obtained in the ideal case
where K11 = K33 and K22 = 0.5 K33: There are a
number of recent measurements of the Frank-Oseen
coefficients for the material MBBA (see for example
Haller [5] and Leger [6]) and typically one finds that :

This material is not far from our ideal case since its
coefficients verify the second relation. We must
however discuss what happens when Ki i is allowed to
be different from K33 

Since we failed to obtain a somewhat manageable
solution of equation (20) in such a case, we have to
derive it from the ideal case.
Where we had :

we now have

Introducing

F( 0) becomes :

At this point it is helpful to introduce the notation :

The equation (23) for the ideal case becomes :

where the index i denotes the ideal case.
When K11 # K33 we derive :

We may write : 

where f (0, P) is either a decreasing negative function
of 0 or an increasing positive function of 0 with the
properties :

Hence :

As in the preceding case, the existence and pro-
perties of the transition will be determined by the
variations of qo(Oo, 0Q around 0M = 0. We have to
calculate the new value of qoK(O)o
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°OK will then be given by the equation

and the order of the transition depends on the sign of :

Combining (39) and (40) yields :

where e is arbitrary, but such that :

Then

and :

Therefore :

whatever the values of fl and of 00 are, and the transi-
tion (if it exists) will occur only if the overall twist is x.
To get information about 00. compared to 0.. from

equation (41) is rather less obvious : first an integration
by parts yields :

The second term may be written

if this last integral exists.
To prove its existence, it is helpful to write

As long as a &#x3E; Om,

remains finite and can be written :

When 0 is close to Om one can use an equivalent
expression for H(O, 0.) :

and then obtain an equivalent expressions for U(E, OM
when 8 is near to 0., and 0. near to 0 :

Thus U(B,8,M) is finite, U(OO, 0M.) is consequently
finite as well, and the integral exists.

Equation (41) then becomes

Although an exact solution of equation (49) cannot
be obtained easily, this equation indicates that :

- 03B1  0 i.e. K33 &#x3E; K11 and we have 00. &#x3E; 0iok
2013 03B2 &#x3E; 0 i.e. K33  K11 then 00.  Oi ox

which is rather natural since fl &#x3E; 0 obviously favours
a twisted configuration while fl  0 favours a confi-

guration such as (III.
As noted above, the nature of the transition depends

on the sign of :
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One can easily see that it will no longer be of second
order if this second derivative becomes positive :

From above :

The second term can be written :

-m

When 0. --&#x3E; 0

and :

and thus

Hence the transition remains of second order.

Figure 6 represents the curves Q(o0, 8,J when fl is
equal to - 0.38 (MBBA).

FIG. 7. - The four configurations in bulk which can be obtained
when the surfaces induce titled alignment.

In our physical situation where the nematic material
is MBBA, K11 is slightly smaller than K33. The
preceding considerations indicate that the expected
transition, when the overall twist is x, will be of second
order and that if will occur when oo decreases to reach
the value 00. slightly larger than 58° 43’.

5. Observations. - In ref. [3], we studied the

configurations in the bulk of a nematic liquid crystal
sandwiched between two parallel glass plates pre-
viously treated with heptylamine. This treatment of
the surfaces leads to a high tilt angle. Figure 7 shows
the four configurations in bulk which can be obtained
in such a cell. The configuration III is actually observed
inside closed surface disclination loops Q-lines) such
as the one given in figure 8. If one point inside the loop
is observed in convergent polarized light, the conosco-
pic pattern obtained is that given in figure 9. The centre
of the bright circles may be either on the left or on the
right of the observation field depending on the sign of
the rotation of n (left or right twist). Inside the loop, a
region where the rotation is left is separated from a
right-twisted region by a bulk ± 1 disclination line
such as the line AB in figure 8.

FIG. 8. - A Q-line loop enclosing a region where the configuration
is III.
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FIG. 9. - Conoscopical pattern corresponding to configuration III.

Some observations have also been performed when
the surfaces induce a small tilt angle (glass treated
with nonylamine : 90 ~ 200). As predicted for such
cases, configuration III is no longer observed. The
conoscopic pattern is given in figure 10. Symmetry
considerations (ref. [2]) show that it indeed corresponds
to III,. 

FIG. 10. - Conoscopical pattern corresponding to configuration
nr.

One can observe that the observed conoscopic
figure in case of configuration III allows one to

determine physically whether the overall twist is right
or left ; while this distinction is impossible in the case
of III’. III then appears as the ordered state and III’
as the disordered one. 0. may thus be considered as
the order parameter ç with the following convention :

Furthermore it is rather significant that in figure 8,
III configurations of opposite twist are separated
by an integral disclination line.
From the work of the Orsay group [4], it is known

that such lines in NLC media are not singular : thé
director vector in the core lies parallel to the remaining
direction (here the direction normal to the surfaces)
and in this manner avoids the expected discontinuity.
Thus at the centre of such a line 0m is equal to zero.

Across the interface (i.e. the line) which separates
the two ordered states of opposite sign, the order
parameter continuously increases (or decreases)
through the value ç = 0. The optical width of this

line therefore corresponds to the fluctuation length
and is expected to increase and diverge when the
boundary conditions (00, (Qo) approach the transition
conditions (0.., n/2). This condition is not so easy to
obtain experimentally : the technique of atignment
by short-chained surfactants (ref. [2]) yields a discrete
series of tilt angles 00 depending on the number n
of CH2-groups in the chain. None of the tilt angles
of the series is near enough to 00. to yield an unambi-
guôus confirmation of the transition -:-’when n = 7
the configuration is definitely (III) while for n = 8
it is definitely (Ill’). However we approached 0ok
(MBBA) with the aid of octylamine dissolved in very
weak concentrations in nitromethane. With such
concentrations the tilt angle obtained depehds sharply
on the temperature during adsorption. The patterns
obtained in figure lla-b are the result of good luck
rather than of reproducible experimental conditions.

In figure lla inside the small closed (p line loops,
left twisted and right twisted (III) configurations are
still stable. But the integral bulk lines which separate
them appear drastically widened compared to the
one which is seen in figure 8. This sharp increase of

FiG. 1la), b). - Experimental observations of the transition.
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the fluctuation length indicates that 00 is larger than,
but rather close to, 0ox’

In figure llb, 00 is still closer to 00. : (III) is no
longer stable while (III’) is not yet stable either;
and some kind of critical opalescence fills the whole

, 9-linge loop. This feature confirms the second-order
character of the transformation.

6. The general case. - As long as K11 i is equal to
K33, the integration of equation (20) through elliptic
integrals remains possible whatever the relative values
of K22 and K33 are. However the calculations are
difficult and tedious and we briefly indicate the main
results.
The interesting range for K22 where the transition

can occur is :

In the close vicinity of 0. = 0, Q(Oo, 0m) can be
approximated by the Taylor expansion :

where t stands for :

and 4lo is related to 0o and 0m by :

From (51), it is possible to derive the main pieces of
information about the transition :
- as in the preceding cases, it may occur only if

2 CPo = ’Tt;
- here again, the slope of Q(OO, 0m) 18m=0 is a

strictly increasing function of 00. The value of Ok is now
given by the equation : 

it may be shown that, whatever the value of t, this
equation always has a solution 00. which lies in the
range : 

- However, paying attention to the sign of the
second derivative of (Q(OO, 0m), one can show that the
value of t may also affect the order of the transition :

does not depend on 00 but only on t. Clearly a’1 long
as t is such that t  1, this derivative is negative : the
same discussion as in the ideal case remains valid ; the
transition occurs when Oo is equal to o0k and it is of
second order.

In the opposite case where t &#x3E; 1, this derivative is
positive and the concavity of the curve ç(00, 0m) points
upward. Then, as shown in figure 12, there exists a
certain range for 0  ook such that the curve intersects
the straight horizontal line cp = Qo for three values

of om i.e. :

One must consider Wel(om) to determine which of
these values of 6m are maxima or minima of this elastic
energy. Since cp(6o, 0.) increases when 0. = °ml’1 this
value leads to a maximum, while 6m = 0 and 6m = 6m2
lead to minima for Wel(om). One may derive the energy
diagram of figure 12b, which is typical of a transition of
first order : while 00 decreases there exists a value
o0c  00. where the equilibrium value of 6m abruptly
falls down from 6m2 to zero.

FIG. 12a). - Illustration of the three intersection points om = 0,
om = om1, om" = (Jm2 when t &#x3E; 1.

FIG. 12b). - Corresponding energy diagram.
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If now K11 is allowed to be different from X33 the
same discussion as in a former section is again valid.
It is known that this affects the value of 90k but leaves
Qok(= n/2) and the concavity of (Q(OO, om) 18m=0
unchanged.
Thus the order of the transition depends only on the

relative values of 2 K2 2 and K33-
And, with the set of elastic constants given

above [5, 6], MBBA just stands at the boundary
between the range where the transition is of second
order and the range where it becomes of first order.

Then, although our experiments actually confirm a
second-order transition (or at most weakly first-

order), this material is not well suited to prove the
results of this last section. Since relation (55) indicates
that the concavity of Q(oo, om) 18m=0 reaches its
maximum value when t = 2.4, one may expect clearer
evidence of a first-order transition with a material for
which K33 = 1.42 K22. However two difficulties arise
for such a confirmation : first, measurements of the
elastic constants have been given in the literature for a
small number of materials only. And, should the
required material be available, the possible occurrence
of tilted orientations at the surface must first be
examined.

7. Conclusion. - The aim of this work was to
determine the conditions (00, (po) required for a

twisted orientation pattern such as (III) to sponta-
neously transform into a wedge conformation such
as (III’).

Although a complete exact calculation in the

general case was not possible, important information
was derived from the discussions :

- Whatever the values of K11, K2 2 and K33 are,
this transformation may occur only if the overall
twist 2 Qo is equal to n. And it has the characteristic
features of a phase transition for which the order
parameter is 0m, the tilt angle at the centre of the gap.
- This transition may be either of first or of second

order depending on the relative values of K22 and K33
(i.e. : on twist and bend Frank-Oseen constants only).
- However the critical value o0c of the surface tilt

angle depends on all three elastic constants Ki i, K2 2
and K33 .

As presented here, this transition has a somewhat
unclassical feature : it appears to be induced through
the variations of geometrical parameters rather than
through those of some intensive thermodynamical
quantity (such as temperature, electromagnetic field,
force...). It is possible to go back to a more classical
description, since the prescription of the orientation
of the optic axis at the solid surface is somewhat

unrealistic, and should be replaced by the introduction
of a surface energy as proposed by Leslie, Papoular
and Rapini [1, 7]. This essentially gives rise to a

couple stress condition at the interface, and the
critical values of 00 and Qo obtained appear as the
consequence of a critical couple stress at the surface.

However, although this configuration transfor-
mation shares many common features with phase
transitions, it does not involve the main role of entropy,
and the analogy (used throughout this report) stays
rather formal just as in the classical Fredericks
transition.

One other point needs to be discussed further : from
the early works of Mauguin it is commonly assumed
that the total rotation in a twisted conformation may
not exceed n/2. The explanation which is given for such
an assumption is that, in. thé case of total rotations
bigger than x/2, the liquid crystal may relax by an
integral multiple of x to a state of lower free energy.

However, observations of overall twists as big as x
have been reported [8] inside certain surface disclina-
tion loops. The present work is also concerned with
experimentally observed overall twists of x. The

discrepancy between these observations and the
former common sense interpretation may be removed
by the following remark : in the case of an overall
rotation lying in the range [n/2, 1t] the relaxation of the
nematic medium requires the nucleation of a ± 1/2
bulk disclination line. From the works of the Orsay
group [4] it is known that such lines are singular and
impose high local distortion on the nematic material.
For these reasons (topological barrier and high energy
gap) such conformations may last indefinitely as

metastable states.
On the other hand, as noted in a former section,

when the overall twist exceeds x, a relaxation of the
nematic medium is possible through the nucleation
of a ± 1 bulk line. Compared to the former, these lines
are not singular (no topological barrier) and impose
small distortions on the material (low energy gap).
This relaxation is therefore very easy to initiate and
thus very likely to occur.

Finally, we remark that a striking feature of our
transition is that a necessary condition for its occur-
rence is a 1t overall twist whatever K11, K22 and K33
are (i.e. whatever the nematic material is). However
we failed to deduce this invariant feature as a direct

consequence of the particular shape of the elastic

energy of nematic media.
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