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Résumé. - Cet article contient une étude de la dépendance en fréquence du temps de relaxation
spin-réseau des protons dans TTF-TCNQ(D4) et TTF(D4)-TCNQ à plusieurs températures et
pressions. Il est démontré que dans les conducteurs quasi unidimensionnels seules les diffusions en
arrière (q = 2 kF) et en avant (q = 0) contribuent à la relaxation nucléaire induite par la modulation
du champ hyperfin.
Aux champs intermédiaires, H0~ 30 kOe, la dépendance en fréquence du T1, T1-1 03B1H0 -1/2,

provient du caractère diffus des excitations de spin au voisinage de q = 0. Vers les champs faibles
l’augmentation de T1-1 est limitée par l’existence d’un couplage interchaine de grandeur finie (du type
tunnel). Au moyen d’une analyse basée sur l’approximation RPA, nous avons trouvé d’étroites
corrélations entre dépendances en pression et température de la constante de diffusion des excitations
de spin et du temps de collision électronique obtenu par la conductivité longitudinale. L’interpré-
tation des résultats de RMN au moyen du modèle de Hubbard nous permet d’exclure l’éventualité de
description grand U et petit U. Toutefois l’importance des interactions électron-électron sur la
relaxation de TTF-TCNQ est démontrée. Nous déduisons une valeur de 0,9 pour le rapport U/4 tll 
de la chaîne TCNQ.

Nous pouvons aussi admettre que les interactions électron-électron contribuent à la dépendance
en température de la susceptibilité de spin entre 300 et 53 K en plus de la contribution due aux fluc-
tuations de charges. Enfin nous présentons une description unifiée pour les conducteurs quasi
unidimensionnels dans laquelle les divers composés sont classés suivant leur couplage transverse
tunnel et leur temps de collision électronique. Nous déduisons de cette description que les couplages
tunnels et Coulombiens sont suffisamment forts dans TTF-TCNQ et les composés dérivés pour
justifier l’utilisation de la théorie du champ moyen.

Abstract. 2014 This paper presents the frequency dependance of the proton spin-lattice relaxation
time T1 at several temperatures and pressures in TTF-TCNQ(D4) and TTF(D4)-TCNQ. It is shown
that only backward (q = 2 kF) and forward (q = 0) scatterings contribute to the nuclear relaxation
induced by the modulation of the hyperfine field in these one-dimensional conductors.
At medium fields, H0 ~ 30 kOe, the frequency dependence of T1 originates from the diffuse

character of the spin density wave excitations around q = 0, leading to T1-1 03B1H0- 1/2 . The enhance-
ment of T1-1, is at low fields, limited by the existence of a finite interchain coupling (tunnelling type).
We find, within a RPA analysis, close correlations between the pressure and temperature dependences
of the spin excitations diffusion constant and the collision time derived from the longitudinal conduc-
tivity. The interpretation of the NMR data in terms of a Hubbard model excludes both big U and
small U pictures. However, we point out the importance of the electron-electron interactions on the
relaxation rate of TTF-TCNQ. We derive a ratio U/4 t II ~ 0.9 for the TCNQ chain.
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We also assume that besides charge density waves fluctuations existing between 300 K and the
phase transition at 53 K, electron-electron interactions make an important contribution to the tempe-
rature dependence of the spin susceptibility. Finally, we give a unified description of quasi one
dimensional conductors in which the various systems are classified according to the transverse
tunnelling coupling and the electron lifetime. It follows from this description that for TTF-TCNQ
and its derivatives, transverse couplings (tunnelling and Coulomb) are large enough to justify the use
of a mean-field theory.

1. Introduction. - The proton nuclear spin rela-
xation rate T1-1 in TTF-TCNQ, as function of tem-
perature, at ambient pressure and low frequency, was
reported by the Pennsylvania group [1]. It was claimed
to obey the Korringa law [2] [Ti Txs ]-1 = const.
approximately. However, the value of this product
exceeds the Korringa contact-interaction value [2]

where A is the hyperfine field in gauss, by a large
amount. On the basis of these observations, the

Pennsylvania group suggested that the conduction
electrons should be regarded as a free-electron gas
(thus accounting for the [T1 Txs ] -1 = const. law),
while dipolar electron-nucleus interactions account
for the enhancement of this product over the contact-
interaction value. In a previous publication by the
present group [3, 4, 5] it was pointed out that the
magnetic field dependence of the relaxation rate

invalidates this simple picture; the relaxation rate is
proportional to H 0- 1/2 at medium fields (~ 30 k0e)
and becomes field-independent at low fields. This field
dependence was attributed to the one-dimensional
(I-D) random walk of the electron spin along the
chains, and the electronic Zeeman frequency we at
which the field-dependence changes from constant
to Ho 112 was shown to be given by the escape time
Ti 1/2 we of an electron from a chain due to

tunnelling. Thus the spin density wave (SDW)
excitations along the chain have a diffusive character
(at least for I q 1~ 0) and the relaxation rate is strongly
enhanced in weak fields by the multiple electron-
nucleus scattering in this quasi 1-D system. In addition
to the contact interaction, the dipolar coupling
between the electron and nucleus also contributes to
the relaxation process. This interaction, possesses the
matrix element I t sz for which the change from
field-independent Tl 1 to T1 -1’ aHo 1l2 occurs at

(ON ii = 1 /2 instead of We il = 1 /2, i. e, at a magnetic
field 660 times higher. Thus, for field that can be
obtained in the laboratory, WN T,  1 and the contri-
bution of this mechanism to the relaxation rate is,field

independent.
In section 2 we present the basic concepts underlying

the theory of T1 in I-D metals. The random-walk
in I-D is formally treated by describing x(q, w) as
diffusive. This property is well known to hold for

q z 0, but it is not certain that it applies at q N 2 kF

as well ; even if it does, it is not clear whether the
diffusion constant is the same as that for q z 0. For
this reason, we present formulae for two limiting
cases : (i) Diffusive behaviour for both q z 0 and
q z 2 kF components, with equal diffusion constants.
(ii) Coherent behaviour for the 2 kF component. The
susceptibility is approximated by the RPA, in which
case x(2 kF, o) is considerably enhanced by the
electron-electron Coulomb interaction U. The magne-
tic field dependence of T1 -1 is arrested at low fields due
to electron tunnelling between chains, and the T,
data yield an unambiguous value of the escape time ’t .1."
which can thus be measured individually for the TTF
and TCNQ chains. However the relationship between
the escape time ’t .1. and the tunnelling matrix element tl
is complicated. The Golden Rule [3] ’t.ll = 2 n/ht’2 n(EF)
need not apply when the motion along the chain is
coherent (EF tv,/h &#x3E;&#x3E; 1), where T, is the electron
collision time along the chains, and n(EF) may have to
be replaced by T/lh in this expression. A somewhat
similar approach has been adopted by Ong and
Portis [5].

Finally, we express T1-1 in terms of the diffusion
constant, the escape time and the enhancement factor,
for both contact and dipolar electron-nucleus interac-
tions.

In section 3, we present the measured values of T1- 1
as function of magnetic field for various temperatures
and pressures for TTF and TCNQ chains. The relaxa-
tion rate is given by

where We = y, Ho, and C1, C2., L.1 are 3 parameters
depending on temperature, pressure and the nature of
the chain (TTF or TCNQ). We also present the values
of T1-1’ of TMTTF-TCNQ, as function of Ho, and
show that they are similar to those of TTF-TCNQ.

C1 and C2 will be discussed in section 4. C1 is

proportional to the collision time ij 1/2; thus we

compare TV derived from Ci with the value derived
from the longitudinal conductivity all = no e2 Tv/M*
over a wide range of temperatures and pressures. The
diffusion constant is given by the free electron value
D = vF TV for small and moderate U/4 t||. and by the
Hubbard Hamiltonian value D = 2 ir/hb’ tTIjU for
large values of U/4 t 11 . From the value of the enhance-
ment factor K2kp(a) we estimate U/4 t to be about 1,
excluding therefore, both the big U (U/4 tll || &#x3E; 1) and
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the small U ( U/4 tll jj  1 ) situations. Tj_ follows closely
the jump time derived from the transverse conduc-
tivity. In the present work we claim that the NMR
properties of TTF-TCNQ are dominated by two
parameters namely the interchain tunnelling matrix
element tl, and the intra-chain collision time T,.

In section 5, we demonstrate how the properties of
quasi-1-D metals in general depend on the values of
the dimensionless parameters, namely T_LIEF, which
gives the One Dimensionality, i.e. the extent to which
the material is one-dimensional (tl/EF  1) or three-
dimensional (tl/EF ~ 1), and HIEF ’tv’ which gives the
degree of cleanliness. For n/EF T,  1 the material is
clean and its properties should be dominated by the
coherence lengths while for h/EF’tv ;: 1, it is dirty,
and the mean free path A = VF ’tv has a dominant
effect on the electronic properties. We show how the
various materials can be presented on a one-dimen-
sionality vs. cleanliness diagram. We get an anisotropic
3-D metal for n/’tv  tl, a true one-dimensional
metal (i.e. coherent electronic motion along the

chains, and diffusive one perpendicular to the chains)
for tl  hIT,  EF ; and a low-mobility semiconduc-
tor (i.e. diffusive motion along the chains as well)

for EF  hIT,. Temperature and pressure affect mainly
Ty, and in some materials, t I, and this causes the
material to move on this diagram. The changes in the
properties of the material brought about by appli-
cation of pressure, or change in temperature, are as big
as the differences between different materials (such as
KCP and TTF-TCNQ). In this way, the picture
derived from the systematic measurement of the NMR
relaxation times gives us an overall view of quasi-one-
dimensional metals.

2. Nuclear spn relaxation in quasi-one dimensional
conductors. - Let us consider the hyperfine Is
contact interaction between the nucleus and electron.
In addition to this interaction, an orbital I.1 interaction
may also exist in principle, but it is expected to be weak
due to the quenching of the orbital angular momen-
tum. There is also a dipolar (I .s)/r3 - 3(I. r) (s. r)lr ’
interaction which will be discussed briefly. The domi-
nance of the I.s contact interaction is demonstrated

experimentally by the strong positive Overhauser
effect, with enhancement factor 200, observed in

TTF-TCNQ [6].

The nuclear spin relaxation rate T1-1 for the contact hyperfine interaction is given by the summation of the
SDW response function over all the momentum transfer components q [7]

where

and

is the nuclear resonance frequency. The SDW response function xl(q, (ON) is given by the imaginary part of

i.e.

where fk is the Fermi occupation number, in the independent particle approximation. Since the electronic

energy eka is the sum of the kinetic energy sk and the Zeeman energy Q,uB Ho =ahco., the electron Larmor fre-2
quency we enters into this expression in an essential way.

The electron-electron correlations enhance xl(q, w).
This effect has been treated in the RPA for a 1-D

system [8]. We shall follow this treatment, although
fluctuations should play an important role in 1-D
systems [9]. In the RPA, xl(q, ro) is given by :

where a = Uxo(0, 0), U is the electron-electron Cou-
lomb repulsion (for a Hubbard Hamiltonian), and F(q)
is the Lindhard function F(q) = X’(q, O)IX’(0, 0) [8].

Since the electron gas is degenerate

and the Zeeman energy is small (hw,,  SF), the SDW
excitation contributing to Tl 1 in this 1-D conductor
consists only of the I q I ~ 0 and I q ~ 2 kF compo-
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nents [10]. For electrons with an infinite scattering
lifetime T,, a coherent picture applies and eq. (1)
reduces to the ordinary Korringa relation (see
appendix)

The enhancement factor K2kp(a) is larger than

Ko(a) because of the divergence of the Lindhard
function there for I-D systems. The relaxation rate

T1- 1 is seen to be independent of the magnetic field.

2.1 FIELD DEPENDENCE OF THE RELAXATION RATE
DUE TO RANDOM WALK IN ONE DIMENSION. - AS
mentioned in the introduction, Tl 1 in TTF-TCNQ
shows a strong frequency dependence; thus the

Korringa relation is seen to break down, due to the
finite scattering lifetime of the electrons, moving along
the chains, which brings about a random walk inotion
in one dimension, which has the property that the sum
of the probabilities for return to the initial position
after n steps, M pn, diverges [11]. This scattering

n

lifetime is Tv ~ 3 x 10- 15 s at room temperature (from
the expression for the conductivity, a = ne2 Tv/M*),
yielding a mean free path A ~ 6 A for the Fermi
velocity of 1. 8 x 10’ cm/s. Since we -1 10 s &#x3E; r,,
the SDW excitations of small q components (q  A -1)
become diffusive [12], i.e.

where X8 and D are the spin susceptibility and the
diffusion constant respectively.
The contribution to T1-1 coming from the small q

components can be derived from eq. (1) and (6) :

The large q components (I q I ~ 2 kF) lead however
to a contribution :

which is frequency independent, provided the q - 2 kF
spin excitations are non-diffusive.
When the RPA treatment is used, the diffusion

constant becomes :

Thus, in our case, D ~ 1 cm2/s, and the maximum
of the SDW excitation is expected at

and the macroscopic diffusion equation should apply
very well for the q z 0 component of Xq(q, ro). The
situation regarding the q ~ N 2 kF component is less
clear. Since 2A;F&#x3E;A1*B one might expect the
diffusion equation not to be valid, and x(q, ro) to
be coherent. However, this is not necessarily the
case. x(q, ro) in this region may be given by
I(q - 2 kF, w).X(2 kF), where E is a modulating
function slowly varying in space, which can be

expanded like x(q, ro) in the region q z 0, and thus
obey a diffusion equation as well. However, this

assumption has not yet been rigorously established. 

Performing the summation over q, we get for the non-diffusive 2 kF components case :

Here.

If the 2 kF component of the susceptibility is also diffusive with the same diffusion constant as the q z 0

components, the factor J2 Tv I We in ( 10 ) should be common to K o (a) and K2kF(rx), namely
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2.2 EFFECT OF TUNNELLING BETWEEN CHAINS. - As has been discussed in previous publications [3, 4],
the law Ti a Ho breaks down in the low field region. This effect is associated with the inter-chain hopping of
electrons. Let il be the escape time from the chain. The auto correlation function of the spin density Tq(t), which
gives the power spectrum of eq. (6),

should therefore be replaced by :

assuming a single exponential decay for the interchain hopping process. Taking the Fourier transform of (12),
and summing over q, we get the contribution to (T, T)-1 coming from the q N 0 components

where

The interchain coupling does not lead to any change in (TI T)-’2k, (for the coherent assumption) because
the hopping rate zl 1 is much smaller than the Fermi energy. 

q;:

If the RPA is used for the estimation of D as was done in section 2 .1 the relaxation rate becomes :

For we ’r1.  1, T1-1 becomes independent of fre-
quency, and for We ’r 1. &#x3E; 1, this expression reduces
to (10).

Let us try to estimate the relationship between the
escape time ii and the interchain matrix element t 1.. .

If the Golden rule applies,

However, in the present case it is not obvious that
the Golden rule applies, since we do not necessarily
have a continuum of final states (accessible from a
given initial state). Consider a situation where at t = 0
the electron is on chain I (qf = ql 1), but there is a
matrix element t inducing tunnelling to chain 2.

Then, ql(t) = ql 1 cos tl tIn + t/12 sin t.1 tIn. Assume that
after time t = T, the coherence between t/11 and ql2 is
lost, and that ’tv t .1//ï  1. Then, the probability of the
electron to be on chain 2 at t = Tv is given by (t.1 ’tv/n)2,
and per unit time the hopping probability is given
by ti ’tv/h2.

Thus,

i.e. n(EF) is replaced by r,/h. Numerically, the diffe-
rence between n(EF) and Tv/A at ambient, is not very
large, but the temperature and pressure dependence of

these two quantities is radically different ; n(EF)
depends only weakly on these quantities, while T,
increases rapidly with decreasing temperature and
increasing pressure [13J.
Note that ill also affects the transverse conduc-

tivity. By Einstein’s relation, 0’ 1. = no D1 e2/kB T.
Here, D 1. = l’ T- 1, where I is the interchain distance
in the appropriate direction, and no = n(EF) kB T for
degenerate Fermi statistics (kB T  EF). Thus,

nearly independent of temperature and pressure, for
this limit in contrast with the situation when the
Golden rule applies, and u 1./uII II oc ’tv- 1, which is very
strongly temperature and pressure dependent [14].
For the derivation of the relation t- 1 C(!v, see the

important note added in proof.

2.3 RELAXATION PROCESSES IN STRONG FIELDS. -

According the formula (11), with the diffusive assump-
tion for the 2 kF components, T1 should increase with
increasing H indefinitely. Clearly this is absurd. One
limitation to the increase of T, at high fields follows
from the breakdown of the diffusion equation when
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the collision time T, is no longer short compared with
the Larmor period 2 n/we. Clearly, a continuum
formulation is no longer valid in that limit. In that case,
even if the electron returns to its initial position
immediately, after one backward scattering and
time 2 T,, its spin has precessed appreciably and its
interaction with the nucleus is no longer coherent.
In this limit we are back to the single-scattering
situation of 3-D systems, and T, follows the Korringa
relation and is field independent. Its value should be
.J L .1/2 LV times longer than the low-field limit. For
TTF-TCNQ, L.1 ~ 4 x 10 -12 s; 2 tV ~ 6 x 10-15 s
thus the high field T, should be about 25 times longer
than the low-field value, and the field to attain this
value should be ve, Ho 2 T, tv~ 1, i.e. several mega-
gauss.

However, for the situation described by eq. (14)
where the q z 2 kF spin excitations are non-diffusive
the increase of T, at high fields is limited by the exist- 
tence of the K2k (a) contribution.

Additional relaxation mechanisms may also stop the
increase of T, at much lower fields. For example,
relaxation by impurities (such as magnetic centres
produced by broken chains). Another possibility is
relaxation by the electron nucleus dipolar interaction.

In most metals this process is much weaker than
relaxation by the contact interaction, and therefore
neglected. However, in TTF-TCNQ this neglect is not
justified. This follows from 2 reasons : (1) For protons
attached directly to an aromatic (homocyclic or

heterocyclic) ring, there is a considerable degree of
cancellation (due to symmetry) of the contact interac-
tion between pz orbital and the proton, and the

resulting core-polarization interaction is therefore

relatively weak. On the other hand, since the p,, orbital
does not surround the proton spherically, but is close
and to one side of it, the dipolar interaction is relatively
strong. (2) The dipolar interaction possesses a IT+. SZ
term in the Hamiltonian. This term does not depend
on the angle of precession of the electronic spin in the
x-y plane. Therefore, it gives rise to coherent multiple
scattering even after times large compared with 1/we.
Therefore, in fields such that we r, &#x3E; 1, WN il  1,
multiple scattering by the contact interaction is
attenuated, while that of the I± sz term of the dipolar
interaction is not. The dipolar interaction should cause
a saturation in the increase of T, with H when it
becomes dominant over the contact interaction. The
contribution to T1 1 can be calculated using . (1) by
replacing xl(q, (o) by X’11(q, co) which is give by the
imaginary part of :

in the independent particle approximation.
The essential time scale here is the nuclear Larmor frequency WN in place of the electronic one (Dg for the

scalar contribution. The relaxation rate due to the I:t SZ term is :

with g((o N) derived from eq. (13) where B is the dipolar
coupling constant, B =  g,uB/r3 ) where r is (essen-
tially) the proton-carbon distance. In the dipolar
contribution, the beginning of the rise of T, with v 0
occurs at fields 660 times higher than that for the
scalar coupling, i.e. at fields of a few mega-gauss, and
for fields attainable in the laboratory, T, is field

independent. The characteristic features of the fre-

quency dependence of(7B T) - 1 are the following :
I. Weak fields, Hü 1/2 &#x3E; (2 ye ’t.l)1/2, T, is field

independent, and due mainly to the contact interac-
tion.

II. Intermediate fields,

T1 1 is field dependent, following (approximately)
a Ho 1/2 law, and due (mainly) to the scalar interaction.

III. Strong fields,

The dependence of T, on Ho becomes weaker than
in region II, and the relaxation process becomes more
and more dipolar.

IV. Hû 1/2  (2 YN t 1-)1/2. Fields that are so high
that they are not accessible in the laboratory for

(TTF-TCNQ). However, for other materials, with a
much longer ’t 1-" this region may become accessible.
In this region T1-1 again follows a Ho 1/2 law.
On a T1 -1 vs. HO -1/2 curve, there should not

be a break between regions II and III, whereas on a
T i vs. Ho1 /2 , a break should be seen (ref. [4], Fig. 11).
For the coherent q z 2 kF assumption, a break at

high fields should be observable even in absence of
dipolar contribution to the relaxation rate, namely
B/A  1. On a Ti vs. HO’1/2 plot the break occurs when
the contribution coming from the q = 0 (diffusive)
spin excitations equals that coming from the q = 2 kF
(non-diffusive) spin excitations. For this situation, the
field dependence of (Tl T)-’ vs. HO1/2 is sketched
on figure 1.
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FIG. 1. - Schematic variation of (Tl T)-1 vs. Ho 1/2 , assum-

ing non-diffusive 2 KF components. a) Scalar coupling contri-

bution, eq. (14). b) Dipolar coupling contribution, eq. (19).
c) (Tl T) - ’ I = (Tl T) - 1 ., + (T1 T)Dipolar. The following values
are used for the parameters (in arbitrary units), eq. (20); Cl = 2.0,

C2=0.6;Cd=0.4;Ci=0.1.

3. Experimental results. - Powdered samples have
been used in these experiments. The deuterated

complexes have been prepared the same way as the
non-deuterated ones [15]. TCNQ(D4) has been obtain-
ed with a deuteration rate of 99.7 % (analysed by mass
spectrometry) using the method of Dolphin et al. [16].
TTF deuteration of 96 % has been obtained with a
method developed by Melby et al. [17]. The proton
relaxation time T1 was measured in the frequency
range 10-90 MHz using a conventional pulsed NMR
spectrometer and at 276 MHz using a high resolution
NMR spectrometer. After a saturation of the magne-
tization by a comb of rc/2 pulses its recovery was

sampled by the free induction decay following a n/2
pulse. The free-induction decay was integrated in a
box-car integrator while the magnetic field was swept
through resonance. The recovery of the magnetization
was found to be exponential over two decades of the
maximum signal in all temperature and pressure
ranges.
The pressure cell used was of a conventional

copper-beryllium type working up to 10 kbar with
compressed helium gas.
The frequency dependences of relaxation rates

(Tl T) - 1 at various temperatures and ambient pres-
sure are summarized on figure 2. The frequency
dependences at various pressures, at ambient tempe-
rature are displayed on figure 3. In the data analysis
we shall take for the moment the point of view of
non-diffusive 2 kF components. We shall be able to
show in the following section that this assumption
leads to a consistent picture.

It is therefore more convenient to rewrite eq. (14)

FIG. 2. - (Tl T) -I vs. HO-1/2 under atmospheric pressure (a) for
TTF-TCNQ(D4) and (b) for TTF(D4)-TCNQ at several tempe-
ratures ; 0 (296 K), A (280 K) x (260 K), 40 (240 K), A (210 K),
V (180 K), 0 (150 K), m ( 110 K). The solid lines are the theoretical
curves (eq. (20)) drawn using the parameters of figures 4, 5 and 6.
The dataQ, 0 are taken from reference [1] and GULLEY, J. E. and
WEIHER, J. F., Bull. Am. Phys. Soc. 19 (1974) 222, respectively.

where

(T, T ) -1 depends now on the three parameters
Ci, C2, 1:.L . The limiting values as H 0 --&#x3E; 0 provide
C1 + C2, and those as Ho -+ oo give C2. Instead of the
approximate value of the escape time 1:.L derived from
the intersect of the high field dependences of T, with
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FIG. 3. - (Tl T)-1 vs. Ho 112 at 296 K for : (a) TTF-TCNQ(D4)
and (b) TTF-TCNQ under various pressures ; (a) 1 atm, (b) 2 kbar,
(c) 4 kbar, (d) 6 kbar and (e) 8 kbar. The solid lines are the theore-
tical curves (eq. (20)) drawn using the parameters of figures 4, 5 and 6.
Data of reference [1] and Gulley and Weiher (see Fig. 2) are also

included.

its low field value, namely ri- 1/2 We, see section 1

and reference [3], we have performed here a fit of the
experimental field dependence with the function g(we).
The temperature and pressure dependence of il,
C1 and C2 for all samples studied are reported in
figures 4-6.
The procedure in the RPA to calculate Tv and a in

terms of the 3 experimental parameters C1, C2 and al

FIG. 4a. - Temperature dependence of the escape rate il 1 in

TTF-TCNQ(D4) [·] and in TTF(D4)-TCNQ [A]. Normalized
transverse conductivity, 0" 1. (T)/O" 1. (300 K), is also presented - - - -

(along a-axis) and - - - (along c-axis).

FIG. 4b. - Pressure dependence of the escape rate il at 296 K in
TTF-TCNQ(D4) · and in TTF-TCNQ * I. Normalized trans-
verse conductivity 0" 1. (P)/O" 1. (I atm) is shown by broken lines (along

a-axis), according to [14].

FIG. 5. - Temperature variation under atmospheric pressure (a)
and pressure variation (b) of C1 in TTF-TCNQ(D4) 101, in

TTF(D4)-TCNQ [A] and in TTF-TCNQ [0].

FIG. 6. - Temperature variation under atmospheric pressure (a)
and pressure variation (b) of C2 in TTF-TCNQ(D4) 10 I, in

TTF(D4)-TCNQ [A] ] and in TTF-TCNQ [a ]. The broken line in (b)
shows the pressure variation of C2 in TTF(D4)-TCNQ estimated

assuming C2(TTF-TCNQ) = 1/2{C2(TTF) + C2(TCNQ)I.
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is the following : K2kF(a) and thus a = UX’(00) are
derived from (21’) and (10"), T, is calculated then
from (21).
The results of this analysis are shown in figures 7

and 8. We have taken the value of the spin susceptibility
from reference [ 18] xs = 6 x 10 - 4 uem/mole and have
performed the analysis with susceptibility ratios

x s /xQ = 3/2 or 7/3 at room temperature according to
references [19] and [20]. The hyperfine fields are

A = 1.26 Oe and 1.5 Oe for TTF+ and TCNQ-
respectively [21, 22].

FIG. 7. - Temperature variation under atmospheric pressure (a)
and pressure variation at 296 K (b) of the enhancement factor
K2kF(a) in TTF-TCNQ(D4) [0, 0] and in TTF(D4)-TCNQ [A, A].
For solid lines, K2kF(a) was derived assuming XFIXQ = 3/2 (ref. [19])
and for broken lines K2kF(a) was derived assuming XFIXQ = 7/3

(ref. [20]).

Relaxation experiments have also been performed
with the tetra methyl analog of TTF (TMTTF)
compound with TCNQ, or TCNQ(D4). The room
temperature results are summarized in figure 9 for
TMTTF-TCNQ and TMTTF-TCNQ(D4). From the
knowledge of the C1, C2, il parameters of the non
deuterated and of the TCNQ (deuterated) samples we
can calculate the parameters of the TMTTF (deu-
terated) sample according to :

The results are reported in table I. We find, in
particular that the behaviour of TCNQ is very similar
in TMTTF-TCNQ and TTF-TCNQ. The low values
for C1 and C2 in TMTTF-TCNQ(D4) compared to
those-for TTF-TCNQ(D4) figures 5, 6, can be ascribed
to the weakness of the hyperfine coupling for the pro-
tons on the methyl groups. Otherwise, the T1 fre-

quency dependence on TMTTF-TCNQ does not

exhibit a one-dimensional character significantly diffe-
rent from that of TTF-TCNQ.
Low temperature relaxation studies cannot be

performed with confidence in TMTTF-TCNQ because
of the additional contribution to Ti 1 provided by the
methyl-groups rotation [23].

FIG. 8. - Temperature variation under atmospheric pressure (a)
and pressure variation at 296 K (b) of the diffusion time T, in TTF-
TCNQ(D4) [0] and in TTF(D4)-TCNQ [A]. For solid lines r,
was derived using XFIXQ = 3/2 and for broken lines the ratio 7/3
was used. Normalized longitudinal conductivities, all (T)lc (300 K)

and a,, (P)/a (1 atm) are drawn by chain lines - - - - - -

, 4. Discussion. - In section 3 we saw that the

relaxation rate as function of frequency can be
described by 3 parameters.

i) The escape time L 1. from the best fit with the
function g(we).

ii) The slope C1 = d(T1 T)-1/d(2 We L 1.) -1/2 of the
relaxation rate as function of field, which is due to
the 1-D diffusion of electronic spins.
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TABLE I

The three parameters C1 C2, ’t.l’ measured in TMTTF-TCNQ and TMTTF-TCNQ (D4) at 300 K.
C,andC2havebeencalculatedforTMTTF(D -TCNQ using therelationt" = 1/4[3T-’ F+T-’Ql.
The ambient pressure, room temperature parameters of TTF-TCNQ(D4) and TTF(D4)-TCNQ have
also been given for reference.

FIG. 9. - (T1 T)-1 vs. Ho n2 at 296 K and atmospheric pressure in
TMTTF-TCNQ [0] and in TMTTF-TCNQ(D4) []. The solid
lines are the theoretical curves, eq. (20), drawn with the parameters

of table I.

iii) The limiting high-field relaxation rate

attributed to the sum of the coherent scalar contri-
bution of spin excitations at q z 2 kF and of the
dipolar contribution (see sections 2 .1, 2. 3). However,
the analysis of figures 7 and 8 we neglected the presu-
mably small dipolar contribution to the relaxation
rate.

4.1 THE ESCAPE TIME ’t 1.. - According to sec-

tion 2. 2, zl is the escape time from a given chain, and
is related to the transverse electrical conductivity.
Indeed figure 4 shows the closeness of the temperature
and pressure dependences of these two quantities.

This is as expected, since in a diffusive transverse
conductivity model [24] (J 1. goes as :

The number of carriers available for diffusion, no,
are restricted to the thermal layer at the Fermi level.
Therefore, no N n(EF) kB T and the temperature and
pressure dependences of G 1. and T-1’ should be iden-
tical (u-L - T as shown in figures 4a, 4b.
The NMR escape time, and the conductivity jump

time, are not completely identical, for the following
reason : In the NMR experiments the escape time from
TCNQ chains ’t 1. (Q) and from TTF chains ’t 1. (F) are
measured independently (by the selective deuteration).
These escape times are sums of contributions from

jumps between similar chains (TCNQ TCNQ,
denoted QQ and TTF- TTF, denoted FF) and
jumps between dissimilar chains (TCNQ - TTF;
QF. TTF- TCNQ ; FQ).
Thus (Fig. 10)

On the other hand, the electrical conductivity in the
c-direction is given by the sum of the conductivity of
the arrays of TCNQ chains, and of TTF chains :

where nQ(EF), nF(EF) are the densities of states on the
TCNQ, TTF chain. The electrical resistivity in the
a-direction is the sum of the resistivities due to the

TCNQ - TTF and TTF- - TCNQ jumps :

because the layers of TCNQ’s and of TTF’s alternate
(Fig. 10). Since the a and c axes are not perpendicular,
but at an angle fl = 104° they are not principal axes
of the conductivity tensor. But since the uncertainty in
the conductivity is rather large, we shall ignore the
deviation of P from c/2. By detailed balance we derive,
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FIG. 10. - A schematic representation of the different escape times
in the a-c plane.

Thus, in principle, if we know nQ(EF)/nF(EF), ’t 1. (Q),
1’1. (F)., a aa" a cc we should be able to determine ’t 1. (QQ).,
’t 1.(FF)., ’t 1.(QF)., ’t 1.(FQ), and check the consistency of
eq. (24), (25), (26), (27) as well. However, due to the
experimental errors Of Caa, Ucc which are quite large [25],
the uncertainty in nQ(EF)/nF(EF) and ’t 1. (Q)., ’t 1. (F)
(particularly at 150 K), we shall not attempt such a
procedure.

Since nQ(EF)/nF(EF) N 2/3, [19] from (27) ’t 1. (Q F)
should be about 3/2 times shorter than ’t 1. (FQ). Experi-
mentally (Fig. 4a) ’t1.(Q) is only about 15 % shorter
than ’t 1. (F). It is hard to account for this small discre-
pency by a ’t 1. (FF) term, since from the structure and
estimates of transfer integrals the direct coupling
between TTF molecules in the c-direction should be

very weak [26, 27].
The slightly stronger temperature dependence of

a,,c, compared with  6aa" may be accounted for by
slightly different values of T,. The coherence between
03C81 and t/J 2 (section 2.2) is destroyed by scattering
either on chain 1 or on chain 2, and therefore

Thus the value of r, for TCNQ - TTF tunnelling,
tV -1 (Q) + TV -1(F) may be different from the value for
TCNQ - TCNQ tunnelling, 2 tv -1’(Q). A better

conductivity on the TCNQ chains [i.e. Tv(Q) longer
than Tv(F)], in accord with the thermoelectric power
[28] and Hall effect [29], particularly at low tempe-
ratures, may account for this small deviation.

In conclusion we can say that the agreement between
the temperature and pressure dependences of (loo,
6cc and of t- 1(Q), -T - ’(F) is indeed very good, bearing
in mind all the complicating factors involved.

4.2 THE DIFFUSION CONSTANT AND ENHANCEMENT
FACTOR. - The slope C 1 = d(7B T)-1/d(2 We T _L)- 1/2
is shown in figure 5. According to section 2, CB is a
product of 4 factors : the bare Korringa relaxation
rate, the spin diffusion time TV 1/2, the escape time z1/2

and the enhancement factor Ko(a). The Korringa
relaxation rate can be determined from the measured

hyperfine constant [21, 22] and spin susceptibility [18]
and found to be 7 x 10 - 2 s-’ K -1 for TTF-

TCNQ(D4) and 2 x 10-2 s-’ K-’ for TTF(D4)-
TCNQ (at 300 K). Besides the temperature dependence
of the Korringa product, xs T, T, the most striking
feature of the experimental results is the strong tempe-
rature (and pressure) dependence of the product

Since in a 1-D model Ko(a) has no reason to be
strongly temperature dependent we may try to account
for the temperature dependence of

in a number of ways. The diffusion time T, corresponds
to a spin diffusion constant of the spin correlation
function, eq. (6), namely D - ’tv/X;.

i) The Big U model. We can assume that there is
strong electron-electron scattering due to the Coulomb
interaction U, which however does not affect the

resistivity since the total momentum of the electron
system is conserved in these collisions. In this case,
for U &#x3E; 4 tll [30], D = 2 7rlhb2,. t2 IU with the Hub-
bard Hamiltonian, and D is nearly temperature
independent in this limit, in contradiction with the
factor - 40 increase seen at low temperature.

ii) Alternatively we may assume that U  4 tBB II
in which case the electron-electron collision time is

temperature dependent. In a 3-D system, this mecha-
nism (Baber scattering) [31] follows a T2 law, but in
I-D the temperature dependence is linear [32] also
in contradiction with the experimental data of resis-
tivity [13, 33, 35].

iii) The free electron model. Let us assume that D
is given by the free-electron value D =V2 tv, where T,
is the collision time for scattering by lattice vibra-
tions [36] or spin fluctuations [37] and which deter-
mines the longitudinal conductivity all II = ne2 Tv,/M
In this case the temperature and pressure dependence
of T, follow that of On || in agreement with the experi-
ments, figures 8a, 8b. For this reason we favour iii).

The derivation of the enhancement factors K2k,(CX)
and electron scattering time Ty of individual chains
has been performed for two ratios of the susceptibility
XFIXQ, 3/2 [19] and 7/3 [20]. This is summarized in

figures 7 and 8.
Since ’tv(TTF)/’tv(TCNQ) is proportional to the

fourth power of nQ(EF)InF(EF), and this ratio is not
known with certainty, the uncertainty in the ratio of
relaxation times is rather large, and figure 8 should
be regarded as semi-quantitative only.

In order to get good agreement between the values
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of T, derived from this NMR experiment and the
conductivity [ 13], thermopower [28] and Hall effect [29]
measurements we favour the ratio XFIXQ = 7/3.
With this assumption the enhancement factor is

larger on the TCNQ chain than on TTF (Fig. 7a).
On both chains they increase at low temperature.
Assuming the temperature variation to be :

and using for TF a value of 1 000 K, the value of a
varies from a = 0.70 at 300 K to 0.54 at 150 K for
the TCNQ chain, according to figure 7a (with 0.59 car-
riers/molecule) [38]. The latter value of TF corresponds
to a bandwidth 4 t of 0.45 eV. This bandwidth value is
in agreement with the molecular orbital calculations
[27, 39], together with the optical data [40] and various
experimental investigations for the TCNQ chain [41].
The TTF bandwidth value is not known with great

accuracy from extended Hfckel calculations [27].
It lies somewhere between 0.2 and 0.72 eV. Thus,
not much can be said about this stack. If TF = 1 000 K
is taken, the NMR analysis provides a = 0.66 at

300 K (but may be TF  1 000 K). Therefore, as far
as correlations are concerned we believe that in TTF-

TCNQ, electron-electron interactions play similar
roles on both stacks.

Since the exact shape of the Lindhard function
eq. (29) depends on the electron band description
slightly, we cannot say more about the exact tempe-
rature dependence of a. But we can say conclusively
that electron-electron correlations are significant on
both chains with 0153 ~ 0.7 corresponding in the case of
TTF-TCNQ to a ratio U/4 tjj z (0.8-1) under atmo-
spheric pressure at 300 K. For TCNQ, U/4 t is equal
to 0.9. With the choice 4 t || = 0.45 eV for the TCNQ
chain the enhancement of the spin susceptibility
derived from [18] and a ratio XF/XQ = 7/3, becomes
~ 3. This enhancement is in good agreement with
the one which can be derived from a correlation

parameter a = 0.7.
The enhancement factors decrease under pressure,

figure 8, the decrease being slightly larger for the
TCNQ chains than for the TTF chains.

Accordingly the electron correlation parameters
decrease by z 5 % under a pressure of 8 kbar.
As the pressure dependence of the band width,

4 tll, is rather weak [42, 43] we can conclude from the
NMR data that the electron-electron repulsion seems
to be only weakly pressure dependent. This result
is not in good agreement with the discussion of the
pressure dependence of the spin susceptibility, in
which it was concluded that U decreases substantially
under pressure [37].

However, we should notice that the estimation of

K2kF(a) under pressure depends appreciably on the
pressure dependence of xs through eq. (21). In parti-

cular we presume we may have overestimated the

pressure dependence of Xr at 8 kbar and therefore
underestimated the pressure dependence of K2kF(a)
since the analysis in this work has been performed
using the pressure dependence of xs, which was

actually only measured up to 4 kbar for TTF-TCNQ.
We may point out however, that the value

U/4 til ~ 0.8-1 found through NMR experiments
here is in good agreement with the ratio 1.1 which
has been derived independently from an analysis
of the susceptibility based on the Shiba-Pincus
model [44, 45] (see also the discussion section).
The values Of T, at 300 K under atmospheric pres-

sure (for XFIXQ = 7/3) Tv(TTF) = 8.5 x 10-15 s and
Tv(TCNQ) = 4.6 x 10-15 s are in relatively good
agreement with the electron scattering time

derived from the optical reflectance measurements [46].
The thermopower [28] and Hall effect [29] measu-
rements indicate that Tv(TCNQ) &#x3E; tv,(TTF). Here,
due to the large uncertainty in nQ(EF)/nF(EF), the

present values cannot be considered to be determined
to better than a factor of two, and we do not claim
here that from the NMR measurements,

4.3 THE DIPOLAR RELAXATION. - In the previous
analysis the dipolar contribution to the relaxation
rate was neglected. We shall now try and give some
estimation of this contribution with the assumption
of 2 kF non-diffusive components (eq. (21), (21’))

since CB &#x3E; C2. 
We derive therefore, at room temperature, from

figures 5a, 6a and eq. (30) a ratio (B/A)2 N 0.3 for
TCNQ chains and (BIA )2 0.03 for TTF chains.

The ratio 0.3 found for the protons belonging to the
TCNQ chain is in very good agreement [47] with an
Overhauser enhancement of + 200 measured in

TTF-TCNQ.
The weak temperature-dependence of the high-

field relaxation rate is very evident in figure 2. Since
theoretically the dipolar mechanism would be strong-
ly temperature dependent (because of the strongly.
temperature dependent factor (T_L/T,)’ /2), we see that
we must reject it as the dominant high-field relaxation
mechanism. Relaxation by magnetic impurities cannot
account for the observed high-field relaxation rate
either, first because the observed rate is considerably
faster than the high-pressure relaxation rate, and
second because its temperature dependence, down to
helium temperatures, is too strong. Thus, unless we
can find some alternative temperature and pressure
dependent relaxation mechanism, such as relaxation
by molecular motions, we must attribute the high-
field relaxation to a non-diffusive 2 kF component.
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This assignment forces us to attribute the low-field
relaxation rate to the q ~ 0 component only, and this
necessitates a high enhancement factor and thus a
large value of U/4 t II.

So, we feel justified a posteriori in neglecting the
dipolar contribution to the relaxation rate which

represents at most for the TCNQ chain - 1/3 of the
scalar contribution.
The temperature dependence of C2 is much weaker

than that of C1, figures 6a, 5a. This is in agreement
with the ratio C,IC2 varying with temperature as

If we now relax the assumption that the 2 kF compo-
nents are non diffusive (see section 2.1), the relation-
ship ClIC2 = (A/B)2 holds. Thus the temperature
and pressure dependence of C2 should reflect those
of C1. It seems however that we must discard this

possibility since between 300 K and 100 K, C2 varies
by a factor 2 whereas C1 varies by a factor 15.
A salient feature of all the dipolar relaxation mecha-

nisms, is an anisotropy of Ti, which should depend
on the orientation of the magnetic field with respect
to the vector connecting the two spins. For a powder,
some distribution in the values of ?’1 should be
observed. Experimentally, a perfectly exponential
recovery of the magnetization was observed over
2 decades. Perhaps the orientation dependences due
to the electron-proton interaction in TCNQ, electron-
proton interaction in TTF ; proton-proton interaction
in TCNQ, and proton-proton interaction in TTF,
cancel each other due to the rather different orienta-
tions of the respective vectors. Work on single crystals
may be useful to check this point.

5. Conclusion. - 5 .1 ELECTRON-PHONON INTER-

ACTION VERSUS ELECTRON-ELECTRON INTERACTION IN

TTF-TCNQ. - One important consequence of the
discussion in section 4.2 is the finding of a rather
weak decrease of the parameter a with temperature.
We observed a ~ 20 % decrease between 300 K and
150 K. The parameter a is proportionnal to the real
part of the uniform static susceptibility, X’(0, 0).
Actually, the decrease of the experimental spin sus-
ceptibility xs between 300 and 150 K amounts to
30 % [18] which is somewhat larger than the change
of a. We can however reconcile both experimental
results using the following interpretation : Assume
that the bare susceptibility X’(00) is temperature
dependent, due to the existence of CDW fluctuation
effects above the phase transition temperature or
possibly other factors, then the effect of correlations
can be treated by the RPA, namely,

giving rise to a stronger temperature dependence for X.
than for xo(00).

If we use the results of section 4.2 for a we find,
from (31 ) a temperature dependence of xs between 300
and 150 K, in very good agreement with the expe-
riment [18].

This work indicates that CDW’s might play a
certain role above the Peierls transition (of the TCNQ
chain at 53 K). But this role is much weaker than that
claimed by the Pennsylvania group [18, 20] which
attributed the whole temperature dependence to

CDW fluctuations effects, with a mean-field tempe-
rature much higher (Tp MF~ 300 K) than the actual
phase transition temperature. A salient result of our
NMR investigation is that CDW fluctuations and
electron correlation effects are nearly equally impor-
tant in TTF-TCNQ. This is also an indication that
the mean-field Peierls temperature may be only a few
degrees above the actual phase transition [4, 48].
The discussion of the NMR results has been based

on a model which neglects all electron-electron
interactions except the on site interaction (Hubbard
model). Through this model a value U/4 tjj = 0.9
has been derived.

Admittedly, the deviation of the momentum distri-
bution from the Fermi function to a one more consis-
tent with Fermi liquid theory decreases the jump at
EF and thus the peak in the Lindhard function derived
in RPA [49].

Thus, the use of the RPA to derive the value of

U/4 t || from the NMR data is somewhat uncertain
and it is likely that due to the many-body effects,
the RPA underestimates this parameter and in reality
a could be somewhat larger than 0.7 in TTF-TCNQ
(see also the discussion in section 4.2). The point of
view we have taken in this work, that of a strong
influence of the electron correlations on electron

susceptibility is a better approach than the Shiba-
Pincus model [37]. However, with the neglect of
charge fluctuations and the use of a I-D antiferro-
magnetic Hubbard calculation a parameter

was derived (for TMTTF-TCNQ). This value is
indeed in good agreement with the ratio derived in
the present work for TTF-TCNQ. It is a further
confirmation for the role played by electron corre-
lations in TTF-TCNQ.
An early understanding of the NMR properties

attempted to discuss the low frequency Tl 1 enhan-
cement in terms of the big U model and led to fairly
large values of U/4 t [4]. However, the recent experi-
mental data presented in this work (temperature and
frequency dependence of T1) have confirmed the

inability of the Hubbard model [30] to describe the.
diffusion constant (see sect. 4.2).

Finally we emphasize that the present work is in
good agreement with the recent development of the
Peierls-parquet theory [50]. It was shown there that
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the introduction of the Coulomb interaction U besides
the phonon mediated electron-electron attraction V
does not suppress the existence of a Peierls transition,
provided that V &#x3E; U. We can now say with some
confidence that the inequalities V &#x3E; U &#x3E; til II are

satisfied in TTF-TCNQ.
However in other charge transfer salts the situation

where the Coulomb interaction is dominant over the
electron-electron attraction V may occur (for example
NMP-TCNQ). In that case it is not obvious that the
lattice Peierls transition will persist any longer.
Therefore we shall try in the next subsection to present
an experimental unified description of Quasi-One-
Dimensional Conductors which includes both cases
U &#x3E; V or U  V of the theory [50].

5. 2 UNIFIED DESCRIPTION OF QUASI-ONE-DIMENSIO-
NAL CONDUCTORS. - Several quasi-1-D metals are
known; the A-15’s ; (SN)x ; KCP and similar inorganic
salts; organic charge transfer complexes like TTF-
TCNQ, HMTSeF-TCNQ, NMP-TCNQ, and others.
The question arises whether each such family should
be regarded on its own, or whether a unified descrip-
tion for all these materials is possible. A preliminary
attempt for a unified description, in form of a

t /tll I I 
- Ultll I diagram ( Utopia) was presented in ref. [4].

This presentation was motivated by the dramatic
effect of hydrostatic pressure on the properties of
KCP and TTF-TCNQ. The changes brought about
by the application of pressure are so large that they
may exceed the differences between the properties
of the materials at ambient pressure. That description
was somewhat oversimplified since it ignored scatter-
ing of the electrons by static defects, vibrations, etc...
The reason underlying such a picture is the follow-

ing : the description of Q-1-D metals is dominated
by two questions : (i) Can the electronic properties
be described by Mean-Field theory (at least approxi-
mately), or are the fluctuations inherent to I-D

systems so strong, that such a description breaks
down completely ? (ii) Is the transverse motion of the
electrons coherent or diffusive ?
As for (i), some anomalies in the A-15’s were

associated with I-D fluctuations quite some time
ago [9, 5, 52] but tl/t II is big enough there [53, 54]
to make MF theory a rather good approximation [55].
In TTF-TCNQ, it was suggested at one time [56]
that fluctuations depress Tp considerably below
the MF value, however the coupling between chains
in TTF-TCNQ seems to be sufficiently strong to pre-
vent such a depression [3, 48, 57]. On the other hand,
in KCP the 1-D fluctuations appear to be strong, and
their effect is demonstrated in a dramatic way by the
pressure experiment [58] where a transition from a
fluctuating state (P = 0) to a state described by MF
theory (P &#x3E; 35 kbar) is induced. The dominant

parameter here is [48] (tl/t II ) (ç/b). When this number
is large compared with unity, MFT is valid, while
.if it is small, fluctuations play a dominant role.

As for (ii), in the A-15’s and (SN)x the transverse
motion is coherent [59] ; in KCP and TTF-TCNQ
it is diffusive [24, 60], and in HMTSeF-TCNQ it

changes continuously from diffusive above 200 K to
coherent below 60 K, as demonstrated by the Hall
effect [61]. The dominant parameter here it t.1. -tv/h ;
if it is large compared with unity, the transverse
motion is coherent, while if it is small, it is diffusive.
The proof goes as follows :
Assume that at time t = 0, the electron is on chain

(or chain family) 1, and that the donor-acceptor
tunnelling matrix element is given by t.1.. Then at
time t the electron wave function is given by :

and 03C8(t) builds up coherently on chain 2. One factor
that arrests this coherent build up is the scattering of
the electron, either on chain 1 or on chain 2, characte-
rized by T,.

If tl tv/h &#x3E; 2 n the wave function 0(t) (32) oscil-
lates back and forth several times between the chains,
and we can consider it to be a coherent superposition
of tfr 1 and tfr 2.
However, if T, is short enough so that ti- Ly/Ii  1,

03C8(t) has no time to build up on chain 2 before its

phase is destroyed, and we do not have a coherent
superposition, but rather a diffusive motion between
the two chains.

Thus, we can expect the change over from the
diffusive to coherent motion to take place at a tempe-
rature at which tv ~ Ii/ t -L. Thus, a natural description
is one in tl/EF vs. fii/EF tv plane ; i.e. one dimensio-

nality vs. cleanliness (Ii/EF Ly ’" b/A, very roughly,
where b is the intermolecular distance). In this plane
(Fig. 11), we have 5 regions : (a) Mean field coherent
(left hand, top). Here we just have a very anisotropic
(3-D or 2-D) metal, (A-15, (SN)x’ HMTSeF-TCNQ
below 60 K). (b) Fluctuating coherent (left hand,
near bottom). Here the electron must be described
by a wavepacket extending over several chains, but
fluctuations are very strong. (c) Mean field diffusive
(centre top). Here we have a 1-D metal that can be
described by MFT. The 3-D band structure plays no
role since the phase relation between the electron
wave function on different chains has no meaning
here (TTF-TCNQ; HMTSeF-TCNQ above 200 K;
KCP under pressures in excess of 30 kbar). (d) Fluc-
tuating diffusive (centre bottom). Here the electrons
are localised on their respective chains, and fluctua-
tions are strong (KCP at P = 0). (e) Overall diffusive
(right). Here the electrons move in a diffusive way
along the chains as well. The Fermi energy and wave-
vector of the electrons lose their meaning, and it is/a
question of semantics whether we denote this state
as metallic.

NMP-TCNQ has been located in this region because
of its poor room temperature conductivity and of the
observed frequency dependence of T, very similar
to that of TTF-TCNQ [62, 30].
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FIG. 11. - A One-dimensionality vs. cleanliness diagram for the description of quasi 1-D conductors. tl/EF and b/EF tv representa-
tions have been used for both axis. While TTF-TCNQ appears in this diagram to be on the borderline between mean field and fluctuating
regions, interchain Coulomb interactions ignored here place it well within the mean field region. The borderline between mean field and
fluctuations regions hits the y-axis at t/Ef ~ b/ç. Continuous arrows show the effect of pressure (10 kbar for the organics, 30 kbar for

KCP and SNx). Broken arrows show the effect of cooling to ~ 60 K.

Pressure reduces the one dimensionality by increasing
tl (mainly in KCP), and/or improves the cleanliness
by increasing T, (in TTF-TCNQ, HMTSeF-TCNQ)
and does so in a very clean and controlled way [4].
The complexity of the A-15’s is well illustrated by this
diagram. Various bands possess values of tl/EF from
about 1/10 to much more than 1 ; values of EF (i.e.
the widths of peaks of the density of states) also vary
widely between bands [54] as do the values of r,.
Thus the various bands can cover practically every
region on this graph.

This description takes into account electron spin
fluctuations scattering by the Coulomb interactions
(U) [37], fixed defects [63, 64] and librons [36], by their
combined contribution to ’tv- 1., but ignores Coulomb
coupling between chains [65, 66] as well as elastic

coupling between chains [67] which also help to make
the MF approximation valid, and play an important
role in TTF-TCNQ [36] since (t l/tll) (ç/b) is not quite
large enough all by itself to make the MF approxi;
mation valid.

Such a description ignores many factors, such as
the occupation of the band (a small occupation may
play a role, as in the Labbe-Friedel-Barisic model of
the A-15’s [68]) ; the phonon frequency WO/EF [69, 70] ;
the electron-phonon coupling constant A (or
Tp/EF) [71] ; the ratio of the electron-phonon coupling
constants at q = 0 and q = 2 kF (geology ; [72, 73]) ;
effects of intrachain Coulomb coupling (in addition
to reducing TV) [32, 74, 75]; the differences between
the two chains (TV, as well as the other parameters,
are different for the donor and acceptor chains);

some effects of fluctuations [76, 69] ; anharmonicities
and solitons [77, 78] ; some effects of the disorder [79],
etc. Still, we feel that this description is usefull for
an overall view of quasi-one dimensional metals.
Obviously, much work remains to be done in the near
future, especially on the magnetic properties of the
conducting charge-transfer salts. In particular, it
would be of interest to know more about the relative
correlations of TTF and TCNQ chains. However,
we hope that this work on NMR, together with its
interpretation has clarified the question about the
role of electron-electron interactions in TTF-TCNQ.
This problem has been (and apparently is still) the
subject of some controversy in the scientific commu-
nity.
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Appendix : derivation of the Korringa relation in 1-D systems. Assuming A, independent of q, the
relaxation rate is given by

where

and

then

Changing Y into integration and using 8-k = Ek we get
q

which is valid in the limit of

Therefore

As hWe  EF, energy conservation requirement hewN + we) + EkF - Bkp+q = 0 imposes the solutions q = 0
and q = - 2 kF 

Introducing the density of states at Fermi level

the relaxation rate becomes

defining the enhancement factor Kq by

Eq. (A.1) becomes equivalent to the eq. (5) of section 2.

Note added in proof by : S. Alexander, Racah Institute of Physics, Hebrew University, Jerusalem. After
receiving the proofs, we found out that the argument and conditions given for the derivation of eqs. (16) and (17)
were misleading and in part wrong. Since one is dealing with transitions between continuum states on both
chains, the Golden Rule in fact always applies. The longitudinal scattering does however lead to a reduction in
the matrix element between states of the continuum. The correct matrix element is t2/(n(EF)/’Ly) resulting from
incoherent mixing of states over a width 1/’Ly and not tl .

Substitution in the standard Golden Rule expression the matrix element squared times the density of final
states n(FF) leads to eq. (16) for all temperatures.

Note also that this expression is independent of volume. Thus eqs. (16) and (17) are correct but the deri-
vation eq. (15) should be disregarded.
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