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and
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Résumé. 2014 Le rôle des corrélations d-d dans la stabilité des phases des métaux de transition est
étudié d’une façon semi-quantitative, en utilisant une formule de perturbation du second ordre qui
peut être reliée à l’approximation de Gutzwiller. Cette déviation par rapport à Fapproximation de
Hartree-Fock augmente la cohésion et réduit la tension superficielle; elle déstabilise le ferromagné-
tisme, particulièrement pour des bandes d presque à moitié pleines. L’effet maximum sur la cohésion
et la tension superficielle se produit pour une bande d à moitié pleine; il reste petit, au moins pour
les séries 4d et 5d.

Abstract. 2014 The role of d-d correlations in the stability of phases in transition metals is studied
in a semi-quantitative way, using a second-order perturbation formula which can be related to
Gutzwiller’s approximation. This deviation from the Hartree-Fock approximation increases the
cohesion and decreases the surface tension; it destabilizes ferromagnetism, especially for nearly-
half-full d bands. The maximum effect on cohesion and surface tension occurs for a half-filled d
band; it remains small, at least for the 4d and 5d series.
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1. Introduction. - The purpose of this paper is to

analyse, in a simple and semi-quantitative way, the
possible effect of correlations between d electrons on
the cohesive and magnetic properties of transition
metals.
To show the type of effects expected and estimate

their order of magnitude, we shall use as a starting
point a simple tight binding (Huckel) description of
the d band [1], and then include d electron correlations
as a perturbation. We assume that the number of s
electrons per atom remains a constant near to unity
and only adds a small constant term to the cohesion.
We shall also neglect secondary effects such as inter-
atomic electrostatic [2], Van der Waals [3], and

exchange terms [4] and ds mixing [5]. We shall intro-
duce the spin-orbit coupling À J. s only to first order
in perturbation [6], in which case it plays a role in the
energy of free atoms but not in that of the metals,
where the orbital moment is frozen to first order [7].
We shall restrict ourselves to a simplified picture of the
d one-electron band, where all five d orbitals with
different orbital moments (m = 2 to - 2) are assumed

(*) LA du C.N.R.S.

equally populated at each energy (Fig. 1), and the
total energy band is assumed symmetrical with respect
to the atomic energy and rectangular. Then the density
of states n(E) per atom is assumed to be (Fig. 2)

where w is the width of the band. These two last

assumptions are known to give a reasonable starting

FIG. 1. - Assumed filling of the d atomic orbitals : a) free atom;
b) paramagnetic metal.
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point [1], [8, 9, 10] for an order of magnitude estimate
of cohesive properties. There would be no a priori
difficulty in improving on them.

Finally we shall describe the correlations in terms
of average intra-atomic Coulomb and exchange
interactions U and J. U is an average value, taken over
all possible couples of d orbitals; J is the usual average
exchange energy term : it is the difference in energy
between two electrons of antiparallel spins, so that
2 J is the difference in energy between the atomic

triplet and singlet states [1], [4].
In most of this discussion, we shall assume the

parameters w, U, J and A to take constant values in a
given series, independent of the number z of d elec-
trons per atom in the corresponding d band.
Most of the approximations listed above can be

improved, and their relative importance checked.
This should certainly be done in a detailed quantitative
comparison with experiment, and indeed various

attempts have been made within the Hartree or Har-
tree-Fock scheme [11]. We shall actually relax the
assumption of constant parameters w, U and J in
the discussion of magnetism at the end of this paper.
But, to give a semi-quantitative estimate of the role
of correlations in integral quantities such as phase
stabilities, it seems that these rough assumptions
provide accurate enough orders of magnitude.

2. Cohesive energy of a paramagnetic metal. -

Within the above assumptions, the energy of cohesion
per atom Fc is obtained by comparing the electronic
energies in free atoms and in the metal. A develop-
ment in successive powers of U and J gives :

where (1)

with

Finally

2.1 ZERO-ORDER BAND TERM. - In these expres-
sions, Efl is the usual zero-order term, where the zero of
energy is taken as that of the localized states in the
atomic potentials which build up the crystal potential,
so that the zero-order (one electron) hamiltonian
only contains the transfer integral terms connecting d
orbitals on neighbouring sites. To zero approximation
in U and J, one can for instance assume that these
are the inner ion potentials, or any other potentials
which count in the same way the intra-atomic electron
interactions in the metal and in the free atoms. From
that point of view, it is more natural to take the poten-
tials due to the singly ionized transitional ions [1].
The Fermi energy EM is related to the number z

of d electrons per atom by

The second expression of E° in (3) varies parabolically
with z, with a maximum equal to 5 w for z = 5
(Fig. 3a). It is strictly valid for the band of figure 2 ;
but a systematic use of equations (3) and (7) and of
the moments of n(E) shows that E° never deviates
very much from this parabolic approximation [I], [10]:
it is not very sensitive to the detailed variation of

n(E), because it is an integral property of n(E).

2.2 FIRST-ORDER HARTREE-FOCK CORRECTION. -
The Hartree-Fock correction Ec1 is obtained by keep-
ing the d electrons distributed at random over all
atomic d orbitals, but taking into account the Pauli
principle, which forbids two electrons with parallel
spins to sit at the same time in any of the orbitals [20].
One assumes all ten d spin-orbitals to be equally
populated in the paramagnetic metal, but some orbi-
tals of a given spin direction to be preferentially
populated in the free atom (Fig. la, b).
Due to the Pauli principle, couples with the same

orbital appear with a relative weight equal to half
that of couples with different orbitals. In atoms, the
Coulomb interaction energy is 2 z(z - I) U : each
of the z electrons sees z - I other electrons ; the
interactions must not be counted twice. In a para-
magnetic metal on the other hand, the corresponding
term is 2 p Z2 : each of the z electrons will see 190 z
electrons of different spin-orbitals; again the inter-

(1) Expression (4) is only valid for integral values of z. For
0  c = z - l  1 (1 integer), one should add -’f c(1 - c) (U - J).
This insures that there is no contribution from J unless z &#x3E; 2.
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FIG. 3. - Qualitative variation of the various contributions to the
cohesive energy in paramagnetic metals : a) band term E°-Har-
tree-Fock corrections Ec1 ; b) Coulomb U ; c) exchange J; d) spin

orbit A; e) Coulomb correlation correction Ee2.

actions must not be counted twice. The correspond-
ing difference in energy contributes to the cohesive

energy the parabolic negative term - z(10 - Z) ul p g 20 
which reduces the amplitude of the cohesive- energy
without altering its form (Fig. 3b). 
The exchange energy also appears in Ec1 because

the atom is magnetic and the metal is not (Fig. 1 ).
It produces a central cusp in Ec1 (z) for z = 5, which
corresponds to the special stability of the half filled
d atomic shells, due to a maximum in their exchange
interactions (Fig. 3c).
The spin-orbit coupling gives no first-order term

in the metal, whether paramagnetic or ferromagnetic,
in the approximate model used here where the five d
orbitals are equally populated (Fig. 1 b). In atoms, it
introduces a first-order correction to the energy which,
in the LS coupling, is equal to - ALS, where the total
orbital and spin moments Land S vary with z as
given in (5). The spin orbit correction (Fig. 3d)
is thus also negative. It introduces a central positive

cusp in Fe which essentially broadens that due to the
exchange term; this broadening can even lead to a
central positive cusp for AIJ &#x3E; 9/25 ; however the
assumed Russel Saunders coupling becomes less
valid in that range, and a more refined analysis should
be made in this case, for example in the 5d series.

2. 3 SECOND-ORDER COULOMB CORRELATION TERM.

- Ec2 is the first correction due to deviations from the
Hartree-Fock scheme, owing to interatomic Coulomb
correlations. It restricts the atomic charge fluctuations
from what they would be for uncorrelated d elec-
trons [20]. Within second-order perturbations, it
can be understood as being due to the virtual excita--

tions of each Z/10 electron per atom in a given spin-10

orbital, into the empty portions 1 - z of orbitals10

with the same spin direction. The matrix element
of each excitation is U ; the number of excitations is
45 (cf. appendix); and the energy denominator is

of the order of the energy band width w.
A denominator exactly equal to w is obtained in a

similar expression [12] when developing the cohe-
sive energy of a non-degenerate s band treated in
Gutzwiller’s approximation [13], using the rectangular
band approximation of figure 2; thus equation (6)
can be considered as a direct extension to five-fold

degenerate d bands of the Gutzwiller approximation.
It can also be remarked that the corrections in U

and U2 in Er can be considered as the first terms of a
development of an effective Hartree-Fock correction

with

This is reminiscent of Kanamori’s formula [14]

where

for the rectangular band of figure 2. Kanamori’s
formula however -could only be valid for nearly
empty bands (0  z  5).; it treats more correctly
the higher-order terms in Un in single site scatter-
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ing, but neglects interferences in multiple sites scatter-
ing.

This discussion clearly shows that the correlation
correction E.’ given by equation (6) is of the same
nature as Kanamori’s corrective term. It is positive,
thus stabilizing the metal, as indeed is expected. Its
variation with z as given by the qualitative argument
above or deduced from Gutzwiller’s approximation
is a sinusoid peaked at z = 5 (Fig. 3e). Finally the
second form of formula (8) predicts, as does Kana-
mori’s formula, a saturation effect for large values
of U/w, as expected from a repulsive interaction ; it
is in reasonable agreement with an exact computation
of Gutzwiller’s approximation for large U’s [12].

3. Surface tension of a paramagnetic metal. -
From (2) to (6), one easily deduces a surface tension
per surface atom [10], [15]

where p is the number of neighbours in the volume and
bp the decrease in the number of neighbours for
surface atoms. a is a numerical coefficient between 1
and 2. This can be physically related to the fact that
atoms on the surface have an effective local d band
width w - 6w £r ( p - bp)’ w. a = 1 is obtained by
assuming that the jumps of an electron from one atom
to its neighbours are uncorrelated ; a = -1 is obtained
by deducing the width from the second moment of
the density of states; this is nearer to reality [9].

FIG. 4. - Surface tension of liquid transition metals, in eV per
surface atom [15].

Formula (10) shows that the Coulomb correlation
correction in U2 produces a central dip in the other-
wise parabolic variation of y(z) due to the band
contribution. Contrary to what happens for the
cohesive energy, it appears as a negative correction.

4. Discussion of the cohesive properties of para-
magnetic metals. - The surface tension (10) is simpler
to discuss than the cohesive energy (2) to (6), because
the complex terms in J and A due to the magnetism of
free atoms are not involved.

Figure 4 shows that, for liquid transition metals,
y(z) is nearly parabolic, at least in the 4d and 5d series.
From the central dip observed in 3d and 4d series
and its absence in the 5d one, one deduces values of
U/w given by table I. As U/w  1, the perturbation
scheme used here is fully justified, at least in the 4d
and 5d series. As pointed out above, further terms
in the development in U" would only reduce the
second-order term.

TABLE I

Values of w, U, J, A in eV

Figure 5 shows in the same way the variation with z
of the cohesive energy of the (solid) transition metals,
for the phases actually observed at room temperatures.
As the latent heats of phase changes are small compar-

FIG. 5. - Cohesive energy of solid transition metals, in eV per
atom [19].
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ed with these values, the complications arising from
differences in crystal structures can be neglected here.
To simplify the comparison with equations (2) to (6),
it is better to subtract from the measured values of

Ec(z) the atomic corrections - 2 S(2 S - 1 J - US,
which are known. Table I gives the range of values of
J through each series, and an avorage value valid
near the centre of the series. It also gives an order of
magnitude of A. Values of the cohesive energies Fc
corrected for these atomic terms are given in figure 6.
The correction made here is only approximate,
because it uses the average values of J and A of table I
and because atoms are assumed to be in the d"s

state; also the LS coupling is not well followed in
the 5d series. But more exact corrections [11] would
not change the essential fact that these corrections
remove the central dip in Ec(z), especially in the 4d
series : the minimum of cohesion in the centre of the
series is thus clearly connected with the special
stability of the half-filled (magnetic) atomic d shells.
It has a different origin from that observed for y(z),
figure 4. ,

FIG. 6. - Cohesive energy per atom, corrected for the magnetic
terms of free atom.

These corrected values of cohesive energy

must be compared with the development (equation (2)
to (6)) :

From the values of U/w deduced table I, one sees that
the corrections in U and U2 are not too large, espe-
cially in the 4d and 5d series, and somewhat compen-
sate near the middle of the series, where they only
reduce cohesion by 10 to 20 %. One then deduces from
the values of E,,’ for z = 5 the values of w and U given
in table I. They are reasonable from what one knows
about w from X ray spectra and about U from atomic
spectra. The values obtained for U are somewhat
small.
The absolute values of y(z), as given by equation (10),

then fit with these estimates if we take a = 2 and

bp/p equal to 6 to 1/10 (Table I). A close-packed sur-
face on a close-packed arrangement would lead to
bplp = 1/4. One cannot expect a better order of magni-
tude agreement, as formula (10) is only a somewhat
rough estimate. The difference can in any case be
at least partly explained by a more compact arrange-
ment of the liquid at the surface than in the volume,
and by surface (vibration and diffusion) entropy
terms which probably reduce y by a very appreciable
fraction [10].

It is clear that, in the 3d series, the corrections due
to the Coulomb term U are especially large, and that
the fit of y(z) and Er(z) with the theoretical develop-
ment in U is especially bad. Thus y(z) has a minimum
at Mn which is sharper than expected from the smooth
parabolic correction in U2, equation (10) ; and its
variations are not at all symmetrical in z for the two
halves of the series. The cohesive energy E’c corrected
for the magnetic atomic terms has in the centre of the
series a flat plateau, instead of a fairly sharp maximum,
as expected from the term in U2, equation (12).
As often stated [I], these deviations are probably

to be connected with the special magnetic properties
of the metals in this series.
We shall restrict the discussion here to the (simpler)

problems of ferromagnetism, thus we shall not treat
in a proper way the antiferromagnetism of Cr and
Mn. Corrections to the cohesive properties due to the
ferromagnetism of the metals will be computed in
this same simple model. As expected, they are small
enough not to alter very much the overall picture of
cohesion, in agreement with the fact that the magnetic
order temperatures are well below the melting points.
But conversely the Coulomb correlation corrections
to cohesion strongly affect the conditions of apparition
of magnetism. This is a point well known in the metal-
insulator problem [16], but which had not been stressed
so much in the context of weaker correlation correc-
tions and transition metals.
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5. Ferromagnetic metals. - We assume now an

ordinary band ferromagnetism at 0 K, where

p = 2(z + p) electrons per atom have spins parallel
to the magnetic moment

n = 2(z - Jl) electrons per atom have spins anti-
parallel to it.
We call 6Er ,(z, p) the variation in cohesive energy

per atom with p, at fixed z :

It is easy to see (cf. appendix) that equations (2)
to (7) transform so that

with

6E,’(z, p) is the Hartree-Fock term, which leads to
the Stoner criterion [17] for ferromagnetism, applied
to the rectangular band considered here.

6E,’(z, /1) is the correction arising from the change
with magnetism of the Coulomb correction term Ec2
(equation (6)). As Ec2(z) is positive and a maximum
for a half-filled band (Fig. 3e), it is clear that its con-
tribution to cohesion is reduced for metals near to
the middle of a series, when, owing to ferromagnetism,
the two half d bands become unequally populated
(p # n). Indeed, it is clear that the Coulomb correla-
tions contribute a correction to the Stoner criterion
of incipient ferromagnetism which is against magne-
tism near the centre of a transitional series, where
a2E202EC2  0 (cf. Fig. 3e).az2
More specifically, we call, as usual [1], [20] weak

ferromagnetism an incomplete unbalance of spins,
so that no spin direction is either totally full or empty.
Strong ferromagnetism corresponds to the complete
unbalance (Fig. 7).

Fig. 7. - Two types of band ferromagnetism : a) weak ; b) strong.

To first order in U and J, the energy difference
between a ferromagnetic state of atomic moment
and the corresponding paramagnetic state (y = 0)
with the same number z of electrons is

Thus the ferromagnetic state becomes more stable for

This is Stoner’s criterion [17], applied to the present
simplified band structure (rectangular band of width
w, with equal populations of different d orbitals).
When this criterion is fulfilled, and to this order in U,
strong ferromagnetism should be preferred to weak
ferromagnetism, thus p should take its maximum

possible value 2 S(z), as given by (5).
However the second-order correction (17) contri-

butes to the difference in energy between the strong
ferromagnetic and paramagnetic states a term

where

which is always negative, and strongly peaked at
z = 5 (Fig. 8). This clearly works against ferromagne-
tism, especially for nearly half filled d bands, where
strong deviations from Stoner’s criterion (20) are

thus expected.

Figure 9 shows that ðEe(z, it) as given by (14) can
behave in two different ways. Let us introduce the

quantity

a) For

5Fc(z, p) increases parabolically with P2 for fixed z
(Fig. 9a). In this range, the paramagnetic state is
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FIG. 9. - Three types of variations of 6E,,(z, u) versus p,2.

unstable and the only stable state is the strong fer-
romagnetic one, with p = 2 S(z).

b) For

5Ee(z, it) has still a positive curvature in 1l2, but
decreases for increasing u2 for small values of 1l2..
Then

bl) For

6E,,(z, 2S(z))  0 (Fig. 9c). The only stable state is
the paramagnetic one J1 = 0.

b2) But for

6E,,(z, 2 S(z)) &#x3E; 0 (Fig. 9b). The paramagnetic state
p = 0 is metastable. But the most stable state is the

strong ferromagnetic one p = 2 S(z).
Figure 10 compares these new criteria for ferro-

magnetism with Stoner’s criterion X &#x3E; 0. It confirms
that the ferromagnetism is less stable, especially for
nearly half filled d bands. With this simple model,
ferromagnetism can however be the stable state even
when paramagnetism is metastable; but weak ferro-
magnetism is never obtained.
The difference between figures 10a and b can be

understood in the following way :
- the term in Jl2 in 6E,(z, p), equation (17) shifts

the Stoner criterion to the curve Xl (z), thus strongly
against ferromagnetism ;

FIG. 10. - Criteria for paramagnetism P and strong ferromagne-
tism F for a rectangular band : a) Stoner’s Hartree-Fock first-
order criterion; b) second-order corrections in Coulomb correla-
tions added. Between Xl and X2, the paramagnetic state is

metastable.

- however the term in Jl4 in ðE;(z, p) favours
ferromagnetism, and can thus make it more stable
than paramagnetism even when this is metastable

(region between Xl and X2).

As a result the range of stability of paramagnetism
is less peaked towards the positive X region than would
have been expected from inspection of figure 8.

6. Discussion of ferromagnetism. - From the

average values of w, U and J deduced above, one would
deduce the average values of X in the three transitional
series given in table I.
The Stoner criterion (Fig. 10a) would then predict,

according to the sign of X, that the 3d series should
be nearly magnetic while the 4d and 5d should be
strongly paramagnetic.
The Coulomb correlation corrections (Fig. 10b)

alter this picture somewhat : with the average values of
X given table I, one would expect the 3d series to be
strongly paramagnetic too.

This semi-quantitative description should be correct-
ed on several counts :

- through each transition series, U and J increase
and w decreases while z varies from 0 to 10. As a

result, X(z) increases with z. This certainly helps
to explain why ferromagnetism occurs at the end of
the second half of the 3d series (Fe, Co, Ni), and the
tendency towards ferromagnetism at the end of the
4d and 5d series (Pd, Pt) ;
- the numerical estimates are only orders of

magnitude, and can only express general tendencies.
Thus the correlation correction, which plays a large
role here, is only expressed within a numerical factor
of order unity; the rectangular band approximation
is but a rough approximation : the peak of n(E)
in the upper half of the d bands in cubic phases helps
the occurrence of ferromagnetism and the minimum
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of n(E) near the middle of the series certainly plays
a role in the occurrence of weak ferromagnetism [1] ;
the assumption of equal population of the five d
orbitals is especially poor for nearly full bands, and
consequently spin orbit corrections are important
there in the 4d and 5d series (Pd, Pt) [6], [1].
The discussion above shows clearly however that the

Coulomb correlation correction plays an important
role in magnetism :

It works against ferromagnetism in the 3d series,
and forbids it in the middle of the series ; it must be ’
taken into account in the balance of near magnetism
for Pd and Pt, at the end of the 4d and 5d series.

Finally for the observed magnetic phases of the 3d
series in Fe, Co, Ni, we can compute magnetic correc-
tions to the cohesive energy and surface tension.
With the values of the parameters of table I, we check
from equations (14) or (24) that the corresponding
changes are less than one eV for cohesion and a
few 0.1 eV for the surface tension. This alters the
detailed form of Ee(z) and y(z), without changing the
general roughly parabolic variation of Ec(z). It is
clear that a discussion of the stability of antiferroma-
gnetism is required to draw a full conclusion on the
behaviour of Ee(z) and y(z) in the 3d series.

7. Conclusions. - The Coulomb correlation
corrections are responsible for the central dip in
the otherwise nearly parabolic variation of the
surface tension in the transitional series. They are not
responsible for the similar central dip in the variation
of the cohesive energy, which is due to the special
stability of the free magnetic atoms with a half full d
shell. These conclusions are in qualitative agreement
with the results of Sayers’ study of an s band in the
Gutzwiller approximation [12]; and possibly with
Kajzar’s and Mizia’s study in the Hubbard approxi-
mation [18]. The Coulomb correlation corrections
provide a supplementary cohesion which peaks sinu-
soidally through the filling of a band. This does not
alter the general behaviour of cohesion, but modifies
strongly the Stoner criterion for ferromagnetism.
It seems therefore that this correction must be taken
into account in any detailed discussion of magnetism.

Appendix : Evaluation of numerical coefficients in
the second-order term in U. - Let u 1m be the Coulomb
potential energy between two electrons I, m on the
same atom.

When developing the second-order terms in the

energy, one finds terms of the form

where vi, vm are occupied d spin orbitals and wi,

w. unoccupied ones on the same atom. As Ulm is spin
independent, V, has the same spin as wl, and vm the
same as wm. Of the four possible orbital integrals
(A .1 ), we retain only the Coulomb integrals

and assume them all to be equal to their average
value U :

A .1 PARAMAGNETIC METALS. - Each atomic spin
orbital has a probability z/10 of being occupied and
1 - z/10 of being empty. A given lfi£ thus occurs
with a probability

The number of different U2lm is

for there are 10 different atomic spin-orbitals. Owing
to the Pauli principle, they can only make a virtual
collision with one of the 9 different spin-orbitals.
Collisions of the pairs lm and ml are the same physical
event and must not be counted twice.
Hence equation (6).

A. 2 FERROMAGNETIC METALS. - The average
numbers p, n per atom of electrons with positive and
negative spins are defined as in the text.
A given U2lm occurs with a probability

for one p and one n electrons.
The numbers of different U2lm are, on the other hand,

4x5 5 - 10 for two electrons of arallel s ins2 =10 for two electrons of parallel spins

5x5 25 
for two electrons of o ins .2 2 for two electrons of opposites spins . 

Thus, with the notation of equation (14),

Replacing p and n in terms of z and p leads to
equation (17).
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