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Résumé. 2014 On présente une théorie générale de l’effet de dépolarisation DID dans la diffusion
Rayleigh et Raman, en réduisant le problème au calcul de certaines corrélations de position (binaires,
ternaires et quaternaires). La dépendance taux de polarisation-densité est explicitée à basse et à
haute densité. Le problème de l’interpolation aux densités intermédiaires est discuté en relation
avec des mesures récentes.

Abstract. 2014 A général treatment of the depolarizing DID effect in Rayleigh and Raman light
scattering is given in terms of binary, ternary, and quaternary position correlations. Explicit formulae
are obtained at low and high densities for the density dependence of the depolarization ratio. The
moderate densities case is discussed in relation with some recent observations.
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1. Introduction. - Depolarized Rayleigh or Raman
scattering by a pure fluid of isotropic molecules, as
compared with polarized scattering, is a secondary
effect resulting from the local electrical anisotropy
due to the collisions of the molecules or, in more
abstract terms, to the fluctuations of their positions.
Molecular collisions involve an anisotropic modifica-
tion of the individual polarizability of the molecules
that may be real, when due to the electron density
distortion, or apparent, when associated with the
local field fluctuations (dipole induced dipole, or

DID, effect).
In this paper we give a comparative treatment of

’the DID depolarized scattering in both the Rayleigh
and Raman cases. We deal with the Raman vibration
effect associated with a total symmetric normal mode,
so that the depolarized scattering of the isotropic
molecule is entirely of a collisional nature.

In contrast with the much investigated depolarized
Rayleigh scattering [1-3], previous studies of the

depolarized Raman scattering were generally limited
to low density gases [4]. For both Rayleigh and Raman
scattering we give in § 2 a general treatment which
reduces the problem to the calculation of certain

binary, ternary, and quaternary position correlations.
The computation is carried out in the low density limit
and also, with the aid of the (partially occupied)
lattice model, in the high density limit (§ 3 and § 4).
The problem of the interpolation at moderate densities
is briefly dealt with in § 5 and a preliminary discussion
in relation with some recent experimental results
is given in § 6.

2. General theory. - In the following the incident
monochromatic light wave is supposed to be polarized
along Oz (vertical polarization) and to propagate
along Ox. The scattered light propagates along Oy
and one can alternatively measure the vertical Oz-
polarized component (polarized or VV scattering)
or/and the horizontal Ox-polarized component (depo-
larized or VH scattering) (Fig. 1 ). The four scattered
intensities being respectively IvRavy, IvH IvRavm, IvRaHm,
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FIG. 1. - Polarization of the electric fields in the light scattering
experiment.

the depolarizing effect of the intermolecular correla-
tions is characterized by the depolarization ratios

lay = I©fiYfIQ§Y and nRam - IRH-/IRV-. Our system
is a gas of N identical isotropic molecules in a volume V.

In DID theory the polarizability ¡j of an isotropic
molecule i is a scalar quantity not depending on the
other molecules. In the classical approximation, or
in the quantum adiabatic approximation, a’ is a

function of the positions of the atoms forming the
molecule i, i.e. of the normal coordinates Qi, where

Q is a synthetic notation for the ensemble of the nor-
mal coordinates belonging to this molecule :

The terms a© = and ( Orxi ) 6’ a aa Q areQ o Q o
responsible for the Rayleigh and Raman effects,
respectively. Since Q = Q’. cos ((o’ t + vi), the effect

of the modulating term a aa Q i is to change the

incident frequency m in a scattered Raman frequency
wRam = ro :t w’ and to add a completely incoherent
Raman phase ql’.
The field Eh scattered by the mol ecule i under the

action of the local average field G’ is proportional to
the induced dipole moment ui .= ai G’. The vector
amplitude Go of G’ is proportional to the amplitude
Eo of the incident (applied) field E, the proportionality
constant being, however, dependent in general on
the density p. The position of i with respect to the
source and to the observation point leads to a geo-
metrical modification qJi of the phase. All in all one
has

where B(p) depends on the local average field effect.

The field EiVH scattered by the molecule i is due in the first order DID approximation, to the dipole moment
modification ðp,i that the local fluctuating field Gh induces in i. Gfl is the field generated by the neighbouring
molecules j( # 1) (lying at a distance much smaller than the wave length) polarized by the local average field
r-. i f"Ott.I Gi . 

,

In these formulae the tensor Sij, defined by

(where r, i’ = 1, 2, 3, x’ and x{ are the position coordinates of the molecules i and j, separated by a distance r ’J,
and 6,,, is the Kronecker symbol), describes the action of i on j [5]. The cumulated effects of these actions lead
to the hyperpolarizability bcii which modifies the polarizability ai and corresponds to the modification bp’ of J-li.
The tensorial character of ðcii accounts for the depolarized scattering.

The scattered intensities Ivv, IvH are obtained from (2), (6) by summing over i, squaring and averaging on
the systematic time variation ( N cos wt) as well as on the stochastic one (related to the position fluctuations by
means of the 9V and qi) :
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A( p) being a not very sensitive function of p and the accent meaning i #- j and m # n, respectively. The facto-
rization of the various averages is justified in view of the absence of phase relations between the different types
of time variations, systematic and stochastic, contained in the quantities a’, 513, cos (wt + qJi), as will be clear
from the following discussion. Physically one can say that the elementary process in VH (depolarized) scatte-
ring is the double scattering [6] (successive scattering) by a pair of molecules as compared with the simple scatte-
ring by a single molecule in VV (polarized) scattering. Correlations between molecules and correlations between
pairs of molecules are then the determining statistical factors in W and VH light scattering respectively.

Now, by substituting the polarizability (1) in (2), (8), one obtains for the Rayleigh and Raman VV scattering :

In these formulae the geometrical phases disappear for different reasons. First, the theory of fluctuations gives [7],
far enough from the critical point,

where R is the ideal gas constant, T the absolute temperature, XT the isothermal compressibility and VM the
molar volume. Second, because of the incoherence of the Raman phases .pi, one has

Therefore :

The same substitution of (1) in (5) yields for the total hyperpolarizability the expression

where

The two terms in (16), Q’S’j and Qj Sij, correspond to the following alternative concerning the mechanism of
the double scattering associated with the pair q : 1) Rayleigh scattering by j followed by Raman scattering by i ;
2) Raman scattering by j followed by Rayleigh scattering by i. Then (9) gives
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since the contributions of the four terms Q Qm, Q i Q n@ Q j Q m, Q i Q" are equal (1). Now in (17), (17’) one may
retain only the configurations for which (P i ;,,, (pm, since for (p’ ¥= (fJm, that is for two relatively distant molecules i,
m, the orientations of the pairs ij and mn are independent, which leads by factorization to

Thus the final general formulae for the depolarized scattering are

where

Following Thibeau [2] and Alder [8], it is convenient to classify the various terms in (20) in doublets (two
equivalent possibilities : Sfj3 Sfj3 and S(% S{i3)’ triplets (four equivalent possibilities : S’j Sf’3(j =1= n),
S 13 ij S’rJ(i =1= m), S% SQ§( j # m), Sfj3 S/)(I # n)), and quadruplets (Sfj3 S’r3, where all indices are different).
Then

where

and

The notations £ ’, £ ’, £ ’ are used in the sense of restricting the indices appearing in the sums to values different
ij ijm ijmn

from one another.
The factor A(p) disappears when passing to the depolarizing ratio :

In conclusion, the problem of the depolarized
scattering is reduced to the statistical problem of the
doublet, triplet, and quadruplet correlations (23),
thus proving the fundamental identity of the basic
mechanism for this type of scattering in both the

Rayleigh and Raman cases. However, to this order

of approximation, quadruplet correlations contribute
to I©fiY, nRay, but not to IRamVH , nRam.

In contradistinction to the depolarized scattering,
the statistical mechanism is not the same for polarized
Rayleigh and Raman scattering (see the disappea-
rance of the geometrical phases qi in (10) and (11)).

( 1 ) For example, for the terms Q Qm and Q Qn, one has
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The dependence of nRay, nRam on the density p may
be found by direct computation of the sums Sii, Sni,
SlY in the low density (p - 0) and high density
(p -+ PmaJ limits. As will be seen later, the interpola-
tion at intermediate densities seems also possible.
One can characterize the maximum density Pmax in a
somewhat vague manner as the density po correspond-
ing to a symmetric and most compact environment,
that is to the condensed phase, be it a liquid or a
solid phase. Then low density means plpo  1 and

high density means p/po  1.

Since the calculation of SII, i.e. of sII, reduces to the
pair distribution function g(r) problem, it is in prin-
ciple a soluble problem. Then, by (24), (21), (22),
(23), combined Rayleigh and Raman depolarized
scattering measures can be used to obtain direct

experimental information on SIII and S’v, that is on
ternary and quaternary position correlations.

3. The low density limit (p/po  1). - In this limit
the terms SII, sill, sIV do not depend on p, since they
are to be computed by means of the 2-, 3-, and 4-
particle distribution functions, which at low densities
approximately reduce to a density independent pair
distribution function g(r) ~ go(r) = e- 0(r)IkT , where
0(r) is the intermolecular potential energy. Then one
can neglect Sm, SIV in comparison with S° because
according to (22) they are proportional to (NI V)2,
(N/V)3, (N/V)4, respectively. On the other hand,
for an ideal gas,

and thus, from (12), (13), (18), (19), (24) :

The Raman depolarization ratio is twice the Rayleigh
one,

a relation first proposed by Holzer and Le Duff [4].
One has to avoid considering (27) as the consequence
of the additivity of the two channels in (16), since the
latter concerns the fields only, not the intensities.
In fact, (27) loses its validity at higher densities.

4. The high density limit (p/po  1). - The only
complete treatment of this limit is based on the lattice
model (or vacancy model) of Thibeau et al. [1], [3].
(For other model treatments, see [2], [9].) It is supposed
that the position correlations can be described by
restricting the possible positions of the N molecules
to the No sites of a closed-packed regular lattice that
is indeformable and partially occupied, the degree
of occupation increasing with the density (N  No ;
N/No = p/po). Alternatively, one can say that the
model accounts for the real position fluctuations by
means of the occupation fluctuations of a fictitious
lattice. While the previous calculations based on the
lattice model used the physical, but perhaps somewhat
intriguing, concept of the fluctuating polarizability
of a lattice site, we give here a formally equivalent
but simplified version, which as a matter of fact

represents only an approximate computation method
of the sums S’, SIll, SIV.
The method consists of associating with each lattice

site a a stochastic (fluctuating) two-valued discret
variable 7r’ : n’ = 1 or rea. = 0 according to whether
the site is occupied or vacant, respectively. The sum

E’ (S13)2, initially defined on the real instantaneous
ij

positions of the molecules, may be rewritten as a
sum on the possible (lattice site) a positions, if each
term (Sfj3)2, written out as (S13)2, is first multiplied
by na. 7r :

Indeed, the only non-zero terms in (28) are those for
which na. = nP = 1, i.e. those corresponding to occu-
pied site pairs otp. Therefore

and, for similar reasons,

The quantities (Si 3)Z, Sffl Sfa, Sffl YI’3 are defined
with respect to fixed points (the lattice points), so
that they vary only to the extent that the orientation
of the lattice fluctuates (rigid fluctuations), the corres-
ponding averages being denoted by  - - - &#x3E; a. There
is no relation between rigid and occupation fluctua-
tions and we therefore factorized the total average.
Since rigid fluctuations and their averages do not
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depend on p, our interest will focus on the occupation
fluctuations and averages given by  nCl nfJ ),
 7e 7rp 7r" &#x3E;,  nfZ nfJ nY 7r 6 &#x3E;.
To first order approximation, equivalent to the

Bragg-Williams approximation in order-disorder

theory, the occupation probability p of a site a is

equal to N IN 0 = p/po independently of the occupation
state of the other states. In this approximation

the factorization being correct only if the values of the corresponding indices are different.
By (29)-(29") and (30) :

When finally using the geometrical lattice (2) property [2]

the sums SIII, SlY reduce to Sn, since, paying due attention to the meaning of the accents, one has :

Therefore

(2) By (3), this property is related to the vanishing of the x component of the local fluctuating field Gfll = ao ( X sap) G’ in RayleighB( # a)

scattering. It is, for instance, always obeyed in a cubic lattice : the transformation x, - - xi (reflection in the Oyz plane), which should
leave the lattice sum

invariant, obviously changes whereas it sign, so that the sum necessarily vanishes.
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and

By (36), (37), the depolarized scattering goes to zero as p - po (a consequence of the increasing symmetry
of the environment of a given molecule) and also as p - 0 (thus joining the low density behaviour (25), (26)).
The depolarization ratios are

where C is a constant with respect to p. Thus, because of the factor VMIRTxT, it is only for nRam that one can
arrive to a definite general conclusion regarding the density dependence. It is worth recalling that the difficulty
concerning the density dependence of nRay can be circumvented [14] by defining a modified Rayleigh depolariza-
tion ratio

An alternative, not equivalent, procedure consists in defining an interference factor ç which measures the relative
contributions of the triplet and quadruplet correlations (with respect to the doublet contribution, prevailing
at low densities) :

Following (34), one has at high densities

but these formulae do not admit of a direct comparison
with the measured quantities, though they can be
discussed and tested with reference to the machine
calculations in molecular dynamics of Alder et
al. [8], see § 6.

Note also that the simple low density relation (27)
is now replaced by

5. The intermediary densities case. - Up to the
present the following DID calculations of depolarized
(Rayleigh) scattering have been carried out in order
to cover the intermediary densities domain :

a) Machine calculations in molecular dynamics [8].

b) Statistical calculations taking into account the
triplet term [10]-[12].
The results of b) are reasonably valid on the low

side of the intermediary densities domain. In addition,
the problem can be approximately solved by inter-
polation between the results of § 3 and § 4.
As a matter of fact, the high density formulae (38),

(39) join the low density results (25), (26) not only
in a qualitative manner (lim nRay = lim nRam = 0),

p-o 0
but also in a quantitative one

This is a mathematical interpolation argument for
extending the formulae (38), (39) to moderate densi-
ties. Besides, it seems to us that the following physical
reasons exist for this generalization.
The lattice model is justified at high densities in

the same sense as the lattice gas model used in Stati-
stical Mechanics since Yang and Lee [13] to study
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phase transitions. However, because of (7), in the

optical depolarized scattering problem only the short
distance neighbours of a given molecule essentially
contribute to the fluctuating local field. Thus, it is
the short range order of the possible molecule posi-
tions, not the long range one, which gives a qualita-
tively good description, if any, of the optically impor-
tant correlations. Moreover, if this is true at high
densities, it remains approximately so at any densities,
because compact (and hence short range ordered)
possible arrangements will probably always prevail
for optical reasons even when their statis ical weight
is low. 

Therefore, by (36), (37), (38), (39), (38’), the quan-
tities characterizing the density dependence of the
depolarized scattering have a maximum which is to
be expected to lie at a higher density in the Raman than
in the Rayleigh case.

6. Comparison with experimental results. - 6.1
Low DENSITIES. - The low density measurements of
nRam and nRay [14], [4] show that the ratio ,Ram/,,Ray
is in fact greater than 1 ( ~ 1.3 for SF6, ~ 1.5 for CF4),
but lower than the theoretical value 2. Since the theo-
retical value does not depend on the intermolecular
potential, this suggests that the discrepancy between
theory and experiment reflects the limitations of the
DID approximation.

For SF6 and CH4 the measured low density slope
of the curve nRam versus density p (in amagat units)
at room temperature (300 K) is (7 ± 1) 10-5 and
(3.5 ± 0.5) 10-5, respectively [4]. Using (25) in the
form

one obtains, after angular averaging,

and, with the aid of the low density pair distribution
function

n is the particle density, the density p in amagat units
being defined by the ratio n/no, where no is the particle
density under standard conditions. Buckingham and
Pople [15] calculated the integrals

for the Lennard-Jones potential and obtained

in terms of the tabulated function Hm(Y), a and s
being the usual Lennard-Jones parameters and

From (47) we deduce the low density slope

The intermolecular potentials for the studied gases
are given in table I and the low density theoretical
slopes for SF6 and CH4 at 300 K are 5.1 x 10-5
and 3.1 x 10-5, respectively, in reasonably good
agreement with the experimental values.

6.2 MODERATE AND HIGH DENSITIES. - 6.2.1

Comparaison with the numerical results of Alder et al.
in molecular dynamics [8]. - Alder et al. calculated
the quantities SZZ and SZZ2 (and, for one particular
density, S3ZZ and S4 ZZ), which are connected to the

TABLE I

Low density slopes of Illay(p) and nRam(p)
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previously defined quantities sRay, SII, SIII, SIV as
follows :

The lattice model relates SIII and SIV to SII by (34),
so that

The calculations of Alder et al., performed for
hard spheres of diameter Qo and for a reduced den-
sity value of n* = 0,625 (n* = nagfqi), yielded
2 Sfz = 10.25 and 4 Szz - - 18.56. Then, by (50),
one has S’z = 8.40, very close to the molecular

dynamics value S4ZZ = 8.52. Also, by noting that
the 2 S’z values calculated for 108 and 500 particles
are 10.25 and 10.37, respectively, one can estimate
the accuracy of the molecular dynamics result to

roughly 0.12, so that the agreement for S4ZZ turns
out to be correct to this order of accuracy. From (50),
using (40) and (41), one obtains the following relation
between çRam and çRay,

which may therefore be considered as approximately
verified in molecular dynamics.

6.2.2 Comparison with the experimental results. -
In order to compare theory with experiment, we have
first to estimate SII, SHI, SIV.

a) If we use the SIII/SII and SIVIS’ values predicted
by the lattice model, we must first choose a numerical
value for po. Thibeau [19] found that for gaseous
argon and methane at moderate densities an expres-
sion like (38) is well verified provided one uses the
liquid state density for po, while extensive studies
of Sung Chung An [22] showed that agreement is

obtained for liquefied gases if po equals the solid
state density. So there is some doubt about the po
value.

b) One could use the Alder’s values [8] for SZZ
and S2ZZ. Combining the relations (21), (24), and (41),
we get

which, by using (51), (49), may be written

For ii"Y we obtain in the same way

The values of SZZ and S2ZZ are tabulated but, unfor-
tunately, most of these calculations use a hard sphere
potential of diameter ao which is difficult to relate
to the physico-chemical data.
Yet it seems to us that the method b) is preferable

and we propose to choose ao so that the Raman

depolarization ratio nRam have the same value irres-
pective of the potential used, be it the hard sphere
potential l/&#x3E;o(r) or the Lennard-Jones potential l/&#x3E;(r).
Then, by (46),

yielding

Numerical values of Co, calculated in this way for

CH4, CF4, SF6, are given in table II, the reduced den-
sity being now defined by n* = n(1/-J2.

In order to compare the results for different mole-
cules, we introduce a variable Y which is free from
equation of state and molecular parameters :

TABLE II

Abscissae and ordinates of the maxima of the curves YRay(n*) and yRam(n*)

Note : the interpretation of the n*, YRam values for liquid SF6 as associated to the maximum is only tentative, see § 6.2.2.
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By (53) and (54) :

The functions yRaY(n*), yRam(n*), çRaY(n*), çRam(n*),
calculated by (59), (60), (51), (54), with the aid of
Alder’s values for SZZ, szz, are represented in figure 2.
The curves yRam and YRay look very different, in

particular the maxima are different. The Raman

maximum, much higher than the Rayleigh one

(2.66 and 0.58, respectively), is located at a greater
density (n* = 0.50 and n* = 0.22, respectively). The
YRam value is roughly constant for a dense gas ( YRam
does not vary more than 10 % between n* = 0.29
and n* = 0.65; n* = 0.50 corresponds to a liquid
or a highly compressed gas).

FIG. 2. - The reduced depolarization ratios YRaY, yRem, see

eqs. (57)-(60), and the interference factors çRay, çRam, see eqs. (40),
(41), (49), (51), as a function of the reduced density n* = na’IF2-
These quantities have been calculated using the numerical results

of Alder et al. [8].

Studying the totally symmetric Raman vibration
band of CF4, Gharbi and Le Duff [23] observed for
the compressed gas an almost density independent
nRam value, in qualitative agreement with theoretical
curve. Their nRam = (3.1 ± 0.3) 10- 3 value corres-

ponds by (58) to YRam - 1.88 + 0.18, which is

comparable to the theoretical value. Holzer and Le
Duff [4] measured ,Ram for liquid SF6, obtaining
11 Ra- = (3.5 + 0.3) 10 - 3, which is close to the maxi-
mum of the theoretical curve; in this case p x 250,
n* ~ 0.50. For Rayleigh scattering, Gharbi and Le

RTXT
Duff [14] studied the quantity ,Ray RxT v (apart from

M

a constant factor) versus density and found a maximum
about 90 + 15 amagats (n* = 0.12 ± 0.02) and
150 + 30 amagats (n* = 0.11 ± 0.02) for CF4 and
CH4, respectively, that is at values lower than the
theoretical one (n* = 0.22). These values are collect-
ed and completed in table II. Thus, the agreement
between our theory (supplemented by the molecular
dynamics results) and the experiment is more satis-

factory for yRay, yR,m, than for n* corresponding to
the maximum of YRay. It is difficult to say if this is
due to the general limitations of the DID theory or
to the much too simplified potential l/Jo(r) used in the
comparison.

7. Conclusions. - The theory given in this paper
connects the collisional DID depolarization effect
for Raman and Rayleigh light scattering with the
binary, ternary, and quaternary position correlations
contained in the doublet, triplet, and quadruplet
sums S", S"I, S’v. Partial estimation of these sums is
possible in the frame of the lattice model, see eq. (34),
in terms of the relative density plpo, where however
there remains some uncertainty concerning the precise
value of the compact phase density po. The relative
importance of the high density sums 5’’", SIV with
respect to the low density sum SII is measured by the
interference factors çRay, çRam defined in (40), (41).
By (42), (51), the lattice model unambiguously relates
the Raman and Rayleigh scatterings through the
relation çRay = (çRam)2. .

Previous theoretical results on Rayleigh scattering
are reobtained and the agreement with recent Raman
observations is reasonably good. However, in order
to improve the comparison with the experimental
results, one should : a) include the non-DID depolariz-
ing effects, b) use better intermolecular potentials,
and c) calculate S3ZZ (i.e. S"I) by molecular dynamics
so as to get
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