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LE JOURNAL DE PHYSIQUE

I. THEORY OF THE RELAXATION BY COLLISION OF MOLECULAR
MULTIPOLE MOMENTS : IMPACT APPROXIMATION WITH LONG RANGE

ELECTROSTATIC INTERACTIONS

M. A. MÉLIÈRES-MARÉCHAL and M. LOMBARDI

Laboratoire de Spectrométrie Physique (*), Université Scientifique et Médicale de Grenoble,
B.P. 53, 38041 Grenoble cédex, France

(Reçu le 5 octobre 1976, accepté le 10 fevrier 1977)

Résumé. 2014 Un traitement théorique de la relaxation et du transfert de moments multipolaires
de molécules lors des collisions intermoléculaires est présenté, basé sur l’approximation d’impact.
Les expressions générales des sections efficaces de collision relatives aux différentes interactions
multipole-multipole sont obtenues au premier et second ordre des perturbations en considérant
un potentiel électrostatique à longue distance. La generalisation à un potentiel à courte distance
est discutée. Les effets des structures fines et hyperfines sont traités dans les cas de couplage de Hund
a et b.

Abstract. 2014 A theoretical treatment of the relaxation and transfer of molecular multipole moments
due to intermolecular collisions is presented assuming the impact approximation. General expres-
sions for the collision cross section are obtained for any multipole-multipole interaction, to first
and second order of perturbation assuming a long range electrostatic potential. The generalization
to short range potential is discussed. Effects of fine and hyperfine structure in Hund’s cases a and b
are sketched.

Tome 38 ?6 JUIN 1977’

1. Introduction. - The effect of collisions between
molecules or neutral atoms in the gaseous state on the

lineshapes of optical emission lines has been studied
for a long time. The most widely used method of
calculation uses the semi-classical impact theory of
Anderson [1] and its various improvements and exten-
sion. A recent review of the relaxation calculations,
discussing in particular the validity of the Anderson
approximation has been recently made by Rabitz [2]
for the rotation and rotation-vibration lineshapes,
where the reader can found numerous references to
the previous literature. To take into account the iso-
tropy of the collision processes, it is useful to use
tensor operator formalism, this has been done in the
standard reference works of Tsao and Cumutte [3],
and more recently by Ben Reuven [4]. These works
study optical linewidth and displacement, but this
tensor operator formalism is also particularly well
adapted to study the relaxation processes of polariza-
tion dependant phenomena, which were not studied
in previous works, owing to the fact that the polariza-

(*) Laboratory associated with the Centre National de la Recher-
che Scientifique.

tion of emitted light is easily related to the tensorial
components of the density matrix. This theoretical
framework [3, 4] has been used by Omont [5], D’Yako-
nov and Perel [6] to study relaxation processes of
polarization-dependant phenomena in atoms (Hanle
effect [7], magnetic resonance, etc...) and extended by
Carrington, Stacey and Cooper [8] to atoms with

any angular momenta. More recently this kind of
polarization-dependant studies has been extended to
diatomic molecules. It is then useful to adapt the
preceding theories to this case. In this paper we

present the equations needed to study the effect of
collision on various characteristic quantities of the
upper molecular state of the optical transition studied :
total intensity, polarization, etc... We limit ourselves
explicitly to measurements integrated over the line-
width of the optical line, i.e. we do not study the line
shape of the optical emission line, since this work has
already been done by Tsao and Curnutte. On the other
hand we develop fully the theory for the case where a
long distance potential gives the main contribution
to the relaxation (but some intermediate formulae
give useful angular momentum averaged expressions
valid also in case of short distance interactions). This
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approximation is likely to be much more valid for
relaxation of polarization than for transfers.

In paper II [9], we apply this theory to a particular
example : relaxation of the polarization of light
emitted by the (Is 3p) 3nu state of the hydrogen
molecule.

2. Model of collision. - The collision model is

exactly the same as the one used by Omont for the
atomic case. For the sake of clarity we write down
the various hypotheses and approximations made :
- Binary impact approximation : the interaction

between atoms can be represented by two body colli-
sions well separated in time : the duration of a collision
Tc, is short as compared to the time between two colli-
sions, Tc.
- Semi-classical approximation : the motion of

the centre of mass of the two interacting systems is
treated classically (in fact, in explicit calculations,
we limit ourselves to the straight line trajectory appro-
ximation). The internal state of these two systems is
treated quantum mechanically : it evolves under the
effect of the interaction potential V.
- Sudden approximation : during the time rc

of the collision, the influence of external phenomena
can be neglected : applied fields, spontaneous emis-
sion, excitation.
- Adiabatic approximation : in principle, to

study the evolution of the internal states of the atoms
under the effect of the interaction potential V, one has
to take into account an infinite number of levels. To
reduce this number, we separate the levels of the
combined system into two groups. The first group is
composed of the levels differing in energy from the
initial one by an energy of the order of 1/Tp or less
(we use h = 1) : according to Heisenberg’s principle
of uncertainty there can be appreciable real transition
between these states. The second group is composed
of the more distant levels. There cannot be appreciable
real transitions to these levels at the end of the colli-

sion, but virtual transitions to these states can exist
during the collision. We take into account the effect
of these distant levels by the perturbation theory. The
effective potential, Veff, that we take into account
during the collision is not limited to the projection
of the interaction potential V into the first group of
levels, but is given by the Rayleigh Schrodinger pertur-
bation theory

where P is the projection operator into the first group
of states (nearby levels) and Q = 1 - P the projec-
tion operator on distant levels; Jeo is the hamiltonian
of the two non-interacting molecules, E is the energy
of the initial state. Explicit calculations will be made
only for the first two terms in the development of
Veff. 

- Long range approximation. The formula (42)
does not depend on this approximation and is valid
for any kind of potential V (see § 3.4.2) : it incorpo-
rates all the angular momentum recoupling calcula-
tions but needs a numerical integration. We also give
explicit calculations in the usual case in which it is

supposed that the interaction V may be described by
an electrostatic potential expanded in powers of IIR
(R distance between the two molecules), and limited
to the first few terms : this supposes essentially that
the measured cross-section is greater than the geome-
tric cross-section, i.e. no overlap of the two molecules
during the collision.
- Effect of spins :
a) Nuclear spins. - The hyperfine interaction

being negligible as compared both to the electrostatic
interaction potential V and to the reciprocal of the
collision time I lTc, we suppose that the nuclear spins
stand still during the collision and are not taken into
account during the calculation of the collision process.
The recoupling after the collision is studied in § 4.

b) Electronic spins. - We treat separately the
molecular Hund’s case b and a or c. In case b the
electronic spin S is weakly coupled to the total orbital
angular momentum N. It is treated as above for the
nuclear spins. Paragraph 3 gives the formula neglect-
ing the electronic spin during the collision and para-
graph 4 gives the recoupling after collision. In case a
or c the spin orbit interaction is much larger than the
rotational separation and usually larger than the reci-
procal of the collision time 1/Tc. The main paragraph 3
is then also valid directly for case a, the electronic
part of the wave function including the electronic spin
in the molecular frame; the other spin components
of the same multiplet are treated as other electronic
levels of the second group (distant levels). In the case
in which the spin orbit interaction is of the same order
of magnitude as 1/Tc, these other spin components are
merely included in the first group (near levels).

3. Relaxation of the density matrix : orbital case. -
As indicated in § 2 this part includes both the effect
of the collision on the orbital angular momentum N
in case b (with neglect of spin) and the effect of the
collision on the total electronic momentum J in case a
or c : in the following formulae we always write N
for simplicity, but it must be understood that N has
to be replaced by J in case a or c.

In § 3.1 we note the various averaging and inter-
mediate steps needed to relate the evolution of the
mean density matrix to the description of a particular
collision with definite impact parameter and velocity,
modulus and direction : this evolution is defined by a
r matrix.

In § 3.2 we relate this r matrix to the usual S
matrix of collision theory, written in ordinary wave
function space. In § 3.3 we calculate explicitly the
S matrix as a function of the interaction potential
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Verr. In § 3.4 we give the final formulae for the r
matrix, and in § 3.5 we give the useful cross sections
as a function of r.

3.1 DESCRIPTION OF THE COLLISION BY A F MATRIX.
- 3 .1.1 Collision parameters. - The collision is des-
cribed in the following manner : The entire system
under study is composed at time t of two molecular sys-
tems separated by a distance R(t). One of them (mole-
cule A) is in the excited state and is considered to be
fixed at DA ; the other (molecule B) is in the ground
state and moves at a uniform relative velocity v
(we do not take into account the case of exchange of
excitation). The impact parameter, b (Fig. 1) completes
the geometrical description of the collision. If the time
between two successive collisions is Tc, the two mole-
cules A and B are infinitely distant and have no
interaction at t - Tc/2, while they are again infinitely
distant at t + Tc/2, having undergone collision in
between.

The state of the molecule will be described in Dirac
notation by aN ), a indicating the group of the other
quantum numbers for the excited molecule and

I w ) for the ground state molecule; in general
(except for the a and P) the Roman letters are associat-
ed with the excited molecule A, and Greek letters
with the ground state molecule B.

3 .1. 2 Definition of r matrix in the subspace of the excited molecule A. - The density matrix pA of the
excited molecule A is a stationary solution of the equation in the impact approximation :

where Jee is the Hamiltonian representing external perturbations to which the molecule is subjected other than
the collisions (in general the external applied fields), T the radiation lifetime of the excited state considered,
pexc. the excitation term, and b pA/bt is the change in the density matrix per unit time under the action of the
collisions. We only consider isotropic collisions : the relative velocity of the two interacting molecules is com-
pletely random; we then expand pA according to its components in the irreducible tensor base defined by
Omont [5] :

In what follows only the quantum number N is of interest and accordingly we now drop the index a. Tq is
the qth standard component of the irreducible tensor of k order defined in the  aN ) space with the norma-
lization

and

Each tensorial component NN’ p: is then a stationary solution of an equation

The term 8t NN’ p: represents the change per Unit time undergone by the ’component NN’  under the
average effect of the collisions. The isotropy of the collision direction implies (cf. Omont’s proof [5p that ten-
sorial orders of different k are not linked :
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where NN’N°NoeTk represents the transfer of the quantity N°N°pq from the level No to the level N; its expression
is obtained as follows :

We consider first a single collision characterized by the two parameters b and v. The collision, occurring

between the instants t - 
r 

and t 
7" 

ma be described b a T v matrix related t the m lecul A :between the instants t " 20132 and t + 20132, may be described by a r(b, v) matrix related to the molecule e A :

The change in the density matrix under the influence of this collision is :

According to the assumptions made, Tc is large compared with the duration of the collision and is therefore
allowed to tend to infinity.

The average term a NN’ k is then obtainedg t Pq

- by averaging NN’LBp: over the directions of v and b (Euler angles of the collision frame relative to the
laboratory frame) ; Omont has shown that for isotropic collisions this average is of the form :

with

exc and ezc being the unit vectors in the collisions frame (Fig. 1) ;
- by weighting the preceding term by the number of collisions (b, v) per unit time (i.e. nvP(v) 2 I7b db dv

where n is the number of relaxing molecules per unit time) and integrating over b and v.
We finally obtain :

with

3. 1. 3 Relation between pA and P AB. - Let pA, PB and pAB be the density matrices respectively representing
the states of the molecule A, the molecule B, and the two molecules together; they are respectively defined in
the two spaces subtended by  rxN) and Bv and in the product space subtended by I afJNv ). As previous-
ly (2), these matrices can be expanded in terms of irreducible tensors defined by relation (3) and (4) : pA is related
to pAB by the relation PA = TrB (pAB) which implies, when taking into account the isotropy of the ground
state :

In the same way as to the FA matrix, the FAB matrix connects the tensorial components of pAB after and
before collision :

In order to obtain the component of rA in terms of rAB we replace on the left hand side of (7) the compo-
nents of pA( + oo) as a function of those of pAB( + oo) using relation (11) then we express the latter as a function
of the components OFPAB(- oo) using (12). By identification, TA and r AD can be related using two of the assump-
tions made to describe the collision : 

(i) absence of correlation between the two molecules before collision :
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(ii) the incident molecule B is in an isotropic ground state :

where H(vo) represents the total population of the level vo including the nuclear spin degeneracy ; £ 77(jSvo)== I -
(Jvo

Identification of terms gives :

and T k, given by (8), becomes :

3.2 r MATRIX AS A FUNCTION OF THE S MATRIX. - The state of the system composed of the two molecules A
and B at time t is related to the preceding instant of time, to, by the evolution operator U(t, to) which is the
solution of the equation, in the interaction representation :

p(t) is then related to p(to) by :

We consider only the projections of p in the given subspaces N (we do not study the coherences between
N and N’) ; within such a subspace p(t) = p(t). In the present particular case of the collision, where the states
after (t = + (0) and before (to = - oo) the collision are designated respectively by the quantum numbers
(aN, flv) and (aNo, fJvo), we set U(+ oo, - oo) = S so that we have from (15)

Replacing p and S in eq. (16) by their corresponding expansions in tensorial components and taking the trace,
one obtains the relation :

By identification of the expressions (17) and (12), the tensorial components of the TAB matrix can be obtained
as a function of the operator S. We shall express the result of this identification in the particular case that
interest us, i.e. for the components of r which arise in (13) (i.e. with k = ko, q = qo, x = Ko, = a = Uo = 0,
v = v’, vo = vo) ; the { } symbol represents the « 6 j » symbol of Wigner ; we obtain :

This expression permits us to relate the F’ given by (13), and thence the AF’ given by (10), to the S matrix

In the remainder of the calculation we shall retain only the terms which do not involve coherence i.e. N = N’
and No = No, owing to the fact that the present calculation is concerned with optical transitions emitted by
the levels N, and not with transitions between N and N’.
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We give the following expression for llrB obtained from (18) but written in a different form (appendix A) ;
we thus obtain two expressions for AFI according to the relative values of N and No :

In these expressions E’ signifies that ki and xl are not simultaneously zero. We note that when k = 0, expres-
sion (19a) reduces to 

i.e.

This relation means that the change (departure) in population of the level N is equal to the change (arrival)
in population of all the states with N’ :0 N. (The population of N is given by Tr (p x NN1); from the defi-
nition of normalization of the tensor T, (3), we have NN1 - NN TO(2 N + 1)1/2 and therefore the population
is proportional to :

We note that this kind of equality ceases to hold for k # 0, since part of the internal angular momentum
of the molecule is transferred to the relative angular momentum of the molecules.

3.3 S MATRIX AS A FUNCTION OF V(t). - 3.3.1 General differential equation for U(t, to) as a function of
time. - The evolution operator U satisfies the differential eq. (14). The general solution of such a system
(Messiah [10], XVII, (17) (19)) is obtained by integration and set in the form of a series :

with

(One must not confuse the variable T, and the lifetime T.)
. 

That is, symbolically :

A calculation which contains this expansion up to the (n + 1)th term, 0(n), corresponds to a calculation taken
to the nth order of perturbation as a function of time.

We recall that the operator U(t, to) acts within the first group of levels as introduced in § 2. The interaction
potential, Veff , defined in this space, itself follows from a stationary time-independant Rayleigh-Schr6dinger
perturbation expansion (1), introduced to take account of the levels of the second group.

The transition from small to large values of the separation AE between the studied level and another level
(which then goes from the first (near) to the second (distant) group of levels) has been studied in detail by Gay [11J
for the case of a dipole-dipole interaction. He has shown that, when AE increases, the results with a first order V

potential tends continuously towards those of a second order PV Q VP potential, if the time equation isAE
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solved exactly (numerically). If however, one uses, as we do here, a perturbative solution to the time equa-
tion, he has shown that the results with the V potential give considerably errors (40 % for relaxation of pola-
rization and orders of magnitude for the probability of transfer of population) if AE is greater than the reci-
procal of the collision time. However he has also shown that in this case the time perturbative solution with a

PY Q VP potential gives a correct result for the relaxation of polarization. The conclusion is then that oneAE p g p

must carefully choose the separation between near and distant groups of levels and not think that the results
will be better as more levels are included in the near group.

In what follows we shall note U1 = PVP and cU2 = PY Q YP and cU = ’B)1 + V2. The calculationAE 1 2

of U(t, to) will be stopped at the first order by taking U as the interaction potential (U(1)(U)).
Our final purpose is to find the tensorial components of the collision operator S. We shall then first write

the differential equation satisfied by the matrix elements of t7(V) in the eigenfunction basis of JCO; we shall
then transform this equation into one involving the tensor components of U, which will then be solved to first
order.

We shall then solve eq. (14) to first order, after replacing Veff by V. This equation, taken between the
eigenfunctions of Jeo, I afJNvMJl) and ao 130 No vo Mo uo &#x3E; gives :

with

In the following calculation the Zeeman splittings are neglected as the corresponding frequencies are
very small compared with the reciprocal of the time of collision (sudden approximation). The equation con-
necting the tensorial components of U(t, to) can be deduced from (20) by expanding U(t, to) in the same way
as S using the Clebsch-Gordan coefficients :

The explicit relations between the tensor components of (J’ are obtained from (21) after expanding V(t), in
tensor form. We shall therefore define the chosen interaction potential, based on long range electrostatic interac-
tions and express successively U1 and CU2 in tensor form.

3 . 3 . 2 Explicit expressions for ’1J i. - 3. 3. 2.1 Long range interaction.

i) ’1J 1 . We suppose that the interaction energy between the two molecules arises only from long range
electrostatic interactions. Molecules A and B are located at time t at distance R(t) from one another, each
representing a system of charges defined by two systems of coordinates OA and OB ; the charge ea (algebraic
number) is located at ra in the reference frame with origin OA. The energy of interaction between the two systems
is :

With the assumption that ra + rb  R (absence of overlap of the wavefunctions of molecule A and B) V can
be expressed using Taylor expansions about OA and OB. The following expression was obtained by Fontana [12a],
taking the axes OA z and OB Z to be parallel and directed along R (we shall call this the intermolecular reference
frame (Fig. 1)) :

with
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The YK(r) are the spherical harmonics as defined by (Messiah [10], 1 B (96)) and r is a unit vector.
The term ’BJ lKx represents the interaction of the 2K-polar angular momentum of the system A (of the form

uK = L ea M#(r) with the 2x-polar angular momentum of the system B).
a

This formula is equivalent to the one used in lineshape studies by C. G. Gray and J. Van Kranendonk [12b].
It was also given by M. E. Rose [12c] and Y. N. Chiu [12d]. Using the Clebsch-Gordan coefficients, expres-
sion (23) can be written :

with

We abbreviate the set of indices (1 Kx) by the over-all index s, and we can put (24) into the general form

with

and

Consequently we have :

we have :

As before we decompose the operator V into a series of terms in which two tensorial operators appear, each
one referring to one of the systems A and B. To accomplish this, the operators ’U - Q l(r. ) and ’YK2Q2(ra2)’ which
act on the same molecular system A, are taken together giving the resulting tensor :

This tensor is of dimension rK 1 + K2 and acts in the space A. By expressing V given in (29) as a function of the
operator C defined in (30), then replacing the Clebsch-Gordan coefficients in terms of the « 3 j » symbols,
and further making use of the relations between the « 3 j » and « 9 j » symbols (Messiah [10], 2 C (40c)) the
expression for ’lJ2 is obtained

where ; 
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Term (32) corresponds to the second order interaction of the induced (2Kl polar-2K2 polar) moment of the
molecule A with the induced (2x’ polar-2X2 polar) moment of the molecule B. K and x are obtained by the
coupling of Ki and K2, X, and x2 respectively.

In the usual case where one has Kl = K2, X, = X2, we note that the only non zero terms in (32) corres-
pond to even values of K and X; then J, obtained by coupling between K and x, can only take on even values
(selection rule for the 3 j coefficients).

We abbreviate the set of indices (2 Ki K2 X, x2 Kx) by the overall index s, and we can put (33) into the
general form CU’s given by expression (26) with :

Thus the term ’BJ 2 given by (42) can be written in the same way as U1 given by (39) : U2 = Y_ ’BJ S. It
s

is therefore possible to continue the calculation by decomposing the potential V into a sum of general terms ’BJs :

where the index s is successively equal to (1 Kx) and (2 Ki K2 Xi X2 Kx) and where ’D’s is given by (26).
3. 3.2.2 General case. - The form (26) for ’D’s can be generalized for any order of perturbation theory

and even for short distance interaction (in which case the 1/R development is no longer valid) as :

where the TQ are normalized tensor operators of the molecules A or B. Indeed the Tg form a complete basis
for the electronic operators in the corresponding space (A or B) so that the function V(R, ra, rb) can always
be decomposed as a sum of the form :

On the other hand the transformation between the product TQ(A) T§(B) and the coupled representation

is an orthonormal one and conserves the completeness. Finally the fact that QJ = 0 in (37) is a mere consequence
of the invariance of the interaction ’B1 when one rotates the whole system of the two molecules around the inter-
molecular axis.

As a consequence, the following formulae could be used even for short distance interaction, by replacing
as,JIRns and UKQ by respectively fs,J(R) and TQ defined by (37).

3. 3. 3 Differential equation for 0(t, to). - The differential equation (20) relates the matrix elements of the
operator to those of 9J, the matrix elements being taken in the basis I NvMu relative to a coordinate system
associated with the collision (b, v) under study. This collision coordinate system (subscript c) is composed of the
set of two coordinate systems centered respectively at OA and OB, with axes Ox,,, Oyc, Oz, parallel; the axis Oz,
is parallel to the relative velocity v of the two molecules, while the axis Oxc is parallel to b (Fig.1).

Thus in equation (20) the matrix elements of U and 9Y are taken among the wavefunctions ( NvMu )c
defined in the collision coordinate system. Now the operator ’B1, given by (36) has been expressed as a function
of the variables R, ra, rb defined in the intermolecular coordinate system (Fig. 1); therefore the matrix elements
of 9J will be calculated by using the wave-functions defined in the intermolecular coordinate system (sub-
script i), NvMu )i. It therefore remains for us to express the element  Nvmp 19J I N’v’M’p’&#x3E;,, in terms of
the elements Nvmp ’B1 N’ v’ M’ ,u’ &#x3E;i. This is done in appendix B by noting that for each molecule the inter-
molecular coordinate system is obtained from the collision system by a rotation through 0 about the axis OYc
(identical with Oyi). Then, this rotation, relative to the molecule A, is expressed by the rotation operator Ro.,(O) :



536

with the angle 0 (Fig. 1) varying from n to 0 between to = - oo and t = + oo. Using the tensorial decomposition
of (J in the basis of irreducible tensors as well as that of V given by (36) and using the properties of the rotation
operator, we obtain after a calculation detailed in appendix B, a new form of equation (21) :

where, using the convention of (Messiah [10], 2 C (55)) rMO(e) = RJMO(080).

3 . 3 . 4 Solution of the equation for U(t, to) in the first order. - The S matrix has the form, if one considers
only one s value,

where S(1), S(2) are functions of 1 /Rns, 1/R2ns. The calculation of AT introduces the product SS+. S(1) being
purely imaginary, the first order terms in AF vanish. The second order term in M can come either from the
square of the first order term in S, (S(1»)2, or from the cross product between zero order and second order terms
in S : S(O) S(2)+ + S(O)+ S(2).

It can be shown [13] that, since in expansion (19) the summation over the term component excludes the
case where Ki = xi = 0, the cross products S(O) S(2)+ + S(O)+ S(2) vanish. It is then only necessary to cal-
culate S up to first order ; and this gives an expression of AT valid up to second order.

In the limiting case for t = + oo and to = - oo, and remembering that

which implies

the first order solution of the differential equation (38) is

with

3.4 EXPRESSION FOR THE AT MATRIX. - 3.4.1 Long range interaction. - The expression of the S matrix
is then given by (39) and we can express the summation over qi and ai which occurs in the relation (19) for AF’
so that ki and are not simultaneously zero. The evaluation of these terms is developed in appendix C. This
gives :
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distinguishing the (KXJ) corresponding to ’BJs from those corresponding to ’BJs’ by the indices sand s’. The
function a (wblv) is a cut-off function defined by

The physical meaning of the cut-off function is the following : it represents, roughly speaking, the Fourier
transform at reduced frequency (wb/v) of the time varying interaction between the two molecules. This function
tends to zero when (wb/v) &#x3E; 1, i.e. when the frequency of the transition between initial and final bimolecular
states is higher than the Fourier spectrum of the interaction. The width of this function is called the adiabatic
cut-off frequency corresponding to a collision (b, v). Specific calculations for a few cases will be given in a paper
to follow concerning the relaxation of H2.

Thus the AF’, relating to the collision (b, v), which we write as AF’ Y ’lJs, L’D’s,) to indicate that the
s’ 

expression for it is obtained for the most general case where all the multipolar electrostatic interactions are
included to the first two orders of perturbation, becomes :
N = No 

with

This quantity, NNNNerk(b, v), corresponds to the evolution of the NNpQ component under the effect of the
(b, v) collisions inside the N state. In this expression, N (and vo) represent the initial state (i.e. before the (b, v)
collision) of molecule A (and B); N’ (and v) the final states. Selection rules connect N and N’ (vo and v). Terms
with N’ = N correspond to the evolution of NN pQ inside the N state and terms with N’ # N to the transfer of
part of NNpq from the level N to N’.
N # No 

with

This quantity corresponds to the transfer of N°N°pR from level No to N. We recall that in these expressions the
operator U(A) depends on the spatial coordinates r. of the charged particles constituting the molecule A, and
that the coordinates are defined in the intermolecular frame of reference figure 1. The expressions for the reduced
matrix elements of this operator are given in appendix D for diatomic molecules (the general formulae are
applied to the particular case of multipole-multipole interaction considered to first (U = 11) or to second
(’B1 = 13) order of perturbation).
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3.4.2 Short range interactions. - The expression of the S matrix can be deduced from (39) by replacing
ot.,,jlRnby h,J(R) defined by (37). It follows that the expressions (42) are always valid when replacing U by T
defined by (37) and 

by

3. 4. 3 Particular cases. - We have thus obtained the expression for the AF matrix relating to the collision
(b, v) in the general case of a calculation to the first two orders of perturbation, where the interaction potential
causing the collision is a long range electrostatic potential expanded to all multipole orders. Frequently it is
of interest to evaluate the contribution to the collision of a particular multipolar interaction of the 2a-polar
moment of the given molecule with the 26-polar moment of the relaxing molecule. Below we set out explicitly
the simplified form then taken by AF’ when this interaction occurs.

i) In first order of perturbation U1, given by (22), reduces to the term cU,K, with K = a and x = b, and
’1J 2 = 0. Then ‘U’ = CU 1 Kx and for example the expression (42a) for AF’ simplifies to

with (
In this expression n = K + x + 1 and the functions is defined by (25).
ii) In second order of perturbation CU2 given by (31) reduces to the term ’U2KIK2,,.2 with

and X, = X2 = b, and ’B11 = 0. Then ’B1 = ’B12KIK2XIX2 and AF’ given by (42a) becomes :

with
In this expression n = 2(Kl + X, + 1) and the function y is defined by (34). We recall that K varies from

zero to 2 Kl, x from zero to 2 X, and J from ( K - x to K + x, and also that the summation E’ means that
K and x cannot simultaneously be zero.

iii) Two interactions must sometimes be considered at the same time, one in first order, ’BJ lKK’ and the other
in second order (’BJ 2KIK2XIX2). An example might be the quadrupole-quadrupole interaction in first order

(K = X = 2) which varies as R-5 and the dipole-dipole interaction in second order (Ki = K2 = 1, X1 = X2 =1 )
which varies as R-6. In this case several cross terms appear in AFI : we have ’BJ = (cUlK, + ’D’2KIK2XIX2) and
from (42) :

3.5 CROSS-SECTION. - The collision term, :t NN k occurring in the density matrix eq. (5), can now be6t q 

evaluated using expressions (6), (9) and (42).
We consider here only the case where the contribution of the components N°N°PQ coming from the level No

to the level N are neglected. In the density matrix equation there only appear terms relating to the level N ;
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the differential equations giving the different components NN pR and N°N° pq are no longer coupled and the term
relating to the collision reduces to the classical expression defining the collision cross-section ak :

We shall now, for this case, detail the calculation of a" starting from 4Tk. The collision cross-section obtained by
identification of (46) and (47) requires the integration over the impact parameter b between zero and infinity.
Now the present calculation, based on the predominance of long range electrostatic interactions, is no longer
valid at short distances (small values of b). In order to exclude these small values we shall make the cut-off
approximation of Anderson, studied and justified by Omont, which consists of saying that the destruction of the
component pq is complete (AFI(b) = 1) for all collisions with small impact parameter (b  bo). The cut-off
parameter, bo, is determined by the relation AF’(bo) = 1.

We recall that Gay [11] has studied in detail the validity of this procedure for studying relaxation processes
and its non validity for studying the transfers when the separation AE of levels is larger than 1/Tc (where all the
contribution comes from short range collisions).

The cross-section corresponding to the level N is then given by

We remark that frequently the average over v is not performed numerically, and the usual approximation consists
of replacing v by its average v.

4. Spin recoupling. - So far we have studied the evolution of the tensorial components fXNfX’N’p:; of the
density matrix under the effect of the collision in the level  aN ) of the molecule under examination. This evolu-
tion was characterized by the quantity fXNfX’N’fXONofXÓN’oð.rkN defined by relation (6) and expressed by use of (9), (10)
and (42) in the case where N = N’, No = No (we shall give the index kN so as to recall that this quantity is relative
to the kinetic momentum N). This is valid for singlet Hund’s case b and Hund’s case a or c molecules with no
nuclear spin. We shall now introduce the effect of an electronic spin S in Hund’s case b. (The effect of a
nuclear spin I in Hund’s case a, b or c would be identical, replacing S by L)

When spin S exists, it couples with the kinetic momentum N and the level  aN ) splits into fine structure
levels  aJ ) with J = N + S. In the same way as previously (§ 3) the density matrix is decomposed according
to its tensorial components :

i) either in the coupled space aNJ ) (we now drop index a to simplify the notation) :

the evolution of these components under the effect of collision is then expressed by :

ii) or in the uncoupled space  aNS &#x3E;

Taking into account that the electrostatic interaction which is responsible for the collision does not act
upon the spins and thus reduces to the identity operator in this space, the evolution of these components under
the influence of the collisions is noted as
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In order to express ðrk defined by (50), we shall link the components defined by (49) to those defined by (51)

Then by replacing NN’SSPqNqs by its expression (53) in relation (52), we obtain by identification with (50)

wherfl varies from N - No to N + No and ks from 0 to 2 S. Numerical calculations can use the formula (54)
with AF IN defined by equation (6). Note that in equation (54) one has different cut off parameters bo for the
various k values defined by Ark(bok) = 1, i.e. total destruction of the kth multipole.

Another equivalent expression which does not use 9 j symbols is the following (see appendix E) :

With this second method, one has to be careful with the cut off impact parameter bo (see § 3 . 4.1) : in equation (55)
the spin S always conserves some memory of the value of the kth multipole before collision, and the cut off
does not correspond to total destruction of the orbital part of it. The corresponding cut off value has been given
by Omont [5]. Serious difficulties can occur when the cut off parameters are very different.

NN°
Appendix A. - We shall evaluate explicitly the term ""° sgg in equation (18) in order to simplify (cf. § 3.2)

the solution in first order for S.
NNo

The term vvo S oo appears in (18) only when N = No, and v = vo due to triangle rules in (N, No, ki) and
(v, vo, Ki). In equation (18) we split off the term containing 5’SS 2 :

In this expression £ ’ represents the sum over ki and Ki when they are not simultaneously equal to zero. AF’
then takes two different forms depending on the relative values of N and No.
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NN 
i) N = No. We shall express the term NNSgg starting from the tensor relations which describe the unitarity

of S : I = S+ S :

Taking the trace we obtain :

Hence

NN 
and the expression for NNNNArk, on replacing " Soo in (56), is then given by (19a).

ii) N ¥= No : NNNONOAF’ is given by (19b).

Appendix B. - The notation used here is that employed by Messiah [10]. The wavefunction 1 NM)i
defined in the intermolecular frame (Fig. 1) may be deduced from the NM B defined in the collision frame
through the rotation operator ROA,,(O) defined by (Messiah [10], 2 C (46)) :

Conversely, by use of the unitary and orthogonality properties of the rotation operator (Messiah [10], 2 C (57)
(60)) we obtain :

The matrix element of qY in the collision frame is then obtained as a function of the corresponding element in
the intermolecular frame

Replacing ’U by its expression (36), and expressing the operators ctL in terms of their reduced matrix elements

and performing the summation over the indices M1 Mi pi ,ui, expression (57) becomes

Making use of the tensor decomposition properties of the operator R (Messiah [10], 2 C (81)) and writing
the matrix element of the tensor T in terms of its reduced matrix element
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where r(0) = R(OOO). We obtain the final form of the differential equation relating the tensor components of
the operator U by replacing in (21) the matrix element of 4J; taking account of 6Q-_, and by summing over
MM’ Mo and JlJl’ go with the help of (Messiah [10], 2 C (33)) we have :

Part of this expression can be simplified by expressing the product of the rotation operators (Messiah [10],
2 C (69)) :

Upon summing over Q 1 and thus introducing 6,j we obtain :

Replacing this quantity by its simplified form in (58) we obtain the final expression (38).

Appendix C. - We want to express the summation over qi and ci of the S components product, which
appears in (19), taking into account the fact that ki and are not simultaneously zero. Starting from (39) we
have :

with :

We then express the quantity Y 33’ using the fact that K and x are respectively equal to K’ and x’ in (59) : this
allows us to use the closure relation :

and therefore to simplify the r product. We finally obtain :

In this expression R = (v2 t2 + b2)1/2 and tg 0 = blvt. Introducing the reduced time variables vtlb and vt’Ib,
we factor out a cut off function a expressed by relation (41), and expression (59) simplifies to (40). In this last
expression, in order to make clear that KXJ and K’ x’ J’ refer respectively to CO’s and Us" we write them as KS xs JS
and Ks’ Xs’ Js, .
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Appendix D. - We want to express the reduced matrix elements of the operators (s)U(A). These operators,
defined by (27) and (35) are function in expression (42) of the spatial electronic and nuclear coordinates of
particules, defined in the intermolecular frame (Fig. 1). We first express the molecular wavefunctions, then we
give the reduced matrix element, considering separately the electronic and nuclear contributions.

1. WAVEFUNC’TIONS . - In this paragraph we shall give our conventions for the molecular wavefunctions
lap I A I vNM&#x3E; (short hand notation IFIAI) since these conventions differ widely from author to author.

We consider the general case of diatomic molecules corresponding to Hund’s case b or a. In Hund’s case b,
A is the projection of the total orbital electronic angular momentum (and is therefore integral), the spin coupling
giving rise to a fine structure much smaller than the rotational structure. On the contrary, in Hund’s case a, where
the fine structure is much larger than the rotational one, the total orbital electronic angular momentum is coupled
to the spin, to give the total electronic angular momentum whose projection on the internuclear axis is Q ; Q is
therefore integral or half-integral.

In the following we use the notation of case b where A, the projection of the total orbital electronic angular
momentum, can be integral or half-integral, to allow treatment of the general case of coupling; N can also be
half-integral (note that in case a A and N must be replaced by Q and J).

We define then I otp I A I vNM &#x3E; a basis vector of the eigenstates of molecule A where : p is the parity through
an inversion a of the spatial coordinates of all the particules forming the molecule :

v is the vibrational number, N and M are the quantum numbers characterizing respectively the total kinetic
momentum and its projection on the magnetic field; a covers all the other quantum numbers.

The orthonormalized wavefunction TIAI is expressed as a linear combination of the orthonormalized func-
tion OA

when A = I/J2 if A :0 0 and A = 1/2 if A = 0. The functions OA, assuming the Bom Oppenheimer approxi-
mation, are given by

with : .

i) t/J A(.. (rae)m, Sae) : the electronic part which is function of the spatial coordinates, rae (and, in case a only,
of the spin sae) of the aeth electron, in the molecular frame (index m) (Fig. 2).

ii) hv(P) : the vibrational nuclear part with p the internuclear distance.

iii) X’A(#LX) : the rotational nuclear part; the a and P angles (1) determine the rotation R(afJO) through
which the intermolecular frame superposes the molecular one (Fig. 2) (the third arbitrary angle, y, has been fixed
at zero : it is this convention that leads our formulae to be somewhat different in form but equivalent, to the ones
of Carrington et al. [14] and Chiu [ 15]).
We have the following expression where the rotation matrix R is that of Messiah [10] :

(1) The angle a, and the subscript a, which covers all the undefined quantum numbers, must not be confused.
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In order to express VIAI we want to determine the constant c in (61) by noting how OA and YJIAI transform in
inversion 3-. This operator is equivalent to the product of a reflexion S(Oxi through the plane Oym Zm (mole-
cular frame) of the electronic coordinate rae (and possibly sae) and of an inversion I(a --* II + a, 13 - II - fl)
of the internuclear axis (Chiu [15]). If we choose the phase Of OA so that (2)

which implies S(OX.) ql- A = (-) IA qlA (the dissymmetry comes from R(2 7r) = (- )2A), we have :

With (60) and (61) we finally get

2. REDUCED MATRIX ELEMENT. - The matrix element of UKQ in the intermolecular frame is, using (64),
and taking into account that (-)-N)* = ( _)N

In this expression, the wavefunctions being expressed in the molecular frame, the UKQ in the intermolecular
frame have to be related to the UKQ in the molecular frame by :

We shall now express the general term t

by considering separately the electronic (a = ae) and nuclear (a = an) part of UKQ.
a) Electronic reduced matrix elements. By use of (64), (62), (66) we obtain a sum of products of three

integrals :

with

expression that we shall note L1(A, Q’, A’);

The integration over azimuthal angle in C1 implies that A = A’ + Q’. One has then :

(2) If qlA were an atomic wavefunction of parity ( -)P and orbital momentum L, one would have S(Oxm) 0 A = (-)n e-illL OA which
would correspond to our definition for a monoelectronic atom. In the case in which L is no longer a good quantum number, one has to
choose arbitrarily a phase. We have chosen here this phase equal to zero but other authors (Carrington, A., et al. [14], Chiu [15]) choose
different conventions, which explains the formal difference between their formulae and ours.
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Inserting this relation in L3 and using relation (Messiah [10], 2 C (66)) and (Edmonds [16], 4, 62) we obtain :

The 3 j selection rules implies M - Q - AT = 0 which allows us to replace ( - )(Q - Q’ + M’ - A’) by ( - )(N - M + N - A) ;
the general term becomes :

We now want to show that there are simple relations between first and fourth (and between the second and
third) terms in (65), terms which differ by changing the signs of A and A’. Using (63) and its complex conjugate
we have :

considering that

(pu being the parity of UKQ) we have L1 ( - A, Q’, - A’) = (-)(P--’) EI(A, - Q’, A’). Similarly we have
L1(- A, Q’, A’) = ( - )(Pu-K+2N) C1(A, - Q’, - A’). Then, using (65) and the Wigner Eckart theorem we have :

b) Nuclear reduced matrix elements. In the molecular frame, due to invariance of the nuclear coordinates
by rotation around the internuclear axis all UKQ(.. (ran)i) = hK(p) K*(OC B0).

Inserting this expression into (65) we obtain : t = M1 M2 M3 with :

M3 can be simplified in the same way as C3 ; t becomes

and the nuclear reduced matrix element is :
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Appendix E. - We consider the equality obtained from (54) by replacing AF by AF (i.e. integration over
b and v is not performed). By replacing AF kN as a function of the S matrix (18) we obtain :

In this expression we shall replace the  6 j &#x3E;&#x3E; by a  9 j &#x3E;&#x3E; according to

Then we introduce

in order to obtain, after permutation of the columns of the third « 9 j »,

Summation over kN and ks is simplified by using the relation (Judd [17], 3.28) :

After the simplification of the «9 j » coefficient, we obtain the expression (55).
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