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A MAGNETIC ANALOGUE OF STEREOISOMERISM :
APPLICATION TO HELIMAGNETISM IN TWO DIMENSIONS
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Centre d’Etudes Nucléaires de Grenoble, 85 X, 38041 Grenoble Cedex, France

(Reçu le 13 juillet 1976, revise le 8 novembre 1976, accepté le 4 janvier 1977)

Résumé. 2014 Les systèmes magnétiques invariants par un groupe de symétrie continu (tels que les
modèles de Heisenberg ou XY) peuvent avoir un état fondamental à dégénérescence discrète, c’est-
à-dire que les états de plus basse énergie forment dans l’espace de configuration des poches séparées
par des barrières de potentiel. Ce phénomène est étudié en détail dans le cas d’un hamiltonien de
spins isotrope sur un réseau de Bravais. Outre les verres de spin, dont nous ne parlons pas ici, une
application de cette idée est le magnétisme à 2 dimensions : les systèmes magnétiques de Heisenberg
dont l’état fondamental présente une dégénérescence discrète ont un certain type d’ordre à grande
distance en dessous d’une certaine température de transition, alors que les ferromagnétiques bidi-
mensionnels considérés habituellement sont désordonnés à toute température.

Abstract. 2014 Magnetic systems invariant by a continuous symmetry group (e.g. the Heisenberg
and XY models) may have a ground state which exhibits a discrete degeneracy, i.e. the lowest energy
states form pockets separated by energy barriers in the phase space. This phenomenon is investigated
in detail for the case of an isotropic, bilinear spin Hamiltonian on a Bravais lattice. Apart from spin
glasses, which are not considered here, this idea can be applied to magnetism in two-dimensional
lattices : two-dimensional, Heisenberg magnets with a discrete ground-state degeneracy are expected
to have some kind of long range order below some transition temperature, whereas two-dimensional,
conventional ferromagnets are disordered at all finite temperatures.

LE JOURNAL DE PHYSIQUE TOME 38, AVRIL

Classification

Physics Abstracts
7.480 - 8.514

1. Introduction. - Broken symmetry is a current
phenomenon in Nature : a system described by a
Hamiltonian invariant under some symmetry group
may have a ground state which is not invariant, but
which is degenerate because any operation of 9
transforms it into another state of lowest energy.
In this paper, it is assumed that 19 is a continuous

group : in this case, the ground state can be conti-
nuously modified, at least in classical systems, and
it can be said that it has a continuous degeneracy.
But it may or may not happen that all states of lowest
energy cannot be reached by continuous transforma-
tions of the ground state; if they cannot, i.e. if states
of lowest energy form pockets separated in the phase
space by potential barriers, it will be said that the

ground state has a discrete degeneracy, in addition to
its continuous degeneracy. Well-known examples
in chemistry are the stereoisomers of optically active
molecules. However, this phenomenon does not seem
to have been much investigated in magnetism, though
it may be of some importance for spin glasses [1].
It has also important consequences for two-dimen-
sional magnets, as will be seen in section 4.

A simple magnetic example is provided by a cluster
of 4 classical spins SA, SB, Sc, SD described by a
Heisenberg Hamiltonian :

with J  0. If I J’IJ is sufficiently small, an elemen-
tary calculation shows that there are 2 stereoisomeric
ground states (Fig. 1) which cannot coincide by
rotation.

In the present work, the ground state degeneracy
is investigated for a periodic array of N classical,
n-dimensional spins Si of modulus S2 = 1, sub-

FIG. 1. - A finite magnetic system with a discrete ground state
degeneracy. The C direction points into the paper and the C’

direction points out.
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mitted to an isotropic Hamiltonian, for instance a
bilinear Hamiltonian :

We shall assume n &#x3E; 2 throughout this paper.
The cases n = 2 (XY model) and n = 3 (Heisenberg
model) are of special interest for obvious physical
reasons. The case n = 1 (Ising model) will not be
considered.

Sections 2 and 3 are devoted to the ground state
degeneracy, and in section 4, this idea is applied to
two-dimensional magnets at finite temperatures
T =A 0.

2. Bravais lattices with bilinear Hamiltonian. -

2. 1 GENERAL FEATURES OF THE GROUND STATE. -

If the spins are situated at the sites Ri of a Bravais
lattice, and if the Hamiltonian (1) acting on them has
the corresponding translation invariance property,
states of lowest energy are known [2] to be given, for
n &#x3E; 2, by:

where u and v are 2 orthogonal, unit vectors and Q
is one of the absolute maxima of :

Two values of Q are equivalent if their difference
is a reciprocal lattice vector. The set of non-equivalent
values of Q in the first Brillouin zone constitute the
socalled star of Q ; the star of Q is a discrete set
invariant under the symmetry operations of the point
group [3].

2.2 FIRST CASE : THE STAR OF Q CONSISTS OF ONLY
ONE ELEMENT. - This case is the most common in
Nature and is of no interest for the present work;
it includes : i) ferromagnets (when Q = 0) ; ii) a
class of antiferromagnets (when 2 Q is a reciprocal
lattice vector) ; classical antiferromagnets of this
class can be transformed into ferromagnets by the
transformation :

In this case, all states of lowest energy can be
reached from one of them by a continuous rotation
of the whole system of spins.

2.3 SECOND CASE : : THE STAR OF Q CONSISTS OF
MORE THAN ONE ELEMENT. - This case is less common,
but not exceptional in Nature [2, 4, 5]. For given
values of u and v, Q can assume a finite number of
discrete values, but the ground state has not necessarily
a discrete degeneracy, because of two possible mecha-
nisms :

i) The reversal of Q in (2) is equivalent to the
reversal of v, and the latter can be done continuously,
except for n = 2; therefore, the ground state has no
discrete degeneracy for n &#x3E;, 3 if the star of Q is
reduced to Q and - Q.

ii) Equation (2) always describes lowest energy
states, but not necessarily all of them; examples will
be given at the end of this section.

It is shown in the appendix that all lowest energy
states are described by (2), if n = 2 or 3, except if Q
has certain special positions in the reciprocal space.
When all lowest energy states are given by (2), the

ground state has a discrete degeneracy : i) for n = 3
if the star of Q is not reduced to Q and - Q ; ii) for
n = 2 if the star has more than one element.
An exhaustive list of the cases, where all lowest

energy states are not described by eq. (2), will not be
given here, and we shall be contented with a few
examples.

a) Spin dimensionality n &#x3E; 4. The simplest way
to obtain a lowest energy state, which is not given
by (2), is the addition of 2 states (2) with different
structure vectors Q, Q’, namely :

where 0 is an arbitrary phase, u, v, w, m are 4 unit
vectors, which must be orthogonal to satisfy the

condition I Si I’ = 1. Q can be continuously changed
into Q’ by varying 0 from 0 to n/2.

b) If 2 Q = i is a reciprocal lattice vector,
sin Q . Ri = sin Q’ . Ri = 0, so that v and m disappear
from equation (4), and only 2 orthogonal, unit vec-
tors u and w are required ; equation (4) now reads :

These states exist for all values of n &#x3E; 2 ; again the
transition from Q to Q’ can be done by a continuous
transformation.

c) If 4 Q = r is a reciprocal lattice vector, and
is 2 Q is not, this is again possible for n &#x3E;, 2, though
it is not obvious from (2). This can be explained as
follows : let F be the set of spins parallel to u in the
state (2), and let G be the set of spins parallel to v :
the spins F see no field produced by the spins G (and
vice versa) ; this is obvious, because otherwise the
spins would align parallel to the same direction.

Therefore, it is possible to tilt the spins G without
energy change :
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In particular, the spins can be aligned (qi = 0), and
then it is possible to add two states with different
values of Q, obtaining a state described by :

Again Q can be changed into Q’ by the continuous
transformation of 0 from 0 to n/2.

Remarks :

i) Cases (b) and (c) involve colinear structures

(in addition to canted structures) which can be
considered as starred antiferromagnets. Colinear struc-
tures can be obtained only for Q = 0 or 2 Q = r
or 4 Q = i, where r is a reciprocal lattice vector;
Cases 3 Q = r or 6 Q = r, for instance, have no
special properties.

ii) Cases (a), (b), (c) are not the only examples
of structures not described by (2) ; another example of
minor experimental interest is provided by the case
when 2 Q lies on a Brillouin zone boundary, for
certain symmetries.

iii) The values Q = 0, i/2 and i/4 are favoured by
symmetry [18], as well as Q = i/3 or r/6, for certain
lattices. Other commensurable values are not favour-
ed for purely isotropic interactions and can only
occur accidentally.

iv) The absence of discrete ground state degeneracy
in the above examples (a), (b), (c) is a pathological
feature of the bilinear Hamiltonian (1); biquadratic
terms, for instance, restore the discrete degeneracy,
as will be seen in section 3.

v) When all lowest energy states are given by (2),
the discrete degeneracy of the ground state is easily
seen to be 2 m for n = 2, and m for n = 3, if 2 m is
the number of elements of the star of Q.

2.4 ORDER PARAMETER. - When the lowest energy
states split into several continuous sets separated by
potential barriers, the various sets can be characterized
by the corresponding values of Q ; however, it is

preferable, in order to extend the theory to finite

temperatures T =1= 0, to define a local, observable order
parameter, as a function of the field Si.

For n = 2, such an order parameter is the following
quantity, which is a vector in the lattice space, with D
components which are pseudo-scalars in the spin-
space :

where a = x, y, z ; 0,,Si is defined for the cubic lattice
by :

where ax, ay and a., are the interatomic vectors along x,
y, Z.

At T = 0, the quantity Qi defined by (7) reduces to :

and its knowledge is equivalent to the knowledge of Q,
except if Qx or Qy or 6z is equal to n/2 a.

For n &#x3E; 3, no pseudo-scalar similar to (7) can be
derived from the two-dimensional field (2), but a
possible order parameter is the following D x D
tensor, whose components are scalars in the spin-
space :

At T = 0, the knowledge of qfY is equivalent to the
knowledge of Q, except for certain special positions
of Q.
The difference between Heisenberg and XY models

is related to the difference which was noticed in
section 2. 3.

3. Bravais lattice with biquadratic interactions. -

Biquadratic interactions are the simplest sophisti-
cation of the model (1), which does not violate the
isotropic character. The Hamiltonian becomes :

There is no general recipe for the ground state.
It can happen, however, that the classical ground
state is still given by (2). In particular, positive gij’s
stabilise colinear states encountered in section 2.3 :
0 = 0 or n/2 in eq. (5) and (6b), ip = 0 in (6a). More
generally, biquadratic interactions can restore the
discrete degeneracy of the ground state.

Results from sections 2 and 3 are summarised in
table I.

TABLE I

Existence (Yes) or non-existence (No) of a discrete
ground-state degeneracy for Bravais lattices having a
state of lowest energy described by equation (2). In
cases denoted by a star, biquadratic terms are necessary
for a discrete ground state degeneracy. The list is not
exhaustive.
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An interesting case, for n = 3, is when the ground
state is not described by eq. (2), but instead contains
Fourier components Q, Q’, Q" which do not belong
all to the same star; an example is provided by Erbium,
where Q’ = - Q and Q" = 0 :

The essential difference with the cases considered
in section 2 is that there is a discrete, double degeneracy
for n = 3 even if the star of Q is reduced to Q and
- Q, since it is impossible to transform Q into - Q
in (10) by a continuous transformation without cross-
ing an energy barrier. A possible order parameter is
the following set of 2 pseudo-scalar components :

where

where gii = 1 for nearest neighbours, gij = 0 other-
wise.
The structure (10) can be produced by anisotropic

forces, but also by biquadratic, isotropic exchange.
Similar structures with Fourier components Q, - Q
and 0 can also result from bilinear, isotropic exchange
forces in non-Bravais lattices.

So far, only the ground state properties have been
considered in this paper. In the next sections, the
consequences of a discrete ground state degeneracy
on the properties of two-dimensional magnets at

finite temperature are investigated.

4. Application to magnetism in two-dimensional
lattices. - 4.1 THE MERMIN-WAGNER THEOREM AND
THE SPIN-PAIR CORRELATION FUNCTION. - The theorem
established by Mermin and Wagner [6] for ferroma-
gnets and antiferromagnets can easily be extended to
all magnets described by the Hamiltonian (1) for
n = 3 and short range interactions, on a two-dimen-
sional lattice : the Mermin-Wagner theorem states
that the staggered magnetisation :

has a vanishing limit at all finite temperatures when
the applied staggered field goes to zero.

In the ferromagnetic case, it is commonly admitted
that the spin pair correlation function  Si. S j )
has a limit when the distance rij goes to infinity. This
limit is obviously ( Si &#x3E;’, and the Mermin-Wagner
theorem implies that it is zero for two-dimensional
lattices if T i= 0 :

We suggest that all two-dimensional, isotropic
magnets with n &#x3E; 2, have the property (12), whatever
be their structure (ferromagnetic, antiferromagnetic,
helimagnetic...). For n = 2, the property (12) results
from any approximation, for instance the harmonic
approximation, proposed by Wegner [7] for ferroma-
gnets, and which can easily be extended to heli-

magnets (i.e. structures given by eq. (2) when 2 Q i= i) ;
the extension of the statement (12) to higher values of n
is justified by the fact that the increase of n is expected
to increase fluctuations, and therefore to decrease
correlations. Eq. (12) can be proved for n = oo

(spherical model).

4.2 PHASE TRANSITIONS IN TWO-DIMENSIONAL, HEI-
SENBERG OR XY MAGNETS. - We shall now argue that
two-dimensional magnetic systems which have a

discrete ground state degeneracy do exhibit some kind
of long range order (L.R.O.) at low temperature,
and therefore have a transition at some temperature
T,. More precisely, the XY helimagnet considered
in section 2. 3 c) satisfies for T  T,, the property :

where Q" is defined by (7). The Heisenberg helimagnet
described in section 2.3 d) satisfies for n = 3 the

property :

where qaY is defined by (8). The system described by (10)
at T = 0 has below Tc the property :

where T? is defined by (11). Properties (13) to (15)
do not contradict equation (12) nor the Mermin-
Wagner theorem.

4.3 THE ARGUMENT. - For properties (13) to (15)
at low temperatures, is as follows. For definiteness,
we shall argue on the XY helimagnet (eq. (13)) but
the argument is general.

First, if KB T is much lower than the typical exchange
interaction I J 1, Qi is nearly equal to one of the maxima
of 3(k) at nearly all sites (1). This can be seen from
a standard spin-wave calculation in a finite volume CO’
containing L 2 unit cells. This calculation will not be
explicitly given here, but it is quite similar to that of
Berezinskii and Blank [8] for ferromagnets. It starts
with the assumption that Si is given by the expres-
sion (2), plus small deviations bSi; neglecting third
and higher order terms in 65; in the Hamiltonian, one

(1) This argument is for a continuous model, when Qi is defined
by (7) again, but ocxSiis an ordinary gradient ; in this case, Qi reduces
to Q at T = 0. The extension to a lattice only implies a change of
vocabulary.
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calculates ( ðS? ), which is indeed found to be small
if L  exp J 1/ KB T, the self-consistency condition.
The fluctuation ( (Qi - Q)2 is calculated in the
same way and is also found to be small, so that Qi
is almost equal to one of the maxima Q of 3(k) at
almost all sites i.

This statement is also expected to be true at low
temperature for an infinite magnet, since an infinite
magnet can be considered as an assembly of interact-
ing cells of size L 2, and the interactions can just
increase the tendency that Qi lies close to one of the
maxima of 3(k).

There are, however, a few sites at which Qi is not
close to one of the maxima of 3(k) ; the problem is :
can these few sites destroy L.R.O., i.e., can they make
equation (13) wrong ? Clearly, they can only destroy
L.R.O. if they are concentrated in frontiers separating
regions having different values of Q. For a discrete
order parameter, frontiers must be narrow at low

temperatures since their entropy is irrelevant and
their energy is proportional to their thickness. The
energy of a narrow frontier per unit length is of

order J 1, and its entropy is of order KB. Therefore
the ordered state (when Qi is close to the same element
Q of the star at almost each site) is stable with respect
to the formation of one frontier, provided KB T  1 J I .
A long range ordering of the type described in sec-
tion 4.2 is therefore expected below a transition

temperature of order :

4.4 DIsCUSSION. - We have given a rather rough
argument, for the sake of brevity and simplicity,
but it can easily be improved ; also note that it can

easily be extended to quantum systems. It can also

be extended to 3-dimensional spins with an XY
anisotropy, and in this case, the semi-polar repre-
sentation [9] can be used, with the advantage that the
spin-wave calculation can be performed in an infinite
sample at once. In the Heisenberg case, however,
the method of section 4. 3 is the only one which can
be applied.
Also for the sake of simplicity, we have given the

order of magnitude (16) as a general result; this is
not strictly true; more generally, KB T,, is expected to
be of order L1, where L1 is the energy barrier between
the various maxima of 3(k). It can happen that L1

is appreciably lower than J 1, for instance near

a Lifshitz point [10, 11, 12, 13] and this probably
explains why the Neel temperature of the (expectedly
quasi-two-dimensional) helimagnet BaCo2(As04)2 is
much lower than the average exchange interaction I J 1
(see ref. [14] and [15]).
A possible approach to helimagnets has been

described by Mukamel et al. [4] and by Garel [5],
who show that within the Landau-Wilson formulation
a helimagnet is equivalent to an anisotropic ferroma-
gnet with (2 nm)-dimensional spins, if 2 m is the

number of elements of the star of Q ; in this approach,
the possibility of L.R.O. at low temperature would
probably result from the anisotropy.
A final remark is that a transition is expected at a

temperature of order J 1/ KB for two-dimensional

ferromagnets of the XY type [16], but this transition
involves no long range ordering, in contrast with

properties (13) to (15). The ordering described in this
section in even more spectacular for Heisenberg
systems, since conventional, Heisenberg ferromagnets
are presently believed to have no transition [17].

APPENDIX

Discrete degeneracy of the ground state of the

Heisenberg model on a Bravais lattice, when the struc-
ture vector Q is not in a special position. - It is easily
shown [2] that the classical ground state of (1) on a
Bravais lattice is the solution of the system :

The summation in (A .1) is over the elements of the
star of the maxima of (3). Eq. (A. 2) yields :

Eq. (A. 4) yields, after insertion of (A. 1) :

or :

where the sum is over the elements Q, Q’ of the star
and over the reciprocal lattice vectors T.
When Q’ = - Q, there is generally only one term

in the sum at the L. H. S. of (A. 5). The exception is
when there are 3 elements Q, Q’, Q" of the star, which
satisfy :

This equation can only be satisfied if Q has a
particular position; for instance, if 4 Q = i (A.6)
is satisfied for Q’ = Q" = - Q ; it will be assumed,
from now on, that (A. 6) is not satisfied by any 3
vectors of the star. In this case, insertion of Q’ - - Q
into (A. 5) yields :

or :
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where yQ is a real number, uQ and vQ are orthogonal
unit vectors. According to (A. 4), one can choose :

When Q’ =1= - Q, the sum at the L.H.S. of (A. 5)
generally consists of several terms, and the discussion
should be continued separately for each type of

symmetry; the forthcoming discussion assumes that Q
is in general position; in this case, the summation over
i in (A. 5) can be limited tor = 0.

a) Monoclinic lattice. - The star consists of 4
vectors ± Ql, ± Qo, which form a rectangle. One
of the two quantities yo, yl can be assumed to be
different from zero, for instance yo :0 0. If, in addition,
y, 0 0, uo, ul, vo, vi must satisfy the following set of
equations, which is easily deduced from (A. 5) :

In addition, Uo.Vo = UI.VI = 0. This system has
solutions for n &#x3E; 4, and they correspond to the
structure (4). For n = 2 or 3, (A. 9) has no solution,
therefore Y, = 0 : this corresponds to equation (2).

b) Orthorhombic lattices. - The star consists of
8 elements : ± Qo, + Ql, ± Q2, ± Q3 ; let Qi,
Q2, Q3 be deduced from Qo by symmetries through 3
orthogonal planes; assuming yo, yl, Y2 =1= 0, one

deduces from (A. 5) the following homogeneous
equations :

In view of the orthogonality of u and v, it is easily
seen that these relations cannot be satisfied by unit
vectors; therefore, one of the yk’s is zero, for instance
Y2 = 0 ; but, in this case, the argument (b) can be
applied to Qo, - Qo, Q, and - Ql, and yields
yo = 0 or y, = 0; the same argument as above holds
if Q2 is replaced by Q3. The final result is that only
one of the 4 numbers yo, Yl, Y2, Y3 can be different
from zero, so that all lowest energy states have the
form (2), when n = 2 or 3.

c) Tetragonal lattices. - The star consists of 16 ele-
ments ; let Ql, Q2, Q3 be deduced from Qo by rota-
tions of 7r/2, 7r and 3 7r/2 around the tetragonal axis,

and let ± Q’O, ± Q’, ± Q2 and ± Q’ be the other
elements. According to the same argument as in b),
yl and Y3 should vanish if yo 0 0 ; yl and y3 also
vanish if one assumes Y’ 0 0 0, for instance, if

the argument b) can be applied to show that not more
than one of the 3 quantities yo, y’, Y2, Y2 can be diffe-
rent from zero if n  3, so that all lowest energy
states have the form (2).

d) Hexagonal lattice. - In the general case, the
star of Q consists of 24 vectors : let Qi ..., Q11
be deduced from Qo by rotations around the hexa-
gonal axis c, and by symmetries through planes parallel
to c ; let Qp+6 be symmetric of Qp with respect to
the c axis ; assume yo =A 0 ; then the argument b)
can be applied to the 8 vectors ± Qo, ± Q6, ± Qp,
± Qp+ 6 to show that yp = 0 for all p 1= 0 or 6 ;
finally the argument a) can be applied to the 4 vectors
+ Qo and ± Q6 to show that Y6 also vanishes. The
reason why Y6 should be considered at the end of the
argument is that there are many vectors (Q, Q’)
satisfying 6Q’,Q + Q. + Q6 :0 0, so that the term contain-
ing Yo y6 is associated to many other terms in (A. 5).
Again, all lowest energy states are described by (2) if
n = 2 or 3.

e) Rhombohedral lattice. - The star of Q is reduced
to 12 elements and can be deduced from the star

corresponding to the hexagonal lattice, by the sup-
pression of 12 vectors, or, alternatively, by the require-
ment that the corresponding yp’s vanish; therefore,
the conclusion that only one of the yp’s can be diffe-
rent from zero, remains correct.

f) Cubic lattices. - The proof is analogous but
tedious.

g) Exceptions. - The argument applies whenever
it is impossible to find 4 vectors Q1, Q2, Q3, Q4
of the star, which satisfy :

where r is a reciprocal lattice vector. (A 10) is a

generalization of (A. 6), since (A. 5) corresponds to
Qs = Q4
The fact that Q eventually lies on a symmetry plane

or axis apparently does not change the general result,
since this does not imply that (A. 10) is satisfied.
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