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MECHANICAL INSTABILITIES OF SMECTIC-A LIQUID CRYSTALS
UNDER DILATIVE OR COMPRESSIVE STRESSES

R. RIBOTTA and G. DURAND

Laboratoire de Physique des Solides (*), Université Paris-Sud
91405 Orsay, France

(Reçu le 30 août 1976, accepté le 4 novembre 1976)

Résumé. 2014 Un modèle utilisant l’élasticité de type mixte introduite par de Gennes est construit
pour décrire le comportement de cristaux liquides smectiques A soumis à des forces de compression
ou de dilatation normales aux couches.
Ce modèle prévoit deux types d’instabilités mécaniques, respectivement : basculement des molé-

cules dans les couches et ondulation des couches. On donne les expressions pour les seuils d’instabilités
et l’amplitude des déformations produites. Les résultats expérimentaux sont présentés qui confirment
ces prédictions et donnent des mesures de la rigidité (B~) des couches relativement au basculement
des molécules, et de la longueur de pénétration 03BB de de Gennes. On observe en outre une dépendance
en temps de l’amplitude de la déformation qui est expliquée par un processus de relaxation de la
contrainte appliquée, dû au mouvement de dislocations-coin. La variation des seuils en fonction de
la température est étudiée dans des corps qui présentent des transitions de quasi second ordre vers
les phases nématiques ou smectiques C. Au voisinage d’une phase nématique le seuil d’instabilité
d’ondulation, et donc 03BB, diverge comme prévu, mais avec un exposant critique apparent 0,16 très
inférieur à la valeur prévue pour l’exposant v/2 (on s’attend à 0,25 dans un modèle de champ moyen
et à 0,33 dans un modèle non classique de type transition 03BB de l’hélium). Ce large désaccord n’est pas
expliqué encore. Au voisinage d’une phase smectique-C le module de rigidité B~ s’annule avec un
exposant critique apparent de type classique 03B3 ~ 1.

Abstract. 2014 Using the mixed-type elasticity for smectics introduced by de Gennes a model is
built to describe the behaviour of homeotropic smectic-A liquid crystals submitted to compressive or
dilative forces normal to the layers. This model predicts respectively two types of mechanical instabi-
lities : molecular tilt inside the layers, or undulation of the layers. The expressions for the thresholds
of these instabilities and the amplitude of the deformations produced are given. Experimental results
are presented which confirm these predictions and give measurements of the rigidity B~ of the layers
compared to the molecular tilt and of the penetration length 03BB of de Gennes. In addition the time
dependence of the instabilities is observed and is explained in term of the relaxation of the applied
stress due to the motion (climb) of edge-dislocations. The temperature dependence of the instability
thresholds is measured in materials presenting quasi-second order transitions towards nematic or
smectic-C phases. Close to a nematic phase the dilative instability threshold and thus 03BB diverge as
expected, but with an apparent critical exponent (0.16), significatively smaller than the expected
exponent v/2 (0.25 or 0.33 in a mean-field or in a non-classical model respectively). This discrepancy
has not been explained yet. Close to a smectic-C phase the rigidity modulus B~ vanishes with an
apparent classical exponent 03B3 ~ 1.
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1. Introduction. - Smectic-A liquid crystals are

layered materials, with the molecules normal to the
layers. They have been shown to exhibit a mechanical
instability when dilative stresses are applied normal
to the layers [1, 2]. Above a critical displacement of the
boundary plates of an homeotropic sample, the layers
undulate in order to compensate the increase of the
sample thickness. It has also been shown [3] that in a

(*) Laboratoire associe au C.N.R.S.

smectic A phase, an external compression can induce
the C phase (the molecules tilt inside the layers). This
effect is easier to observe close to a smectic-A to
smectic-C transition. In this paper we first give a
theoretical model of these mechanical instabilities
induced in smectic-A liquid crystals : undulation

instability of layers under dilative stress, and tilt

instability of molecules inside the layers under

compressive stress. For this model we use de Gennes’
formulation of the elasticity for smectics [4]. We then
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present detailed measurements of the thresholds and
relaxation times which complete the previously
published letters [ 1, 3, 11,13, 14,15]. We measure the
observed temperature dependence of the thresholds
close to nematic and smectic-C phases in materials
presenting quasi-second-order phase transitions. We
analyze these variations in term of critical behaviour
of the elastic properties of the materials.

2. Theoretical treatment. - 2 .1 GENERAL DESCRIP-

TION OF THE MODEL. - We assume a homeotropic
smectic-A sample (Fig. 1) with the layers in the xDy
plane. We follow the notations of ref. [1]. The sample
thickness is d, the uniform displacement of the upper
plate is 6 (the lower plate is at rest). For dilations 6 is
positive while it is negative for compressions. The
non-uniform displacement of the layers which may
occur in the presence of the uniform external strain

X= 6/d is called u(x, y, z) ; lu/lx = 0 is the tilt angle
of the layer with respect to the x axis (see Fig. I b). We

FIG. 1. - a) Molecular arrangement of a smectic-A liquid crystal
(the molecules are sketched as ellipsoids). In the homeotropic
configuration the molecules are normal to the boundary surfaces
(generally glass plates). b) Deformation of a layer. The variable u is

measured along z. The local bend angle 0 = au/ax.

restrict ourselves for simplicity to a two-dimensional
problem and call T a possible tilt angle of the molecular
axis with respect to the normal to the layers ; the
director n is then at an angle (0 + T) away from Oz.

The contribution to the free-energy density, associated
with a general strain OulOz is :

where B is the isothermal normal compression
modulus of the smectic layers (B ~ 10’ dyne/cm’),
K1 is the Frank elastic constant associated with
the splay deformation (K1 ~ 10 - 6 dyne) and A is
the characteristic length defined by de Gennes

(A = (K1/B)1/2 N molecular length a = 20 A). The
contribution to the free-energy density, associated
with the molecular tilt Q is included in ref. [5] ; we
write it :

for small values of 9. 
Bl is expected to be comparable to B or smaller;

A_L is then of the order of A or larger. Close to a
smectic A H nematic second-order phase transition,
A, and A diverge, but their ratio is expected to remain
constant. (À.2/ À. 2 ~ (molecular length/molecular
width)2 ~ 16.) On the other hand, close to a second
order A - C phase transition, B is expected to remain
constant while Bl vanishes [5, 26] as (T - Tc)y
since -1 B Q2 is the first term of a Landau-like form
of the free-energy density for the C phase expressed
in terms of the square of the modulus T2 of its (tilt)
order parameter T ; in a molecular field approximation
y = 1 and y2 is expected to diverge accordingly at Tc,
assuming that Ki also remains constant.

In order to describe mechanical instabilities, we need
a non-linear term in the free energy. We write it by
extending an argument from de Gennes : in the

presence of molecular tilt (p, the normal layer thickness
is ao. cos 9 if we assume rigid molecules of length ao
(Fig. 2b). When the layers are also tilted (Fig. 2b), their
thickness measured along Oz becomes :

We assume that the total sample thickness d remains
constant, and that the total number of layers is
conserved (this assumption is correct at least in a
transient regime, since creation or annihilation of

layers is a relatively slow process related to permea-
tion). The combined molecular tilt and layer tilt results
in a strain

for small angles. The compression term (Ð2/2) leads to
a layer undulation instability under dilative stress ; the
dilation term (qJ2 /2) is expected to give rise to a

molecular tilt instability inside the layers, under
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FIG. 2. - a) Tilt of the molecules inside the layer. The decrease in
2

thickness is ~ ao Qo/2 . The layer is at rest. b) Effect of a tilt of the
layer. The increase of thickness measured along the Z direction
is N ao 0 2/2. Here the molecules remain locally normal to the layer.

compressive stress (1). To complete the description of
the model, we call K3 = sK, the Frank elastic constant
associated with the bend deformation. It is introduced
to take into account the effect of the solid boundaries

(we assume here a molecular orientation normal to the
surface). Usually 8 = 1, but it is expected to diverge [5]
as (T - Tc)-V (with v = 0.66) close to a second order
smectic-A-nematic phase transition.
The total free-energy density can now be written as :

where 0 is written as 0 = au/ax.
We assume that the instability amplitude is small

(i.e. 0 and Q are small compared to X, so that we can

expand the first term). We can also drop the bend term,
essentially because the spatial variation of Q and 0 is
usually more rapid along Ox than along Oz. We will
later give a more accurate result which includes this
term. F becomes now :

The instability is calculated using the following
method : we assume that a periodic distortion of T
(or u) spontaneously exists along Ox in a given plane
at height Oz, of the form cp (or u) = To (or uo). exp(iqx).
This distortion could be induced for instance by the
boundaries. The general expression for T(z) (or u(z)) in
the bulk is derived by minimizing the free energy
density F. For low enough values of the applied
stresses T (or u) is found to dampen out along z. The
instability is obtained for the stress value for which the
spontaneous distortion is no more damped but is

amplified in the bulk. The stress threshold is computed
by supposing that the distortion of diverging
amplitude is periodic along Oz, in the form of

T(z) (or u(z)) - T(x) (or u(x)).sin Tr/d.z for the first
mode of interest (for the higher periodic modes
(p(z) (or u(z)) - (p(x) (or u(x)). sin nnld. z, where n
is an integer).

2.2 TILT INSTABILITY OF THE MOLECULAR AXIS

INSIDE THE LAYERS (OR BUCKLING OF THE DIRECTOR)
UNDER COMPRESSIVE STRESS. - 2.2.1 Equilibrium of
the molecular axis in the presence of a static defor-
mation. - Let us assume a given periodic uniform
undulation of the layers induced for instance by the
boundaries, with a wave-vector q and of the form :
0(x) = 00 exp(iqx). The equilibrium equation for cp is :

the solution of which is :

In the absence of external stress, the equilibrium
molecular tilt is opposed to 0, and tends to decrease
the amplitude (0 + T) of the angular oscillations of
the director. Close to an A ----&#x3E; C phase transition,
A,2 diverges and one gets essentially : T + 0 = 0, i.e. a
situation corresponding to a homeotropic crystal.
Far from the transition, the molecular tilt is very weak,
because Â. 2 q2 is much smaller than 1. Whatever its

amplitude may be, the effect of the molecular tilt is to
lower the Frank distortion energy.

2.2.2 Mechanical instability of the molecular axis
under compressive stress. - One immediately obtains

(1) This model can also describe the behaviour of non-rigid
molecules using an adjustable parameter a instead of the coeffi-
cient 1/2 (see § 2. 5. 2).
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a molecular tilt instability (or buckling of the director)
inside the layers by applying a negative stress (compres-
sion) corresponding to the strain :

which induces a divergence of T for a finite value of 0.
In the limit of vanishing q, the compression threshold
is given by :

We shall confirm later, by studying the coupled
instability in T and u, that the molecular buckling
appears first at q = 0. For a normal smectic-A,
X, is relatively large (X - 10-1) and may be difficult
to realize.
However, close to an A -&#x3E; C second-order phase

T-Tc Y( T - cT )ytransition, Xc goes to zero as Tc c and the

effect should be spectacular. We can estimate how close
to Tc one has to be in order to observe easily the
molecular tilt. A reasonable I Xc I would be compa-
rable to the value necessary to induce an undulation

instability of layers under dilation. That occurs (see
next section) for Xd - A2 q’, with q2c _ 7r/Ad. Assume
a molecular field exponent value y = 1. B 1. is of the

kB Tc (T - Tc)order of kB Tc T T where k is the Boltzmannabc Tc 
a

constant and abc is a molecular volume. The result
is À - 2 ~ 1011(T - Tc) c.g.s. A 15 )nm thick sample
gives qc2 ~ 1010 i.e. (T - FJ - 0,1 OC for I Xc Xd.,
a value which is very easy to produce. A measurement
of the temperature dependence of Xc close to an A H C
transition should then give the exponent y.
The influence of the bend term is calculated in the

last section. It just adds a temperature independent
term (Eqc4 A’4) to Xc. This shift is very weak, even for
relatively thin samples (d = 15 gum). With the above
data one must approach as close to Tr as 30 micro-
degrees to observe it, and that is beyond the present
experimental capabilities. This shift would be more
important close to a smectic-A to nematic phase
transition because of the divergence of K3. However
in that region Xc is usually too large to be produced
easily and the bend-shift effect on Xc remains academic.

In practice, calling f the compressive force exerted
by the plate on the sample of area S, it results directly
from Hooke’s law that the pressure is ,f /S = Bbld.
The tilt appears then for a critical stress that can be

expressed as :

The modulus Bl can be measured directly by the
critical pressure corresponding to the tilt instability
threshold. The distinction between critical stress and
critical strain (previously introduced in § 2.2.2) may

appear academic in linear elasticity of an ideal
smectic.
For a real smectic, in the presence of defects, the

physical quantity defining the threshold is the critical
stress.

2.3 COUPLED MOLECULAR AND LAYER TILT INSTA-
BILITIES. - The general form (2) for the free energy
contains two unknown functions u and Q of x and z.
The extremum condition for F gives now two coupled
differential equations to describe the equilibrium
situation, namely :

and one written previously :

We look again for periodic solutions of wave vector q
along Ox. We already know a situation where (p
and u are decoupled ; when we make X = Xc in eq. (3)
T becomes large, independently of u. Similarly, it is

possible to get a solution of large u, independent of Q,
by equating to zero the l.h.s. of eq. (5), which gives :

X = Xd with Xd = A2 q2(l + qc/q4). Xd is the
threshold for layer undulation under a dilative stress.
Xd is minimum (Xd = 2 A2 qc2 ) for q = q,, with

qc2 = n/ Â,d; it corresponds to a displacement of the
upper plate of d = 2 7rA, independent of d.

Avoiding these two pathological situations, we now
look at how a given undulation of u and Q along x is
damped inside the material, following the method
of ref. [7]. We write u - v(x). w(z). Using (4) to

eliminate T, we obtain :

2.3.1 Attenuation in the absence of strain. - For
X = 0, this equation has exponential solutions of the
form w = wo . exp( ± z/L ) with an attenuation length L
given by LÀq2 = (1 + A2 q2)1J2, Calling LA the
attenuation length in a smectic-A crystal with non-
tiltable molecules [7], one obtains :

To understand this increase of L in presence of tilt,
we must remember that L is the distance along which a
spontaneous layer displacement u relaxes the Frank
energy implied by an initial undulation. As the
molecular tilt qJ decreases the Frank energy, it takes a

longer distance L for u to dampen out. For usual
smectic-A, the difference between L and LA is negli-
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gible. It becomes important at the A -&#x3E; C transition
in the same range of temperature as the one previously
suggested for measuring Xc. In the limit of large A1 q,
L becomes essentially nematic-like for its q depen-
dence : L = AJ_IA. 1 /q, but with a diverging coeffi-
cient Âl/Â. The nematic-like behaviour expresses the
fact that there is no more coupling between the direc-
tor and the layer displacement. Another interesting
situation is the smectic-A -&#x3E; nematic transition; A and
A,1 diverge, but their ratio is expected to remain finite.
Here too L has the nematic-like value A,_IA. I lq, but it
remains finite. One expects then a strong decrease of
the light scattering signal from static undulations of
layers induced by boundary irregularities, at the
A H N transition.

2. 3.2 Instabilities in the presence of strain. -
2. 3. 2 a) General solutions. - An instability appears
when, instead of damping out, a small undulation
blows up along z. With the assumed boundary condi-
tions, that corresponds to iv/w = - (n/d)2. (6) gives
now :

or, using the qc notation :

For a given q, there are now two threshold values X+
and X_ for the strain giving rise to instabilities, which
are the roots of (8) or (8’). These roots have opposite
signs, so there are in general compression and dilation
instabilities which of course, need not appear exactly
for Xc or Xd. Physically, we are interested in the
minimum value of the moduli of these roots ; for a

given À. 2 / À. i (i.e. a given material at a given tempera-
ture), we look for the optimum wave-vector such that

2 = 0. We obtain the extremum condition :a(q )

which tells us immediately that at threshold, dilation
instabilities have a wave-vector equal to or larger
than qc, while compression instabilities have a wave-
vector smaller than qc. The solutions X+ are given by :

Let us calculate now approximate expressions for X*
in the two limits of a rigid smectic-A (A’IA’ -&#x3E; 0) and
of the A -&#x3E; C transitions (,A2, /A2 -&#x3E; oo).

2.3.2 b) The rigid smectic-A. - In the limit

A2 &#x3E; 0, X+ obviously tends towards Xd. X+ is given
here by X+ = Xd - ,1,2 A2 q4 ; the optimum wave-
vector is now q2 = q 2(1 + A2 q2) . These expressions
apply very well for a normal smectic-A, where

À.. qc  1. The decrease in threshold when molecular
tilt is allowed is easy to understand : the undulation

appears when it is energetically more favourable to
produce a Frank distortion than a uniform dilation.
As the Frank energy is relaxed by the molecular tilt,
the threshold is lower; T remains very small compared
to 0.
To calculate X_ , we assume that not only ,1,J.. but

also q goes down to zero. The diverging terms A2 qc4 /q2
cancel exactly and one finds X - = - A2/A2 = Xc,
with q = 0, from the extremum condition (9).
T diverges above Xc and is essentially uncoupled to u.

2.3.2 c) The A -&#x3E; C transition (non-rigid smec-
tic-A). - When A2 /A2 diverges, X+ is given by :

a finite optimum value for q, (q &#x3E; qc), is impossible
because the extremum condition (9) would give
X -&#x3E; 0, incompatible with ( 11 ) ; q should then diverge,
and X+ is given by :

One gets the optimum q from (9) : q2 = qj À.L q,,
which diverges. From (4), we note that (0 + T) is zero.
One can visualize this undulation instability of

infinite q as a smectic-A to a quasi-nematic phase
transition under dilation, since molecules slide against
each other to counteract the applied strain. This

picture is of course of limited interest, since non-linear
terms in the expression of the energy density F become
important for large 0 or large T. The second threshold
X_ is now given by

the optimum q is obviously q = 0, and X_ = Xc. This
result is in fact of a more general validity. From the
optimum relationship (9) one deduces that X_ can
vary from 0 to Xc, when q goes from qc to zero. Now,
substituting X = Xc in (8), we find that Xc is always
included between X+ and X_. The compressional
minimum threshold is then always X_ = Xc with
q = 0 ; Q diverges independently of u.
One can now draw a diagram giving the evolution

of X+ and X_ = Xc versus À i/ À 2 (Fig. 3). This diagram
allows us to predict that close to the A -&#x3E; N phase
transition, because the ratio Al I /A2 is constant, the
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measurement of X+ is a good way to follow the
divergence of A, the corrective factor coming from the
possible molecular tilt remaining constant.

FIG. 3. - Diagram of the evolution of the thresholds X+ for the
compression instability and X_ for the dilation instability, as a
function of the parameter À. 1./ À. characteristic of the smectic phase.

2.4 INFLUENCE OF THE BEND OF THE DIRECTOR. -

u and T are now integrals of the equations :

and

For a periodic solution of wave-vector q, one gets
the compatibility relationship :

and one immediately sees that the new thresholds Xd
and Xr are shifted upwards by the quantity Xs = 8qj À 4.
This shift simply represents the additional dilation or
compression necessary to balance the bend energy ;
in effect,

gives Xs = 8qj À,4. In practice XS is hardly visible, even
when B diverges (for instance close to a smectic-A-
nematic second-order transition). The new extremum
condition is here :

and the new displacement threshold in dilation is :

the correction factor diverges as (T - Tc) - 1 since

and

(see ref. [6, 26]). Starting from a value of the order of
3 x 10 - 4 for the correction factor [taking the worst
case : d - 30 pm and 8 - 2] at a few degrees off Tc,
one has to go as close as a few millidegrees from Tc to
see its effects.

When A’ L diverges, a simple calculation shows
that X+ is not affected at all by the bend, since the
Frank energy is totally relaxed by the molecular tilt.

2.5 AMPLITUDE OF THE DEFORMATIONS ABOVE

THRESHOLD. - For simplicity, the amplitudes uo
and To are calculated separately in the two simple
cases of pure undulation of layers under dilation
(- uo), and pure molecular tilt under compression
(-&#x3E; Qo). To do so, we take in the linear approximation
(close to threshold) solutions in the form of periodic
functions of the appropriate variables. The free-energy
density F is integrated over the sample volume to
eliminate the spatial variation. The odd powers of the
amplitude (uo or TO) vanish and Fcan be expressed as a
polynomial in U2 (or (p2) which is a kind of Landau
expansion versus the order parameter u (or T). We
only keep the two first powers in this expansion. The
equilibrium amplitude corresponds to

in each case.

2 . 5 .1 Undulation instability of the layers. - We use
for Fthe simplified form in which q = qc :

where 0 = au/ax, X = bld, and 6 is the imposed
displacement.

In the bracket we keep the { 04 } term coming from
the expansion of cos 0. The undulation amplitude is
assumed to be in the form :
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One gets after integration over x from 0 to 2 n/qc
and over z from - d j2 to d/2 :

Above the threshold defined by bth = 2 nÀ. one obtains
for the amplitude, after making b/d  1,

The linear regime is defined by 0  1, or uo  (Ad/7r)1/2’.
Experimentally, as will be exposed later we need
to explore, at most, a range of displacements 6
such that 616th  2 in order to determine the threshold
value 6t.. For 6 = 2 dth we would get uo £r 90 A and
0 ~ 10-2 rad. Thus the condition for the linear regime
is always fulfilled.

2.5.2 Tilt instability of the molecules inside the

layers. - We use the same procedure with :

and we assume a solution of the form Q = Qo cos (nld) z.
Starting from a perfect unperturbed sample (i.e.
neglecting the case of an undulated structure due to
static deformations), we only have to compute the
integral of F over the thickness { - dl2 -&#x3E; d/2 } ; we
obtain the expression :

and the tilt amplitude above threshold is now :

Here we see that, to remain in the linear regime
(Qo  1), one needs to use very low relative strains.
In effect I X - Xc/Xc I must be less than about
3 x 10-2 for go  10-2 rad.
From these results we expect to find a linear varia-

tion of the square of the deformation amplitude versus
the applied strain, for both instabilities. As will be

shown later this is observed in a light scattering
experiment, provided the scattering geometry is
chosen in such a way that the scattered light intensity
is proportional to u’ (or T’).
Remark : In the simple model described here we

made the assumption of rigid rod-like molecules.

Taking into account the possibility of the molecule
bending would lead to the introduction of new terms
in o2 and 04 (or qJ2 and qJ4) in the above expressions.
In effect the molecules are generally composed of two
parts : a central part made of aromatic nuclei, which
is very rigid, and the aliphatic chain which may be
flexible. Moreover the flexibility of this chain may vary
with temperature [8, 9] and under mechanical stresses.
Thus in a more refined model the elastic description
of the layers should include at least these terms. For
example one could introduce in the first bracket of
the free-energy density an adjustable parameter a
before the Q2o term.

2.6 SIMPLE MODEL TO DESCRIBE THE DYNAMICS OF
THE INSTABILITIES. - The elastic behaviour of the
structure under stresses normal to the layers is strongly
dependent on the physical characteristics of the

crystal. In order to describe in the simpler way the
dynamics of the instabilities we must take into
account :

- the motion of structural defects still present in a
real sample,
- the hydrodynamical flow,
- the influence of the boundaries on the velocity

field.

2.6.1 Motion of elementary defects of structure. -
The simplest defects we may think of are edge
dislocations (Fig. 4a) that can move under the action
of the external forces applied to induce the instabilities.
These dislocations glide between the layers in order to
compensate the effect of the uniaxial stress. This
motion (climb) is controlled by the permeation process.
Such a motion has the effect of adding or subtracting
extra layers when respectively dilative or compressive
forces are applied, and tends to relax the applied stress.
Therefore, it should control the dynamics and the
duration of the instability.

2.6.1 a) Simple model for the calculation of the
dislocation velocity. - Let us consider an edge dislo-
cation of Burgers vector b contained in the middle
plane of a perfect sample (Fig. 4b). At equilibrium the
compression energies per elementary volume defined
as : d . L , k (where d is the sample thickness, L is the
edge-dislocation line length and k is some arbitrary
length unit along the x direction) can be written as :

and
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FIG. 4. - a) Two types of edge dislocations. The larger one

sketched here is in fact composed of two disclinations of opposite
sign. b) Motion of an elementary edge dislocation under a dilative
force. (The dilation is d). F is the friction force and v is the dislocation
velocity. c) Periodic distribution of the strains inside a smectic

The energy variation in a displacement value x of the
dislocation is then :

and the friction force per line of unit length is :

Equating this expression to the one given by
de Gennes [25] for the friction force as :
F = r¡Kb V (where q is a viscosity and x is a para-

meter of the order a’ 1)., we get for the velocity V the
expression :

crystal subjected to a dilative force. The regions C are undergoing the
highest strains. d) Approximate model for the distribution of the
velocities in an undulated structure. The tangential velocity VT
vanishes over a thickness dl (boundary layer) of the order of some

molecular lengths.

2.6.1 b) Transit times of the dislocations : The
dislocations which contribute to the dynamics of the
instabilities can be supposed to have different loca-
lizations or origins.

First a finite density of dislocations of opposite sign
can exists everywhere in the bulk,
- some dislocations can be nucleated from the

surface irregularities or from anchoring defects ;
- others can be attracted towards regions of high

strains resulting in the local stress relaxation. In a
perfectly undulated structure where the undulation
amplitude vanishes on the solid boundaries such

regions are periodically located close to these bounda-
ries (Fig. 4c), the spatial period being equal to 2 7r/q,,:
at threshold. However in the middle of the sample
thickness the normal strain is constant ;
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- in the bulk, but far from the central part, we may
suppose a constant density of dislocations per unit
area. When undulations occur these dislocations are

trapped inside the regions of high deformation. At
threshold the distance between these regions is of
about nlqr.

One can also imagine that edge dislocations come
from the edges of the sample and relax the total stress
on the whole sample area. They are expected to move
in the central part where the stress is constant along Oz.

In any case the applied stress is totally relaxed when
the number n of extra layers coming into the studied
area is at least such that n.a = 2 nA i,e, n ~ 6 (since
À. ~ a).
The characteristic relaxation times for these

processes are given by the transit times of the defects.
The time corresponding to the first process is

Taking the values B - 2 x 10’ cgs (ref. [1]), ’1 = 0.4 cgs,
K -1 N 20 A and d = 100 J.lm we get T1 ~ 50m.s
for the relaxation time of the local stress. For dislo-
cations coming from the bulk the transit time through
the observed area (area illuminated by the laser
beam of radius r ~ 0.5 mm) we get a typical time
t 2 ~ r/ V ~ 25 s, for the uniform relaxation of the
stress. In fact the typical transit times should be
smaller in a sample with large layer defects. In that
case the distance to take into account is likely to be
smaller than the laser beam radius r.
For comparable dislocation densities we expect the

transit times (over the same distances) to be much
shorter when compressive forces are applied, because
close to threshold the relative displacement b/d is

much larger than when a dilative stress is applied.
Then the relaxation of the stress is expected to occur
within a much shorter time. In effects, 6/d is typically
ten times larger in the compression experiment than
in the dilation one.

2. 6.1 c) Temperature dependence of these relaxa-
tion times close to second-order phase transitions. -
Dilative stress : Using simple arguments from
Brochard [26] and de Gennes [5] it is possible to show
with the expression found for the dislocation velocity,
that close to a second order smectic-A to nematic
transition this velocity should increase and the

relaxation time id decrease. In effect B varies as

(Tc - T) 0.66, K ~ (Tc - T)1l2 and 1:d should vary
like (Tc - T) - 0.16 assuming a constant Burgers
vector. Thus in our model the temperature dependence
of the relaxation time is not expected to be very
important.
- Compressive stress : Close to a second-order

smectic-A to smectic-C phase transition the elastic
modulus B is not expected to show a temperature
dependence. The viscosity q is expected to show a
negligible variation [26]. However, close to a smec-

tic-C phase our model for the dislocation velocity
may be quite inadequate. It is suggested by F. Brochard
(private communication) that in effect the dislocation
motion would be limited by the slower sound wave.
Here it would be the second sound (fluctuations of
layer thickness with a constant density) that controls
the edge-dislocation motion. And since close to

an A -&#x3E; C transition the second sound velocity
decreases [26], a corresponding decrease in the dis-
location velocity (and thus an increase of the relaxation
time of the instability) could be expected.

2 . 6 . 2 The hydrodynamic flow ; boundary layer. -
De Gennes has calculated [25] the thickness variation
rate of a defect-free smectic-A sample undergoing
stresses normal to the layers. He introduces the

concept of a boundary layer in order to satisfy the
boundary conditions for the tangential velocity field
and for the pressure. This boundary layer 61 is express-
ed as 62 - x. K-1 where x is the distance measured
along the boundaries over which the velocity (or
pressure) gradient occurs (Fig. 4d). K-1 is of order of a
molecular length. When a force F is exerted normal to
the layers of a smectic sample the thickness variation
rate d(t) is given as :

where d(0) is the initial sample thickness, R the sample
radius; x-1 is the parameter previously mentioned,
which is defined as : K - ’ = (Àp n)1/2, Àp being the
permeation coefficient. It is the permeation process
which controls the displacement velocity of the plates
as long as 61 has a value much smaller than the sample
thickness. When 61 is comparable to, or larger than d,
the hydrodynamic flow is described by the classical
Poiseuille law. In our system both situations could be
met since we use large thicknesses for the dilation
experiment (100 J..1m to 800 J..1m) and very small ones
for the compression experiment (down to 6 J..1m).
Now, in order to achieve instabilities we must

produce a displacement 6 at least equal to bth within
a time i smaller than the rise-time 7:r of these instabi-
lities. In addition this value must always be smaller
than the time if needed by the flow to fill (or to empty
according to the sign of the applied stress) the sample
volume.
As an example, for the undulation experiment

where typically R = 1 cm,n ~ 0.1 cgs, d(O) - 100 um,
d(t) - d(O) = bth ~ 120 A and F - 104 dynes, we
find that the hydrodynamic flow time if is about 10-1 s.
For a typical compression experiment where the force
exerted is about 2 x 10’ dynes this time would be of
order of some 10-2 s. In any case these times are to be
compared with the rise time of the instabilities in order
to know whether the instability has enough time to
settle. This point is discussed in the next section.

2.6.3 Rise-time of the instabilities. - In the absence
of any hydrodynamic flow, and in a perfect sample
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(defect-free) we can give an estimate of the time 7:r
needed for the establishment of the instabilities when

step-like stresses are applied.

For the undulation instability [1] :

(~ 10-4 s. close to threshold) ,

and for the tilt instability :

(~ 10-4 s. above threshold where T ~ 10-2 rad.) .

We see that this rise-time is, in typical situations,
much shorter than the hydrodynamic time and the
relaxation time due to the dislocation motion. There-
fore even if the flow and the dislocation motion control
the lifetime of the instabilities produced they should
not prevent the instabilities from being set up.

2.6.4 The two dimensional grating. - In the preced-
ing theory the deformation of the layers under dilative
stress occurs in one dimension. Therefore we expect
undulations with only one wave-vector and the texture
predicted is a simple grating. However Delrieu [27]
has calculated that above a second threshold higher
than the first one a double crossed grating could appear
with two wave-vector q and q‘ of equal length, and the
free-energy minimum is obtained when they are

orthogonal in the plane of the layers.
2. 6. 5 Remarks. - The expression for the thickness

variation rate includes the parameter K, which is

temperature dependent. Close to a second-order
smectic-A to nematic transition x is expected to vary
as (T - Tc)1/2, provided tj does not show any tempe-
rature dependence. In that case the boundary layer
should vary as (T - Tc)-1/4, and then the hydro-
dynamic time would also vary. Nevertheless as we use
relatively thick samples close to the A - N transition,
this variation is too small and cannot be detected. It

might be detected close to a second-order A -&#x3E; C
transition (where we use thin samples), but then the
temperature dependence of the parameters is unknown
(the permeation process seems to be a little more

complicated).
Furthermore, close to an A H C transition we

might expect some new hydrodynamic deformation of
structure under stresses due to the coupling between
the molecular orientation and a hydrodynamic flow
induced for example when the sample plates are not
exactly parallel. This coupling could lead to some new
structural instability. As we will see later, we have in
fact observed a periodic deformation that could be
interpreted in such a way.

3. Experimental results. - 3.1 EXPERIMENTAL

METHODS. - A homeotropic smectic-A liquid crystal
is optically uniaxial, with its optical axis parallel to the
common direction of the molecules (and therefore
normal to the limiting surfaces). Deformations of the
structure strongly modulate the dielectric anisotropy
tensor of the liquid crystal, and therefore can be
detected and analyzed using a light-scattering tech-
nique. The scattering wave-vector associated with the
molecular tilt instability is expected to be q ~ 0,
while it should have a well-defined value qc for the
undulation instability of layers (with qc parallel to the
plane of the layers) and the geometry needed for the
observation of these instabilities will be somewhat
different for each experiment.

3.1.1 Optical conditions for observation of the
undulation instability. - Scattering geometry. - The
mode of undulation of the layers is equivalent to a
splay mode of director (assuming that the molecules
are, locally, remaining normal to the layers) ; the
wave-vector q of the undulation lies in a plane parallel
to the layers (i.e. normal to the optical axis). The
angular distribution of the scattered intensity is
found [11] ] by using the selection rules defined for
scattering by a splay mode in nematics [10] ; the new
feature is that we now have to take into account the
uniaxial character of the crystal. Then an incident light
beam tilted away from the normal and ordinarily
polarized (of wave-vector ko) will give rise to scattered
light extraordinarily polarized (and vice-versa). We
call ke its associated wave-vector. We can represent
geometrically the momentum conservation law of the
scattering : the undulation wave-vector q will transfer
the extremity of the wave-vector ko from a sphere
(wave-vector surface for the ordinary index of refrac-
tion) to an ellipsoid (surface for the extraordinary
index) (Ref. to Fig. 8a). With the constraint that q
remains in a plane normal to the optical axis one sees
that the locus of the extremity of ke (in the process
ko - k’) is a circle defined by the intersection of the
ellipsoid with the plane containing q. In the case of the
process k e -+ ke the circle is in the same plane and
inside the previous one for a positive crystal. Then the
scattering occurs in a general case on two co-axial
cones centered on the optical axis (Ref. to Fig. 8b).
However, there is no scattering along the observation
directions defined by the intersection of these cones
with the incidence plane. An observation screen is

placed parallel to the sample and the scattering
appears on two concentric circles as it is observed for
static undulations due to defects [11] with which a
large number of wave-vectors is associated. When

scattering occurs on the proper circle, one can relate
the scattering wave-vector to the distance on the

screen, between the laser spot and the observed point
on the circle [12]. Now if the undulation due to the
instability is uniform the corresponding wave-vector qc
will be unique in direction. The probability of finding
its extremity on the scattering circle is very low. In that
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case the scattering condition can be fulfilled by rotating
the sample in its plane around the optical axis. If the
scattering volume is composed of many domains with
arbitrary directions for qc, the extremity of the wave-
vectors qc can be expected to be randomly distributed
on a circle centered on the beam spot. Then, scattering
should always be visible as two bright spots, at the
intersections of this circle with the scattering circle
corresponding to the chosen incoming polarization.
As will be shown later, it is necessary in our experiment
to rotate the sample frequently mainly because the
distribution on the circle of radius qc shows a strong
maximum in an arbitrary but reproducible direction
for a given sample. The optical signal due to the
diffraction by the undulation is then analyzed by a
phototransistor looking at the previously defined

spots. Calling 0 the deformation angle, it results from
dipolar radiation theory that the scattered intensity at
an angle 0 (with respect to the molecular axis) which is
large compared to 0, is I - 02. And since above
threshold we have 02 ~ (b - bth/ bth), the scattered

intensity I is expected to be linear in displacement :
I ~ (d - bth/6th)-
- Measurement of the wave-vector q,. The method

used to determine the scattering wave-vector q, is the
following one : on the screen parallel to the plane of the
layers one measures the angle p between the traces of
the incidence plane and the scattering plane on the
observation screen. The modulus of the scattering
wave-vector q is given by the expression :

where a is the incidence angle, Ao the incident light
wave-length, no and ne the main refractive indices of
the crystal. We have also used an observation screen
normal to the transmitted laser beam at a distance d
from the sample. This geometry allows us to deter-
mine q by the measurement of the distance x., between
the laser trace and the observation point s on the

scattering pattern which is now an ellipse, through a
more complicated relationship [12]. However for
small wave-vectors q (q at least two times smaller than
the light wave-vector) this relationship can be approxi-
mated by the following one :

making possible rapid measurements with an error in
the wave-vector less than 5 %.

Note : Close to a second-order smectic-A nematic

phase transition, qc is expected to vanish, as previously
explained. This variation forces us to readjust the
detector alignment on the spots.

3.1.2 Optical conditions for observation of the
molecular tilt instability. - This instability produces
a uniform deformation within each layer, and appears

with a zero wave-vector (excepted in the optical axis
direction where q. = 7r/d, with d sample thickness).
So the optical observation is made on the transmitted

’ 

beam. The sample is placed between crossed linear
polarizers. In an unperturbed sample the transmitted
light intensity is close to zero. When a compressive
stress exceeding the threshold value is applied, a part
of the incident light is transmitted through the ana-
lyzer. If the incident beam were parallel to the optical
axis, the phase difference between ordinary and

extraordinary components would increase as Q2, the
intensity of light scattered in the same direction by the
tilting cp would be 1 ~ cp4, while for an incident beam
tilted away from the optical axis this intensity is in

general 1 - cp2 (X - Xc)/Xc (except around some
well-defined directions). That is why we have tilted the
sample by an angle a = 300 with respect to the beam
direction.

This geometry makes the system insensitive to a tilt
along a direction parallel to the incidence plane for an
extraordinary incident polarization. However the tilt
is expected to occur at random around the initial
molecular axis direction, and then the effect of the
linear analyzer is only to reduce the sensitivity of the
detection.

3.1.3 Mechanical conditions for the sample hol-
der [12]. - The stresses are imposed by piezoelectric
ceramics on which a voltage V is applied. In general,
it is difficult to know the exact deformation of the
ceramics. One should take into account the elastic
reaction of the smectic crystal on the holder and the
ceramics. This reaction is proportional to B, to the
sample area and to the inverse of the sample thickness ;
it is to be compared with the rigidity of the ceramics
and of the holder. The holder is composed of parts
made of brass, expoxy resin and glass. In our set-up we
estimate that the largest elastic response of the holder
is mainly due to three screws that fix together the two
brass parts (Fig. 5a, b). Taking into account the ratio
of the elastic moduli and the ratio of the respective
surfaces of the screws and of the crystal we find that the
rigidity of the holder is larger than that of the crystal
only for sample thickness larger than 100 um. Typically
for a 100 pm thickness the reaction of the crystal is of
the order of 10 % of the action for a 1 cm2 sample area.

Let us now consider the two types of experiments :

a) Dilation experiment : the deformation threshold
for the undulation instability is a displacement threshold
independent of the sample thickness. The acting force
necessary to produce this instability tends to zero in
the limit of large values of d as well as the stresses in the
sample. Generally the sample thickness is larger
than 100 um. In that case, the elastic reaction on the
holder being negligible, the applied displacement
proportional to the applied voltage is equal to the
free-space displacement of the ceramics.

b) Compression experiment : one has to produce a
stress larger than the stress threshold (see § 2.2.2) in
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order to observe the tilt instability. It is easier to pro-
duce if for thin samples (typically with our ceramics
the threshold is obtained with reasonable stresses for
thicknesses of some tens of um at 0.1 OC off the transi-
tion temperature). In that case the acting force must be
large and the displacement (as well as the strain in the
sample) tends to zero in the limit of very small
thicknesses. In that limit it is the force f applied by the
ceramics which is directly proportional to the vol-
tage V. Refering to § 2.2.2 where it is established that
the stress threshold F c/ S = Bl, one could, for very
thin samples, measure B.1 directly by measuring the
voltage threshold Vth.

FIG. 5. - a, b) Schematic of the experimental sample holder :
a) For the dilation experiment. b) For the compression experiment.
c) The thermal enclosure : 1) electrical supply for the PZT cera-
mics ; 2) differential thermocouple; 3) sample internal tempera-
ture probe; 4) polyurethane foam; 5) glass fibers in epoxy resin;
6) copper; 7) coaxial heating wire; 8) platinum sensor for thermal

control.

The transition between these two limiting regimes is
defined by the comparative rigidities of the holder and
of the sample. In practice as has been shown pre-
viously, the two types of experiments are performed
using the same kind of holders and then the thresholds
in both cases will be measured directly by the voltage
thresholds.

3.2 THE EXPERIMENTAL SET-UP. - The set-up is

essentially the same for both experiments [12]. The
samples are prepared between glass plates 4 mm thick,
flat to better than A/8 and coated with a suitable
aligning agent to obtain the homeotropic geometry :
HTAB (Hexadecyl trimethylamoniumbromide) in

chloroform (10- 3 mole per liter) (this compound is
also called CTAB).

For sample thickness larger than 250 pm (used in the
dilation experiment) the spacers are two rectangular
piezo-electric ceramics. These ceramics are chosen to
have the same thickness within 1 or 2 gm. A metallic

, holder is used to maintain, with weak springs, the
spacers between the glass plates (Fig. 5a).
For samples thinner than 200 pm (used in both

experiments) the glass plates are mounted in a Fabry-
P6rot-like holder with no spacers (Fig. 5b). The
piezo-electric ceramic has an annular shape and is

placed between the upper plate and the metallic holder.
Each part is held with an epoxy resin. This set-up
enables us to adjust the parallelism of the glass plates
to better than 10 - 4 rad. This is especially important to
avoid, as far as possible, any hydrodynamic flow in
the central part of the sample.
The ceramics have a typical linear extension coeffi-

cient of 4.21 A/volt at 20 °C, with a relative tempera-
ture variation of 2 x 10-3/°C. A precise value of this
coefficient is given for each ceramic by the maker and
is not controlled by us. These ceramics are driven by a
Hewlett-Packard HP-3320 function generator follow-
ed by an ATNE (2) amplifier. We apply sequences of
square pulses to the ceramics, the period of which is
adjusted with respect to the response time of the
detected optical signal. The rise-time of a step voltage
measured on the ceramics is less than 10 ps from 0 to
500 volts. The light source is a model 124 Spectra-
Physics He-Ne laser, with beam power attenuated
and kept under 3 mW on a 0.5 mm2 area in order to
reduce thermal gradients produced in the sample (in
most cases the beam power is less than 0.5 mW). The
incident beam is slightly convergent (with an angle
of 10-2 rad) in order to reduce the illuminated area.
The uncertainty produced in the determination of q is
much less than other experimental errors. The
scattered light is detected by a BPX 25 phototransistor
with a frequency cut-off of 30 kHz. The photocurrent
is observed on a D-C coupled CRT.
The sample is heated in a thermal enclosure (Fig. 5c)

in which the lower part and the upper part have

separate heating adjustments. The vertical gradient,
measured between the top and the bottom with a

Copper-Constantan differential thermocouple, can

then be minimized. The sample temperature is

measured by a Copper-Constantan thermocouple
of 70 pm diameter located directly in the liquid
crystal 1 mm away from the laser beam in samples
thicker than 200 gm. For the thinner samples the same
thermocouple is placed in the holder 0.5 mm away
from the lower glass plate. Another differential

Copper-Constantan thermocouple is used in thick

samples to measure the radial gradient inside the

liquid crystal. The temperatures are measured with
respect to an ice-point reference, Kaye 150, stable to
2 x 10 - 3 °C per hour, with a HP 3420 differential

(2) ATNE : Application des techniques Nouvelles en Electro-
nique, Z.I. de Courtaboeuf, 91400 Orsay.
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microvoltmeter. For thick samples, measurements
indicate that the vertical temperature difference
between the top and the bottom of the oven can be
adjusted to less than 2 x 10- 2 °C and the radial

gradient is of about 2 x 10- 2 OC/mm. For thin

samples the vertical gradient is estimated to be reduced
in proportion to the thickness, and the radial one
identical to the one of the thick samples. The oven is
mounted on a holder which can rotate around two
axes : one is normal to the incidence plane and the
other one is normal to the sample. That allows, as we
have previously seen, a positioning of the wave-
vector q extremity on the scattering circle. The

polarizers are Nicol prisms; the analyzer used in the
dilation experiment is an HN 32 Polaroid.

3.3 OBSERVATIONS AND RESULTS. - Some of the

following results have already been presented [14] or
published in a shorter form [1, 3,13,14,15].

3.3.1 Undulation instability of layers. -
3.3.1 a) Direct observation of the deformed struc-
ture. - At a fixed temperature far from the nematic
transition we observe under a polarizing microscope
the area that will be illuminated by the laser beam ; we
apply square voltage pulses at low frequencies
( ~ 0.5 Hz) to the ceramics. Even when no voltage is
applied to the ceramics we may already see ripples,
generally around large surface defects (see Fig. 6).

FIG. 6. - Static undulations appearing close to defects or irre-

gularities on the vicinity of the glass plates limiting the sample.
These undulations are responsible for the scattering appearing as

portions of circles. (ref. [11 D.

When the voltage is applied nothing is observed until
a certain threshold (typically 30 V) is reached for the
dilative phase of the signal. Then there appears an
array of equally spaced thin lines stationary in space
and analogous to a grating with a low contrast

(Fig.7a). This pattern is temporary and disappears as
the voltage is kept constant. Generally it is wiped off
from one side to the other, while some undulations

may remain around a defect.
On the other hand. we observe that generally no

distortion appears when the voltage falls down to zero.

FIG. 7. - Deformations of the smectic structure submitted to a
dilative stress and observed in the direction of the optical axis
(normal to the layers) under a polarizing microscope. a) Single
grating : undulations of wave-vector qc (here the dilation is very
high in order to obtain a satisfactory optical contrast, resulting then
in a highly distorted grating). b) Double crossed grating observed
for a higher stress. Here the angle between the two gratings is

different from Tr/2 due to the high value of the applied stress. c) Bro-
ken structure composed of focal conic domains. It is obtained for a
stress at least ten times higher than the stress threshold correspond-
ing to the undulation instability (single grating). The average size

of the domains is 5-7 um here.
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However if there were some static distortions present
due to defects, we observe that when compression is
applied (by reversing the voltage), these distortions are
suppressed. Moreover if a distortion has been produc-
ed by dilation and if we apply a compression before
the natural relaxation time we supress this distortion.

Increasing the dilative stress, we observe that for a
voltage 4 or 5 times higher than the threshold value
there appears a double-crossed array of thin lines

(see Fig. 7b) which disappears after a longer time,
evolving back from the double array to a single one
which is then wiped off. These two different gratings
make a relative angle which is close to 900 near this
second threshold and decreases towards 600 as the

voltage is increased. We again increase the voltage,
and we can see (for some samples) an increase, by a
factor of 2 to 5, in the line-spacing, followed, when V
is of 10 times the threshold, by a breaking of the struc-
ture into small identical regular domains which appear
to be composed of focal conics (apparent diameter
close to 4-10 gm), see Fig. 7c. This broken structure
may remain for times ranging from tens of seconds to
some hours and could correspond to a storage mode.
The duration of this broken structure seems to depend
on the applied stress, and to show the existence of a
new threshold which is difficult to define and measure.
For stresses below this threshold the duration of this
structure lasts from some tens of seconds to some
minutes. However for high stresses above this
threshold the new structure can last from many hours

up to some days. That could be due to a destruction of
the molecular anchoring at the glass surfaces and
might correspond to the configurations described by
Parodi [16].
The restabilizing effect of the compression phase is

more easily observed after producing a broken
structure. Applying a large compressive stress then
makes the focal domains disappear. We can then go
back to an unperturbed structure by slowly relaxing
the applied compression. This effect which is re-

stabilizing could be used as an erasing process for the
storage mode.

3 . 3 .1 b) Visual observation of the instability in the
light scattering pattern. - We now illuminate the

sample with the laser beam. In absence of applied
voltage we observe on the screen (see Fig. 8b, c) the
scattering on two portions of circles due to the static
undulations still present in every sample due to

irregularities on the surface of the glass plates [11].
The width of these circles (the crescent) is directly

related to the component of the wave-vector q outside
the plane of the layers. The qz component is related to
the boundary condition imposed by the plates. For a
sample of thickness d, the lowest-order spatial mode
has a component of q given by qZ = 7r/d. Typically
for a thickness d = 100 pm the angular aperture
measured from the center of the sample and cor-
responding to the spatial width of the crescent would
be of order of 10 - 3 rad. Experimentally we find

FIG. 8. - Scattering by undulations of layers in a smectic-A

positive uniaxial crystal. a) Distribution of the scattering on concen-
tric cones. For example, the incident ordinarily polarized beam -
(io) - of wave-vector ko is scattered by q lying in a plane (P)
normal to the optical axis (along z). The locus of the scattered
wave-vector ke (with extraordinary polarization) for any value of q
is a circle intersection of Se by (P). b) Geometry of the scattering
on a screen parallel to the sample. The scattering is in fact reduced
to portions of the circles. That limitation of scattering shows that
there exists a cut-off in the wave-vectors q that deform the structure

(only the small values of q significantly deform the structure).
The position of the extremity of the crescents could give a way to
measure the critical wave-vector qc [12]. c) Pattern of the scattering
on a screen parallel to the smectic planes. The central dot is the laser

beam trace. The incident light polarization is ordinary.
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values ranging from 10-2 rad. for the good quality
samples [ 17] to values around 2 or 3 10 - 2 rad, for the
average quality samples. This large difference might
be due to spurious scattering by the large defects
present in the sample which would excite higher-order z
modes. No detectable thickness dependence of the
width can be detected for d varying between 100 and
800 um (although for d  100 um the width of the
crescent spreads out). In any case a direct measure-
ment of the width has not been found in agreement
with the expected value. If we apply the voltage we
observe, above a threshold, a strong scattering res-
tricted to two small parts of the scattering circle

(see Fig. 9a, b). We check that the observed scattered
light follows the right polarization selection rules for
scattering by a wave-vector lying in the plane of the
layers ; it has the characteristics of a selective diffrac-
tion by a grating (Bragg diffraction). The increase of
light is sudden and lasts for a short time ; the compa-
rison of the voltages shows that it corresponds to the
appearance of the simple grating observed under

FIG. 9. - a) Geometry for the scattering by the undulations of
wave-vector qc obtained under a dilative stress (single grating).
The scattering occurs in two well-defined directions. (The geometry
is drawn here inside the crystal.) ke is the incident wave-vector,
ko the scattered wave-vector; the subscript o stands for ordinary
and e for extraordinary polarizations. b) Pattern of the scattering
by the undulations, on a screen parallel to the sample layers. The
distance between the laser trace and each bright spot is related

to the value of qc.

microscope. The thresholds for both effects are equal.
We increase the voltage and see that the transient inten-
sity of the spots increases sharply. For a voltage 4 or 5
times larger than the threshold the scattering circle
splits up into two pseudo-circles intersecting on the
incidence plane. This effect lasts a longer time than
the former one and disappears by reducing to a single
circle. It corresponds to the double-crossed structure.
For higher voltages we see a splitting into three circles.
The corresponding observation under the microscope
has not shown any different structure. These effects
could be interpreted as follows : for high dilative
stresses the planes of layers are tilted by a finite angle
and symmetrically with respect to the initial position.
That might correspond to a breaking of the undulation
into a zig-zag structure. Thus the two families of

planes each give a different scattering pattern. If so,
the separation angle between the two pseudo-circles
on the observation plane (these pseudo-circles would
in fact be two ellipses secant on the incidence plane)
could give the limit angle corresponding to the rupture
limit of the layers. We find typically an angle of
about o.1 rad. for CBOOA at 74 OC.
For higher stresses one can observe another

scattering circle concentric with the previous one and
passing by the laser beam trace. This scattering pattern
corresponds to the ko -&#x3E; ko configuration which leads,
in a linear regime, to a zero cross-section, since only
the splay mode of deformation is allowed. However
in a highly perturbed structure where the undulation
occurs not only in one direction but in two orthogonal
directions [13], one can conceive that it is necessary to
introduce a twist mode by reason of continuity
between these two main directions.
For voltages exceeding about 10 times the undula-

tion threshold a strong scattering occurs, as the first
voltage step is applied, on a very diffuse cone (half
angle of about 0.1 rad.), and may last from some tens
of seconds to some hours depending on the sample and
the voltage. That corresponds to the « broken struc-
ture » observed under microscope, and the measured
angle is consistent with scattering by objects of about
5-7 J.1m which are the observed focal domains.

Effect of a compressive stress. - Reversing the

voltage in order to apply a compression we note
that in the presence of scattering by static undula-
tions only, both the scattered intensity and the width
of the pattern decrease strongly. Similary, applying a
compressive stress just after a dilative one which

produces an undulation, results in a sudden decrease
of the scattered intensity.

3 . 3.1 c) Time analysis of the transient increase in
the scattered light. - At a fixed temperature, we
determine approximately the position of the Bragg
diffraction spots (at qc) on the scattering circle by
gently touching the sample ; we increase its intensity by
simultaneously rotating the sample holder, if neces-

sary. Then the phototransistor position is adjusted
along this direction, behind a properly oriented
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analyzer. Generally it is convenient to use an extra-

ordinary incoming polarization so that the analyzer
direction is tangent to the inner circle. When no

voltage is applied on the ceramics the light scattered
by static undulation of layers gives rise to a photo-
signal background. Moreover, we have observed in
good quality samples which show a less intense

scattering by static defects, a small amount of fluctuat-
ing signal due to the thermally excited undulations
that have recently been observed in another experi-
ment [17]. We apply the square voltage pulses (typical
value : 40 volts ; half period : 2 s) producing a dilative
stress. A transient photo-signal is then observed.
We check that this signal disappears when the analyzer
is rotated in the plane normal to the optical axis
by 900, thus meaning that it follows the polarization
selection rules of scattering by layer undulations [10].
The optical signal generally appears as a sharp peak
above a plateau (see Fig. 10). The peak has a short
rise-time (of about 1-2 ms). and an exponential-like
decay-time (typical value 15-20 ms), The plateau is
in fact a long-time decaying signal (times ranging from
some 50-100 ms to some seconds). In order, now, to
understand this complex signal we must carefully
analyze its dependence on the applied voltage.

3.3.1 d) Voltage dependence of the photo-signal
amplitude. - Increasing the voltage continuously

FIG. 10. - Photo signals detected on the direction of the two

bright spots due to scattering by the undulation with the wave-
vector g. (The lower-trace is the excitation signal.) a) The signal is
composed of a peak superimposed on a plateau. (Existence of two
very different exponential decays.) b) Only the peak is present

(single exponential decay).

from zero we note that : first, the small plateau
increases from zero, then the sharp peak is super-
imposed on it. Still increasing the voltage, we observe
that the peak amplitude increases suddenly and more
rapidly than the plateau. For some samples we observe
that only the peak is present. In a first approach we
choose to measure the peak and the plateau amplitude
separately. By peak amplitude we mean here the part
of the signal measured above the plateau. For a good
sample, a typical plot of the peak and plateau ampli-
tudes versus the voltage is shown figure 11. We see that
the peak curve clearly shows a threshold, followed by a
linear part. This threshold is the one corresponding to
the observation of the grating. For even higher voltage
a saturation effect is observed. The plateau curve shows
a smooth increase followed by a sharp variation and by
a saturation effect. The sharp variation indicates the
existence of a threshold different from that of the peak.
However, on most of the average-quality samples the
threshold of the peak curve is replaced by a break of
slope in a curve which shows a small continuous
increase of amplitude from the origin (see Fig. 12).
Furthermore, observations on different samples show
that the relative magnitude of the plateau varies

strongly from sample to sample and indeed, this pla-
teau may not even appear. We have measured on the
same sample the voltage dependences for both signals
before and after submitting the sample to sequences of
dilation-compression for three hours. The results show
(see Fig. 11) that for any voltage the plateau has
decreased while the peak amplitude remains almost
constant.

FIG. 11. - Amplitudes of the peak and of the plateau before
(respectively 3 and 1) and after (resp. 4 and 2) the application
during 3 hours of sequences of compression dilation, with an
amplitude higher than the threshold value. The peak curve remains

almost unchanged while the plateau curve varies strongly.

We notice too, that the linear part of the peak-curve
corresponds to scattering on a single circle, while the
onset of the saturation part corresponds to the splitting
into two circles (double-crossed gratings).
From all these observations we identify the peak

part as due to the undulation instability relaxed by a
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simple mechanism, while the plateau appears to be
more complicated to interprete. In a simple approach
this plateau would be due to the instability relaxed by a
very slow mechanism (its relaxation time corresponds
to the transit time of dislocations traversing the area
illuminated by the beam). It could reflect a more

complicated situation including the previous one and
the stimulation of defects by the stresses. Since this
plateau does not appear for every sample we choose to
analyze only samples showing a quasi-unique relaxa-
tion process. On the other hand it is observed that the

plateau contribution is relatively weak and that it

appears after some non-sharp threshold higher than
that of the peak part. It is found experimentally that
we can define the threshold of the instability by
measuring only that of the peak part. The error on the
absolute value for the threshold then lies within other

experimental errors less than 5 %. The peak curve
shows a linear dependence as expected from the

instability signal, and we define the threshold Vth as the
intersection of this linear part with a straight line

tangent at V = 0 to the part of the curve before the
linear increase. On our typical samples, Vlh - 30 V,
at T = 75 °C in CBOOA.

FIG. 12. - A typical dependence of the photo-signal amplitude
(peak part only) on the voltage applied on the piezo-electric ceramics
which produces the dilation (the dilation 3 = k. V with here
k ~ 4.7 A/volt). Vth is the threshold of the instability. The part of
the curve before the threshold of the instability may correspond to a

stimulation of the static defects by the stress.

3.3.1 e) Voltage dependence of the peak decay
time. - As the voltage is varied we observe that the

peak decay time varies while the plateau decay time
remains apparently constant.
For the part of the amplitude curve of the peak

before threshold (when it exists) we see on figure 13
that, as V is increased from zero, the decay time varies
typically in a quasi-linear way from 80-100 ms down

to 5-10 ms close to the threshold. Then it increases

smoothly from this last value up to 15-35 ms close to
the onset of the saturation part of the curve. From this

point it increases sharply up to some 100 ms. The
absolute values for the decay time may vary strongly
from sample to sample but the relative behaviour
remains similar. For less good samples we have
observed that the peak and the plateau decay times
may become almost comparable, the last one decreas-
ing down to typically 200-400 ms. A similar behaviour
is observed if the photo’transistor is not exactly
positioned on the central part of the scattering circle
width.

FIG. 13. - Decay time id of the photo-signal as a function of the
applied voltage (i.e. the dilation amplitude) on the ceramics. The
minimum corresponds to the onset of the instability. The sudden
change of slope (for V N 50 volts) corresponds to the onset of the

double crossed grating.

3 . 3 .1 f ) Direct observation of a mechanism res-
ponsible for the finite duration of the instability [12]. -
The lifetime of the deformed structure is limited by a
phenomenon that can be observed under microscope
using a dark background technique (it can also be
observed close to small residual defects inside the

sample due for example to striations on the glass
plates or around small dust particles). Once the
undulation is established one can see in the bulk,
between crossed polarizers, light thin lines parallel to
the undulation lines, and which move normally to
them. This motion seems to occur in a plane parallel to
the glass plates. The average length of these lines is
of 15 pm and in our samples they were separated by
about 20-25 um. The average speed, roughly measured,
ranges from 50 to 100 um/s. When this motion is

stopped, for example near a large defect (dust...) we
can see a larger line leaving the defect and moving
back in the opposite direction. This large line wipes out
the undulation and takes a quasi-circular shape as it
moves. Its speed is of order of 50 Jlm/s. There are many
such lines which anneal the deformation and when the

wiping process is at end, the lines meet, and form

highly contrasted lines similar to walls (Fig. 14).
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Under compression-dilation sequences these walls

can emit thin light lines and disappear. We interpret
the thin and large lines as being edge dislocations with
a small Burgers vector. In effect near threshold, only
a few extra layers are needed to relax the applied stress.
This number is of order of 2 7rA/a - 5 to 6 layers.
From these observations, using the relationship

found for the friction force acting on a dislocation,
we can deduce a first value for the mobility of such a
dislocation. Starting from the measured speed of
50 J.1m/s, which corresponds to an applied displace-
ment of about 1.5 dth and using for the diffusivity of
orientation K1/n the value 2 x 10-6 CM2/S found
in another experiment [17], we find that with

K1 ~ 5 x 10 -’ cgs (as in nematics), q = 0.25 cgs
and 1/K ~ 25 A compatible with a molecular length,
a value for the mobility p of dislocations :

y ~ 1 cm2/dyne . s .

This value compares well with an estimation by
N. A. Clark and R. B. Meyer [2].

FIG. 14. - Quasi-static wall appearing at the meeting zone of
dislocations travelling in opposite directions. These dislocations had
just wiped off the structure deformations produced by the dilative
stress. Under stresses this wall is able to emit the thin light lines
which are suggested to be small burgers vector dislocations

(see text).

3 . 3.1 g) Reproducibility of the threshold determi-
nation. Possible influence of structural defects. -

We have measured, at the same temperature, the ins-
tability threshold for various samples and different
thicknesses. The results show (Ref. to Fig. 18a) for
different thicknesses from 250 pm to 800 pm a rather

large dispersion of the threshold values, whereas no
thickness dependence is expected. Our numerous
experiments have not shown any systematic variation
of the measured thresholds with the sample thickness.
On the contrary different samples having the same
thickness have given very different values for the
threshold. For example we have found that for a given
thickness, at the same temperature, the threshold would
take the values 10, 19.5, 30.5, 51 Volts. These numbers
seems to be related to the lower one by a ratio close to
an integer. This observation has not yet received any
satisfactory explanation. We have also noticed that

the slope of the linear part of I(d) curve varies from
sample to sample. In fact, when measuring the peak
amplitude versus the applied voltage we generally
find, as previously stated, a smoothly increasing
curve, then a linear behaviour. For each voltage
corresponding to the linear part there exists a large
dispersion of the peak amplitude, and the relative
dispersion appears almost constant. That leads to an
uncertainty in the threshold determination. We are
tempted to invoke the influence of the defects present
in the sample to explain the poor reproducibility of
the results. In effect, as was noticed before, the decay
time of the peak varies as the voltage V varies. This
decay time is due to some mechanism which tends to
relax the applied stress. The simplest and most

probable mechanism is the nucleation and motion of
edge dislocations. These dislocations can be present
in the whole sample or may be nucleated from the
edges of the crystal, which are far from the analyzed
area. As has been shown, the role of edge dislocations
is to relax the stress by adding extra layers. The decay
time of the peak could correspond to the motion
(climb) [18] of the dislocations already present in the
sample and which are trapped in the regions of high
strain (see Fig. 4c). At threshold, these regions are
separated by 2 7r/Qc and the corresponding transit time
of dislocations is of order of 50 ms (see theory).
The plateau would correspond to a situation where the
stress which has not been totally relaxed by the

previous type of dislocation is now relaxed by dis-
locations traversing the observed area or coming
from the edges of the sample (leading to a transit time
of order of tens of seconds). The multidomain struc-
ture would, furthermore, be responsible for the large
dispersion of recorded values of the peak intensity in
the linear part. Thus a high-slope variation would
correspond to an almost monodomain structure and
then give a more reliable threshold value. Static defects
which give rise to undulations of layers may also be
stimulated by the stress and then contribute to the peak
amplitude without having any threshold. That would
explain the smoothing of the curve obtained, and even
a small decrease of the real threshold.

In conclusion the stimulation of static undulations
would be responsible for smoothing of the threshold
curve. The presence of large defects such as a poly-
domain structure would explain the dispersion of the
peak amplitude above threshold, and the dislocation
motion would correspond to the decay of the insta-
bility. With the instability appearing for minimum
energy in a monodomain, we might conclude that
among many results obtained under the same condi-
tions, the most probable value of vth is the smallest
one. From the threshold value Vth one obtains the
penetration length A directly from A = k. Vth/2 n
where k is the extension coefficient of the ceramics.
The value of A obtained by this way has to be compared
with the value which can be deduced from the position
of the Bragg spots (see next paragraph).
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3.3.1 h) Measurement of A by the position of the
Bragg spots. - The wave-vector qc of the undulation
instability is related to A by qj Ad 7r (see section 2. 3).
Thus by measuring the position of the Bragg spots due
to the diffraction by the undulation, relative to the laser
trace one can deduce a value for A [1]. The experiment
has been done using CBOOA (p-cyano-benzilidene-
p-n-octyl-oxy aniline). The wave-vector is measured

according to the method previously described (3.1.1).
The dependence of q2c on the inverse of the thickness d
indeed clearly shows a linear variation (Fig. 15). From
the slope of this line one can deduce a value for A.
Typically A~ (14 ± 2) A at 73 °C and (22 ± 3) A
at 78 °C. Moreover taking for K1 a value close to that
of a nematic (K1 ~ 10-’ dyne) one obtains from
the relationship A = (K1/B)1/2 an estimate for
B ~ 2 x 10’ dyne/cm2. This method is a very rapid
way to measure A for a given crystal. The values
’obtained for A by this method have to be compared
with those obtained by the direct measurement of the
threshold.

FIG. 15. - Dependence of q2c deduced from the position of the
Bragg spots relative to the laser trace, versus the inverse of the
sample thickness d-1. The straight line corresponds to q’ = 1t/À.d’

with £ = (22 ± 3) A.

3 . 3 .1 i ) Frequency dependence of the threshold.
- We measure the threshold for various periods of the
applied voltage pulses. The results shown on figure 16a
indicate that for low frequencies (3 Hz up to 20 Hz) the
instability and then the applied stress have time enough
to relax within half a period. The threshold is then
measured by the peak-to-peak amplitude of the pulse.
For high frequencies (from 40 Hz and up) the stresses
relax to place their mean zero value at half the voltage
value. Therefore in order to reach the threshold one
has to increase the applied voltage by a factor of two.
The threshold value seems then to relax around a
characteristic relaxation frequency of the instability
(in the case of the figure : 26 Hz).

Dependence for very low frequencies. - When the
optical signal is reduced to a peak, experience shows

FIG. 16. - a) Threshold displacement bth as a function of the

frequency of the square voltage applied on the ceramics, showing a
characteristic relaxation frequency Fc corresponding to the decay
time of the instability. b) Low-frequency dependence of the inten-
sity of the scattered light for a dilation 10 % higher than the threshold
Here the excitation signal period is very large compared to the decay
time of the instability (ia N 50 ms) and this effect indicates the

existence of another, very slow, relaxation process.

that the threshold may vary with the period of the
voltage pulses, even when this is very large compared
to the decay time of the peak signal. We notice that
the I = f ( v) curves obtained for periods of 5 s

and 1 s show an increase in threshold from 17 to
23 volts (here T = 74 OC) and a large variation of the
’slope by a factor of 2. This effect is more easily observed
if we plot the peak amplitude versus the period for an
excitation voltage fixed at a value higher by 20 % than
the highest threshold value. The result (Fig.16b) shows
that this amplitude decreases strongly as the period
increases. This behaviour, which is not correlated with

any long-lived signal, could be due to a very slow
relaxation mechanism such as a hydrodynamical flow
controlled by permeation. This observation indicates
that the structure is at equilibrium after times of the
order of some 2 or 3 s following each dilative phase.
For this reason we operate with low frequencies in all
our experiments (0.2 Hz).

3 . 3 .1 j ) Existence of an instability for wave vectors
different from qc. - Varying the position of the photo-
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transistor along the scattering circle we find that an
instability occurs for values of q around qc and that the
threshold presents a minimum value for a wave-vector
that we verify as being close to qc (see Fig.17). From a
monodomain sample we would not expect, in the
linear regime, such a dependence, but a unique value
at qc. We might explain this as due to some spurious
scattering (multiple scattering), or it could to some
extent be due to the stimulation of many different
modes by means of some non linear-coupling. We also
observe that the slope of the linear part of the threshold
curves varies strongly as q is varied, being maximum
close to qc. A radial dependence on the scattering
circle shows that this slope is also maximum at the
central part of the pattern. In general the decrease in
slope is correlated with the appearance of a strong
plateau in the detected signal.

FIG. 17. - Variation of the instability threshold Vth as a function of
the wave-vector q (i.e. the position of the photo-cell on the scattering
circle). This curve indicates that there might be a large distribution
of wave-vectors in the structure deformations. The minimum

corresponds to qc.

3 . 3 .1 k) Temperature dependence of the threshold
in a rigid smectic-A (CBOOA) [15]. - Measurements
of the instability threshold may lead, as has been shown
for different samples, to a large dispersion of values for
the penetration length A. It appears that the defects

present in the sample may strongly affect the threshold
of the undulation instability. Therefore we take as
correct the values of A which are compatible with those
simultaneously deduced from the position of the Bragg
spots (see § 3.3.1 h). We measure in CBOOA the’
temperature dependence of the threshold. For every
temperature the position of the phototransistor must
be readjusted. We plot Vth versus the wave-vector q.
This method gives both Vtn m;n and qmin ~ qc
Measurements are made from the smectic-to-nematic
transition and down in order to minimize the influence
of the drift of Tc on the results. The determination of Tc
is made within 10-2 °C by looking at the appearance
of the nematic signal and the disappearance of the
scattering circles. The results obtained from experi-
ments made on different samples of the same CBOOA
show that (see Fig. 18a) :
- for each set of data the values of A follow the same

exponential law. The exponent is found to be close to

0.165 + 0.02 (Fig. 18a) and 0.15 ± 0.02 (Ref. to

Fig. 18b) ;
- as previously mentioned, for different samples

the measurements of A at the same temperature give
values that seem to be related by a ratio close to an
integer.

FIG. 18. - Temperature dependence of the de Gennes length
A = (KjB)1/2 close to a quasi-second order smectic-A to nematic
transition in CBOOA : a) Set of different curves obtained for diffe-
rent samples (note the quasi-constant spacing between each curve).
The slope is the same for each of them and gives an exponent 0.165.
Only the points marked by numbers give values of A compatible
whith those deduced from the measurement of q,,. b) Here the slope
gives an exponent close to 0.15. The decay time (i) dependence

shows a decrease as the transition is approached.

In conclusion, whatever the absolute value found
for A, the variation of this value with temperature
shows an exponential law with an exponent close
to 0.16. This is to be compared with the value that is
expected for the exponent v/2 (v/2 = 0.33 in a non
classical (helium-like) model or v/2 = 0.25 in a classi-
cal (Landau-type) model). Identical results concerning
the temperature dependence of A (and B) have also
been found recently using the same method [19], and in
a light scattering experiment by thermal fluctua-
tions [20].

Discussion : From the analogy with the A transition
in Helium the penetration length variation should
follow a law of the form A - (Tc - T) - 0.33. In order
to understand the discrepancy with the value deduced
from our results, we may first suppose that the transi-
tion has significant width (T* - Tc). In our case we
would need a width of the order of 0.5 °C to find an
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exponent of 0.25 (classical). This is too high when
compared with the results obtained on the same

compound by P. E. Cladis [21], D. Salin et al. [22] who
observed a value for (T* - Tc)  20 mK. In fact, the
defects which play an important role might have a
temperature dependence and therefore modify the
elastic behaviour of the crystal. The observation under
a microscope shows that the number of wiping lines
increases sharply as T, is approached while their speed
seems to remain constant. Nevertheless we cannot

give, up to now, a satisfactory model explaining the
role of structural defects.

3.3.1 I) Temperature dependence of the decay
time of the instability. - The decay time id shows a
significant variation with temperature all over the
smectic range. The measurements Of Td are made at
about 20 % above threshold and the results show

(Fig. 18b) a remarkable decrease as the transition to
the nematic is approached. This variation does not
appear linear on a log/log scale, and there exists a
temperature zone (at about 0.3-0.4 OC below Tc) in
which the shape of the optical signals differs from a
single exponential. This change in shape might
indicate that another relaxation process having a
temperature dependence is appearing close to Tr. We
have not identified this effect.

3.3.1 m) Undulation instability near a second-
order smectic-A to smectic-C transition : the « Non-
rigid smectic ». - The compound used here is
HOBHA or 70.7) i.e. : p-n heptyl-oxy-benzilidene-p-n
heptyl-aniline, which presents a second-order smec-
tic-A to smectic-C phase transition at T = 72°C.
The samples used are generally 125 pm thick.
Threshold curves are plotted, and a q dependence on
the scattering circle for every fixed temperature is
measured the same way as close to the A - N transi-
tion. These curves show a very strong linear increase
of the recorded light intensity, and the typical decay
time of the signal is of order of 5 ms. The temperature
dependence of the minimum threshold shows a

decrease as the C phase is approached (see Fig.19a, b)
by a factor close to 2. This result confirms the calcula-
tion and shows that a possible tilt of the molecular axis
inside each layer tends to decrease the curvature

energy of the layers. On the other hand no detectable
variation of qc versus temperature has been measured.

Measurements of the threshold made over the
entire smectic-A range show a nearly constant value
more than 2 OC from Tc. However, close to the first-
order smectic-A to nematic transition we have found a
small decrease. Threshold values in the constant range
would give for A a value A = 76 A while from the
position of the Bragg spots we deduce A - 19 A. We
have not yet explained this large discrepancy and a
systematic study of this problem is under way.
The decay time of the signal has not shown any

detectable variation over the entire smectic range. 
3.3.1 n) Conclusion to the undulation instability

FIG. 19. - a, b) Temperature dependence of the instability voltage
threshold Vtb under dilative stress close to a quasi-second-order
smectic-A to smectic-C phase transition. Here the value of A is much

higher than the one deduced from the spots position.

study. - The undulation instability under dilative
stress has been studied in the A phase of the two
different types of smectics : rigid and non-rigid
smectics (i.e. close to an A -&#x3E; C transition). The optical
signal scattered by the deformed structure is complex.
A threshold has been defined using the most significant
part of this signal. The study of this threshold as a
function of the period of the applied stress, and of the
position of the detector has been made together with a
study of the dynamics of the photo-signal as a function
of the applied stress, and of its period. The results show
that the response of the smectic to the dilative stress is

strongly dependent, and in a complex way, on the
details of the crystal structure, and on the dynamics of
the different defects present in the sample. The decay
of the instability could be explained by a relaxation of
the applied stress by the motions of dislocations. Using
simple models we have deduced a first value for the
mobility of small dislocations.
On the other hand the dispersion of the threshold

values, and the exponent of the A(T) variation have
not received any satisfactory explanation.
We have briefly mentioned the possible role of

defects. There may be some other reasons to explain
the results obtained :
- The role of impurities may not be negligible.

These impurities coming from chemical dissociation



200

of the molecules can contribute by modifying the
macroscopic modulus B, or if they are homogeneously
spread within the layers they may contribute by alter-
ing the Frank elastic constant Kl.
- Hydrodynamic flow :
This flow is produced under the stresses when the

plates are not exactly parallel. It corresponds to a
slipping of layers and is not controlled by permeation.
It may be responsible for a new type of instability [12]
which has been observed under the microscope
especially close to the A - C transition. This insta-
bility which appears as an undulation of small wave-
vector q (q - qcl50) seems to result from a coupling
between the molecular orientation and the flow, and is
under study at the present time.
- Layer configuration : 
The compound used for the rigid-smectic model is

CBOOA which presents a double layered structure.
The molecular length is of about 26 A while the

interlayer spacing is of about 35 A. Therefore mole-
cules are supposed to be alternatively slightly dis-

placed with respect to each other along the molecular
axis [12]. This configuration might be temperature
dependent and induce a non-trivial temperature
dependence on the elastic constants.

3.3.2 Tilt instability of molecular axis under

compressive stress. The non-rigid smectic [3]. - This
instability could, in principle, be observed in any
smectic-A phase, provided high enough compres-
sives stresses are applied (pressures of the order
106 dyne/cm2). Such stresses are difficult to develop
in our experimental set-up and our study is res-

tricted to a region close to a quasi-second-order
smectic-A - smectic-C transition, and with samples
about 20 gm thick.

3.3.2 a) Observation of the photo-signal due to
the tilt instability. - In order to identify the signal
due to the tilt of the molecular axis, two photo-
transistors are placed, one on the transmitted beam
direction, and the other in the direction of the Bragg
spots due to the undulation instability (see Fig. 20a).
Square voltage pulses of 1 s duration are applied
to the ceramics, giving compression-decompression
sequences. The decompression phase corresponds to a
dilation because the period is large compared to the
time needed for the dislocations to relax the applied
stresses. The temperature being fixed at about 0.5 OC
above the transition temperature Tc, a signal first

appears for a voltage of order 60 volts in the Bragg
direction for the dilation phase of the pulses. Increasing
the voltage makes a signal appear on the transmitted
beam direction, as a sharp peak with an exponential-
like decay, for a voltage VS ~ 200 volts (both signals,
simultaneously recorded, are shown figure 20b). This
last signal (Fig. 20c) is very reproducible from pulse to
pulse (within 5 %) indicating that the molecular tilt is
occurring either in a well-defined and constant direc-

FIG. 20. - Tilt instability of the molecules under a compressive
stress. a) Schematic diagram of the set-up fixed for simultaneous
observation of the instabilities signal under dilation and compres-
sion. b) For a square voltage applied on the ceramics (trace c), the
signal due to the undulations of layers appears for the dilative phase
(trace a) while the signal due to the tilt of molecules appears for the
compressive phase (trace b). c) Typical signal due to the molecular

tilt (the width at half height is of about 2 ms).

tion, or in random directions but within domains
smaller than the scattering volume.

3.3.2 b) Voltage dependence of the signal ampli
tude. - The signal always appears as a peak showing
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essentially a single decay time. We measure the peak
amplitude as a function of the voltage applied to the
ceramics. From the threshold V. where the peak
emerges out of fluctuations the variation is found linear
until a second value V*. Beyond V * the slope increases
sharply (see Fig. 21). Observation under the micro-
scope between crossed polarizers shows a large
homogeneous increase of light for the compression
phase when the voltage is between V. and V*.
Above V*, for the same phase the crystal structure
appears under the microscope as multidomains

(mosaics) of well-differentiated illumination. (This
structure, which strongly modulates the light with the
applied voltage period, could be used in a light
modulator device.)

FIG. 21. - Intensity of light transmitted through crossed polarizers
as a function of the voltage V applied on the ceramics. Vs is the tilt
instability threshold while V* indicates a breaking of the structure

into domains.

As has been mentioned previously, for thin samples
(less than about 100 pm), the elastic reaction of the
crystal on the mechanical holder can be large.

In this limit of zero displacement, the applied
voltage is proportional to the threshold stress Bl. We
have seen also that, above threshold, the amplitude of
the tilt angle (po should be such that Q20~ X - Xc |/ Xc
with the notation of § 2. 5.2. Since for the adopted
scattering geometry the intensity I is of the form
I ~ To, we expect the intensity dependence on the
voltage to be :

Experimental results show a linear increase between V.
and V*. We then conclude that the threshold V.
corresponds to the onset of the molecular tilt insta-
bility. The second threshold V* would correspond to
the breaking of the layered structure.

In the limit of small sample thickness (and of strong
elastic reaction of the smectic) we do not expect in our
set-up to observe any thickness dependence of the

instability threshold. Indeed, threshold measurements
have not shown any thickness dependence, thus con-
firming our estimate of a strong elastic reaction due
to the crystal. Let us now estimate B 1. using the
relationship established in § 2.3.2 : :F c/ S = B 1.
The forcet exerted by the ceramic must be calculated
from the piezoelectric coefficient expressing the stress
at zero deformation of the ceramic. This coefficient
is not available and we estimate the force T by simply
using the Young modulus Y of the ceramics
( Y ~ 1012 dyne/cm’) and the extension coefficient k
(k ~ 4.2 A/volt). We assume that the force T exerted
by the ceramic for a zero extension in the presence
of the applied voltage is equal to that exerted ip extend-
ing the ceramic with the same applied voltage in the
absence of mechanical reaction. In this estimation we
take into account the fact that the area of the ceramic
is of 2.5 times smaller than that of the crystal.
We obtain at AT ~ 1 °C from the transition where

the voltage threshold is VS ~ 400 volts (see Fig. 21) :

a value which is comparable to that of B and seems
one order of magnitude too large. This discrepancy
could come from the fact that the ceramics work in
fact with a small residual displacement (the reaction
of the crystal being over-estimated or the rigidity
of the holder being under-estimated).

3. 3.2 c) Dynamics of the tilt instability signal. -
A typical signal obtained 10 % above threshold V. is
shown in figure 20c. Generally no detectable delay is
observed before the leading edge. The rise-time is of
order of 0.6 ms, and shows no variation with the

applied voltage. The decay is generally exponential-
like and the associated decay time 7:d of order of
some ms, varies by a factor of two between V., and V*,
then increases sharply from some ms up to some
hundreds of ms above V*.
The mechanisms responsible for the finite duration

of the instability may be very similar to those suggested
for the undulation instability :

a) the deformation disappears when the stress is
relaxed by elimination of layers. That corresponds to
the climb of edge dislocations, towards the edges of the
illuminated area, and the associated time is of order of
some ms ;

b) the hydrodynamic flow controlled by permea-
tion. It can correspond to short relaxation times for
thin samples;

c) possible impurities segregated between layers
inducing defects.

Notice that, contrary to the case of undulation

instability no trapping of dislocation equivalent to
that in the undulated structure is present here, in

principle, since the stresses are uniform throughout
the sample.
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3. 3. 2 d) Temperature dependence of the threshold
close to a smectic-A H smectic-C transition. - We
observe, as the A - C transition is approached,
an important variation of VS, while the second
threshold V* remains almost constant and disappears.
Since we expect a critical behaviour for the tilt insta-

bility threshold, this indicates that V. indeed corres-
ponds to this instability. The transition temperature Tc
is defined as the temperature for which, in absence of
stress, an increase of transmitted light above noise
fluctuations indicates the onset of the C phase. The
transition T, is defined in such a way to better than
2 x 10-2 OC.
The compounds used here is HOBHA (or 70.7 :

p-n heptyl-oxybenzylidene-p-n-hexyl-aniline) which
exhibits a transition temperature drift of order

10-20 m K/hour. Therefore measurements are made
raising the temperature from Tc in order to diminish
the relative error on the temperature definition. The
results obtained with sample thickness from 6 am
to 125 pm are :

- at a given temperature the threshold V. does not
depend on the thickness d, confirming that the elastic
reaction due to the crystals makes the mechanical
system work at nearly zero displacement.
- generally the variation law of V. (and so of B.1)

versus (T - T,) is quasi-linear, giving an exponent
close to bne. which then would agree with the value

of y in a mean-field theory (Fig. 22) ;

FIG. 22. - Temperature dependence of the voltage threshold Vs
close to a quasi-second-order A -&#x3E; C phase transition. The variation
is quasi-linear giving the value 1 for the exponent y. The decay

time i of the signal shows a large increase close to T,,.

- close to the transition, the threshold may not
follow a linear variation (see Fig. 23). Simultaneously
the shape of the photo-signal shows a broad pulse
following the peak due to the instability. This will be
discussed in the next paragraphs ;
- for equally old samples the threshold dispersion

is small. However this dispersion increases as the

samples age.

FIG. 23. - Temperature dependence of the voltage threshold Vs
close to an A - C transition and in the presence of a hydrodynamic
instability due to coupling between the molecular orientation and a

unidirectional flow.

3.3.2 e) Temperature dependence of the decay
time 7:d. - The times id are measured at 10 % above
threshold. We observe that T d increases as Tr is

approached, as predicted in our simple model, the
increase however being much larger. In fact the
measurements become inaccurate close to Tc because
there the signal decay departs more and more from a
single exponential. We believe that, as for the undula-
tion instability, the relaxation mechanism is not the
unique one described in our simple model, and that
each contribution has a different temperature depen-
dence. We may suggest that far from Tc the simple
dislocation motion is the dominant relaxation mecha-
nism, while close to Tc another mechanism appears
such as the hydrodynamic flow or the motion of large
defects.

3. 3.2 f) Observation of a structure deformation
related to a unidirectional flow. - In some samples
we have observed that the Vs = f (T - Tc) curve shows
a change of slope close to Tc,(AT ~ 5 x 10 - 2 oC).
In that case the signal appears as the usual peak
followed by a broad bell-shaped pulse (typical
width : 300 ms), see figure 24. A very similar pulse may
appear with a reverse sign for the dilation phase. As
the voltage is increased the pulse height increases and
it gets closer to the peak. Finally the two signals are not
resolved and the final shape looks like a peak followed
by a more or less exponential-like decay. The same
evolution is observed with the voltage maintained
constant and the temperature being varied towards Tr.

Direct observation under the microscope in the same
conditions reveals that for the compression phase the
observed area lightens quickly (tilt instability), and
morever a pattern of well-contrasted and equally-
spaced straight lines appears. The spacing is of about
80-100 pm (for usual sample thickness of 20 um).
These lines appear suddenly, then move in a direction
normal to their common alignment (and in a plane
parallel to the glass plates). Their contrast decreases,
and they disappear. Typically this deformation lasts
for 100 to 500 ms, and we have checked that it corres-
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FIG. 24. - Shapes (a) of the photo-signal due to the hydrodyna-
mical instability (coupling between the flow and the molecular
orientation). The first peak is due to the molecular tilt under

compression. The square wave (b) represents the excitation voltage.

ponds to the observation of the bell-shaped pulse. We
observe also the same deformation during the dilation
phase, at another place, having the same alignment but
moving in the opposite direction. We check by remov-
ing the liquid crystal that the glass plates make a wedge
and that the general direction of the lines was parallel
to its edge. Generally this angle is found small, of the
order 10-3 rad. The parallelism of the plates can be
adjusted to a higher accuracy ( 10-4 rad).
We suggest that the imposed displacement of the

glass induces a hydrodynamic flow with high velocities,
and there may exist a coupling between the molecular
orientation and the flow. This coupling would then
produce the observed deformations which are thought
to be undulations of the layers. When this coupling
tends to reinforce the molecular tilt, the instability
threshold decreases and vice-versa, which would

explain the departure from the linear variation of the
Vs = f (T - Tc) curves (Fig. 23).

Finally, the existence of a very well-defined threshold
under a compressive stress seems more compatible
with a picture of a smectic-A phase in which the
molecules are on the average normal to the plane of
layers, rather than with a picture in which the mole-
cules would be tilted inside each layer [28] (and
randomly from one layer to other, the general orien-
tation averaged over the whole sample resulting as
normal to the layers).

3.3.2 g) Modulation of the molecular tilt angle
in the smectic-C phase. - Applying sequences of
compression-dilation in the smectic-A phase produces

positive peaks of signal indicating an increase of
transmitted light. Below the transition, we observe in
the absence of any applied voltage a fluctuating weak
signal that might be due to the thermal fluctuations
corresponding to the twist mode [23], and the increase
of the light level due to the molecular tilt, in the
C phase. In this phase and close to Tc (typically 0.1 OC)
we observe a symmetric signal (Fig. 25) that comes
from the modulation of the molecular tilt angle around
its position defined by the temperature. The amplitude
of the peaks increases as the temperature decreases,
being maximum in the middle of the smectic-C

range.

FIG. 25. - Photo-signal (a) due to the modulation of the tilted
axis of molecules by the alternative sequences of compression

dilation (b) in the C phase of HOBHA.

We have also noticed that in this phase the system
is highly sensitive to mechanical vibrations imposed
on the set-up. Small perturbations then produce large
amplitude fluctuations of the optical signal.

3 . 3 . 2 h) Conclusion. - We have studied the mole-
cular tilt instability under compressive stress, and close
to a smectic-A to smectic-C transition. Our theoretical

predictions are verified, in a transient regime : there
exists a maximum pressure B.1 normal to the layers,
beyond which a molecular buckling is observed. We
have shown that the transverse rigidity measured by B .1
vanishes as the A --&#x3E; C transition is approached. The
temperature dependence of the instability threshold is
found quasi-linear in agreement with a molecular field
theory. However this variation is found non-repro-
ducible close to Tc. Observation under the microscope
reveals periodic structure deformations that may come
from a coupling between the molecular tilt and a

hydrodynamic flow. This coupling is much easier
close to Tc and the deformations produced strongly
affect the instability process. On a larger time scale,
the molecular buckling disappears, the motion of
defects relaxing the applied stresses.
As a practical application, the molecular tilt insta-

bility could be used to realize light modulators [24], or
pressure transducers. The effect of modulation of the
tilt angle in the C phase could give a method for
measuring the temperature dependence of the tilt

angle of the molecular axis.
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5. Conclusion. - In this paper we have given a
theoretical treatment of the instabilities arising in a
layered structure such as a smectic-A liquid crystal,
under dilative and compressive stresses. When a
dilative stress is applied normal to the layers an insta-
bility of structure appears on a short time scale as an
undulation of well-defined wave-vector. We have
studied experimentally the main features of this

instability, and the most important result is the direct
measurement of the de Gennes penetration length A.
Close to a quasi-second-order smectic-A to nematic
transition A diverges as expected but with an apparent
critical exponent which is too small. This result is not
explained. On the other hand, close to a quasi-second-
order smectic-C phase transition the instability
threshold decreases by a factor of almost two, as

predicted by our model.
On a longer time scale, we observe the relaxation of

the applied stresses normal to the layers, through the
climb of dislocations or other defects. The observation
seems to indicate the existence of two types of defects :
the first ones relax the stress in a short time, the other
ones come from the edges and correspond to larger
times. The direct observation under the microscope of
these defects allows us to give the first estimate of the
mobility of edge dislocations in the smectic-A phase.
When a compressive stress is applied normal to the

layers the molecular axis may tilt inside the layer above
a well-defined threshold corresponding to a critical
pressure B 1- normal to the layers. Experimentally it is
easier to observe this instability close to a second-order
smectic-A-smectic-C phase change. The temperature
dependence shows that the threshold is decreasing as
the A - C transition is approached, with a critical
exponent close to one as would be expected from a
mean-field theory. Close to the transition we have

observed structural deformations that may alter the
elastic response of the material and that are thought
to arise from a coupling between the molecular orien-
tation and the hydrodynamic flow produced by the
applied stresses. As for the undulation instability, the
molecular buckling instability appears only in a tran-
sient regime, the applied stresses relaxing rapidly
through motion of defects.

During that transient regime, the observed pheno-
mena are in reasonable agreement with the predictions
of the theoretical part : existence of a defined displace-
ment or stress threshold, and of a finite wave-number
for the instability ; this regime can be called the elastic
regime. For longer times (larger than a relaxation time
of the order of 10 ms) the smectic material cannot
sustain the applied stresses normal to the layers.
Internal readjustment of defects relaxes the stresses.
We are in a plastic regime.

As a general conclusion, the initial model appears
to be quite appropriate for describing and explaining
the elastic behaviour of ideal smectics. However in
order to explain the deformations of real smectics one
must find methods of controlling the nature and the
density of the defects which play a crucial role in the
viscoelasticity of these phases. In that respect the case
of smectics is quite reminiscent of that of real solids
with a qualitative but important difference : the elastic
response of the material is only visible within a very
short time compared to the usual duration of an
experiment. Beyond this time, plasticity becomes the
dominant process for sample deformations. Models
describing the possible role of defects have recently
been developed by Kleman [29], and Prost and
Pershan [30]. A new field of experimental investi-

gations is open in that direction.
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