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REMARKS ON POLYELECTROLYTE CONFORMATION

P. G. DE GENNES, P. PINCUS (*) and R. M. VELASCO (**)

Physique de la Matière condensée, Collège de France
75231 Paris Cedex 05, France

and

F.BROCHARD

Bâtiment 510, Université Paris-Sud, 91405 Orsay, France

(Reçu le 3 mai 1976, révisé le 9 juillet 1976, accepté le 12.juillet 1976)

Résumé. 2014 Nous discutons des conformations de polymères linéaires chargés en faisant les

hypothèses suivantes : a) la chaîne sans charge est flexible, b) la force électrostatique domine les
interactions monomère-monomère, c) il n’y a pas de sels.

1) Pour le cas dilué (chaînes non enchevêtrées) en corrigeant le calcul self-consistant fait récem-
ment par Richmond [1a], on trouve une taille des polyions égale à R = Nd, qui est une fonction
linéaire de l’indice de polymérisation N. Ce résultat est en accord avec les précédents travaux de
Hermans et Overbeek [1b], Kuhn, Kunzle et Katchalsky [1c].

2) Il existe un domaine pour des concentrations très petites c (c**  c  c*) où les interactions
électrostatiques entre les polyions sont supérieures aux énergies thermiques, il semble donc possible
que les polyions puissent former un réseau périodique à trois dimensions. Néanmoins, il semble
difficile de mettre en évidence un réseau si dilué.

3) Jusqu’ici toutes les expériences avec les polyélectrolytes sans sels ont été pratiquement faites à
des concentrations c &#x3E; c*, pour lesquelles les différentes chaînes sont enchevêtrées. Pour discuter
ce régime on s’intéresse uniquement au cas où la charge par unité de longueur est près du (ou au-
dessus du) seuil de condensation, donc il existe une seule longueur 03BE(c) caractérisant les corrélations;
à trois dimensions 03BE a le même comportement que le rayon de Debye pour les contre-ions. On a
considéré quelques conformations possibles : a) un réseau hexagonal de bâtonnets; b) un réseau
cubique de bâtonnets; c) une phase isotrope de chaînes partiellement flexibles. Les différentes
structures formées de bâtonnets semblent avoir la même énergie électrostatique. Ce fait suggère que
la phase isotrope peut être la plus favorable. On analyse cette dernière phase en utilisant les mêmes
méthodes qui se sont révélées efficaces pour les solutions des polymères neutres. Dans le modèle
isotrope chaque chaîne a le comportement d’une succession des petites pelotes (blobs) de taille 03BE.
Les effets électrostatiques sont importants à l’intérieur d’un blob et analogues au cas (1). Mais ces
interactions sont écrantées entre les blobs ; chaque chaîne a un comportement idéal à grande échelle
et son rayon est R(c) ~ c-1/4 N1/2. Si on suppose que les effets dynamiques des enchevêtrements
sont faibles on trouve une valeur pour la viscosité ~sp/c ~ Nc- 1/2.

Abstract. 2014 We discuss the conformations of linear polyions assuming that a) the corresponding
uncharged chain is flexible ; b) electrostatic forces dominate the monomer-monomer interactions;
c) no salt is added.

1) For the dilute case (non overlapping chains) correcting a recent self-consistent calculation by
Richmond [1a], we find an overall polyion size R = Nd which is a linear function of the polymeriza-
tion index N in agreement with the early work of Hermans and Overbeek, [1b], Kuhn, Kunzle, and
Katchalsky [1c]. 

2) There is a range of very low concentration c (c**  c  c*) where the chains do not overlap
(c  c*) but where the electrostatic interactions between polyions are much larger than thermal
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energies (c &#x3E; c**) : here we expect that the polyions build up a 3-dimensional periodic lattice ;
however, the detection of such an extremely dilute lattice appears difficult.

3) Practically all experiments on salt-free polyelectrolytes have been performed at concentrations
c &#x3E; c* where different chains overlap each other. To discuss this regime we restrict our attention to
cases where the charge per unit length is near (or above) the condensation threshold : then a single
length 03BE(c) characterizes the correlation; in 3 dimensions 03BE scales like the Debye radius associated
with the counter ions. We consider several possible conformations : a) hexagonal lattice of rigid
rods ; b) cubic lattice of rigid rods ; c) isotropic phase of partially flexible chains. The various rigid
rod structures appear to have very similar electrostatic energies. This suggests that the isotropic
phase might possibly be the most favorable. We analyse this latter phase using the same scaling
methods which have recently been helpful for neutral polymer solutions (2). In the isotropic model
each chain behaves like a succession of segments of size. Inside one segment electrostatic effects are
important and similar to case (1) above. Between segments the interactions are screened out, and
tach chain is ideal on a large scale, with radius R (c) ~ c-1/4 N1/2. If we (tentatively) assume that the
dynamical effects of entanglements are weak, we are than led to a viscosity ~sp/c ~ Nc-1/2.

1. Introduction. - 1.1 THE PROBLEM. - It has

been known for a long time that linear polyelectro-
lytes have a large overall size and a rather stiff local
conformation in dilute solution, but that they contract
progressively when salt is added, or when the concen-
tration increases. These features are summarized in
the books by Tanford [3] and Oosawa [4] and in the
recent articles edited by Selegny [5]. However, a

detailed understanding of the conformations is still

apparently lacking. In particular the statistics of

overlapping polyions have been treated mainly in a
rather primitive way, assuming equidistant parallel
rods.

1.2 THE METHOD. - For neutral polymer solutions
in good solvents the conformational problems have
been clarified recently thanks to a number of neutron
scattering experiments [2, 6] which revealed significant
departures from the simple Flory-Huggins picture.
In parallel with this, a rigorous theoretical analogy
between polymer solutions and ferromagnets under
fields has been developed by Des Cloiseaux [7] :
this has allowed to transpose all our recent understand-
ing of critical phenomena to polymers. The original
Des Cloiseaux paper is cast in the esoteric language
of lagrangian field theory. However, in ref. [2], we
have shown how the results could be derived, and
extended, by much simpler means : what is done is
to start from the discussion of a single chain, following
the Flory method [8], which is known to describe
excluded volume efi’ects very well. Then, the properties
of semi dilute solutions (with overlapping chains)
are derived from the single chain results by simple
assumptions of the scaling type. The present paper
applies these procedures to the problem of polyelec-
trolytes, where long range Coulomb forces are

dominant. However, as we shall see, the sequence
of arguments is much more conjectural for polyelec-
trolytes.

1.3 THE MODEL. - To cover these rather complex
phenomena, we find it necessary to choose a very
simplified model. Starting with an ideal chain of N

beads (unperturbed radius Ro = N 112 a) we put
on each bead a charge e. We also add a mobile counter
ion of charge - e in the solution. The bare Coulomb
interaction between two charges el e2 separated by

where eo is the dielectric constant of water. Our
central assumption is that all interactions other than U,
between monomers, are negligible. If water is a good
solvent for the backbone chain, these other interactions
represent short range repulsions, and are indeed
dominated by the longer range Coulomb forces in
most practical cases. But a more dangerous possibility
occurs if the polyion has an amphiphilic character
- i.e. when water is a poor solvent for the backbone.

Then, we could find micellar structures and even

liquid crystalline phases in semi dilute solutions :
these complex cases are excluded from the present
model.
To make things more concrete, what we have in

mind is a polyion with a repeat unit such as :

where the backbone oxygen ensures good water

solubility even in the absence of the acid group.
If we want to decrease the charge per unit length,
we can use weaker acids in a partially ionized state,
or longer repeat units

A less essential choice, required to specify the

abstract model completely, amounts to treat each

repeat unit either as a gaussian spring, or as one
segment in a freely jointed chain : the former being
closer to (ii) and the latter to (i). The distinction is

not essential (except for detailed features at high
charge densities). Here, for definiteness, we shall
think of the backbone as a freely jointed chain.
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The charge per unit length in a fully extended
conformation is then p = e/a. Instead of using p,

however, we shall sometimes find it useful to intro-
duce a characteristic length

where T is the temperature and kB is Boltzmann’s
constant (1). From various studies of the counterion
atmosphere [4, 9-11] we know that counter ion conden-
sation takes place when I &#x3E; a. Thus the dimensionless

coupling constant Ila can vary between 0 and 1.
The state of the solution is entirely defined in terms

of the following parameters :
a length of one unit,
c concentration (defined here as number of units

per unit volume),
N polymerization index (N &#x3E; 1),
l/a reduced coupling constant.

This is to be compared to the case of neutral polymer
solutions [2], where the parameters are a, c, N, and
another reduced coupling constant v/a3 where v

represents the excluded volume associated with one
monomer. The number of parameters is the same
in both cases : thus we may hope to find a scaling
theory for polyelectrolytes, although the power laws
involved will obviously be very different, because
of the long range nature of the forces.

2. The single chain problem. - In the present
section, we assume that the different polyion chains
are not overlapping and very far from each other.
This will impose very low concentrations - so low
that in fact most experimental techniques for confor-
mation studies become unapplicable. However, this
limit is conceptually important; it is only after under-
standing the single chain problem that we will be
able to proceed to the more physical case of overlap-
ping chains.

In this dilute limit each polyion occupies a certain
region of the solvent with an overall size R : this
region we call a globule (Fig. 1). Different globules

FIG. 1. - A typical polyion conformation for weak coupling in the
dilute limit, as obtained from the discussion of section 2.

are widely separated. As explained in particular in
Oosawa’s book [4], the counter ions are essentially
uniformly spread out in the whole solution, and thus
the fraction of counter ions which remains inside the

globules is very small (2). Counter ion screening can

(1) For simplicity, in the following, we shall write simply T
instead of kBT.

(2) We shall give a direct check of this statement at the end of
section 2.

be omitted completely for the single chain problem
(when lla  1).

2.1 SELF-CONSISTENT CALCULATION OF THE POLYION
SIZE WITH SPHERICAL SYMMETRY. - Richmond [1a]
using the self-consistent field method of S. F. Edwards
[11, 12] has found (in the absence of salt) a polyion
size R proportional to N211 . This is a very surprising
result. The Edwards approach is a refined form of the
simpler Flory approach for polymer sizes [8] which
was first applied to polyelectrolytes (even before

Flory) by Hermans and Oberbeek [lb] and by Kuhn
et al. [lc]. Let us first summarize briefly their argu-
ment : they assume a spherical globule of radius R.
There are two terms in the energy of one polyion.

a) An electrostatic energy

for a spherical distribution of charge inside a radius
R (3).

b) An elastic free energy

Optimising the sum Fe + Fel as a function of R we find

where

is an increasing function of the charge. The form (2.2)
is valid for not too large elongations, and this imposes
d  a or lla  1. But the main result is that according
to (2. 3), the size R is linear in N, and thus very different
from the prediction of ref. [la]. This is surprising
since ref. [1] and eqs. (2.1-3) are based on the same
ingredients.
For this reason, we have reexamined ref. [la]

in detail, and found a slight flaw in the argument,
which will now be explained. We follow the lines of
ref. [12]. The first unit of the chain is placed at the
origin. The n-th unit will then be at an average dis-
tance r(n) and it will feel two forces :

a) An electrostatic force eE where E is the electric
field. Assuming that the average density of monomers
around the origin p(r) is spherically symmetric, we
may derive the field from the Gauss theorem. Since
the region inside r(n) contains a charge ne, we have

(1) Here we omit all numerical coefficients.
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b) An elastic force, which is on the average

where we now treat n as a continuous variable. These
two forces must add up to zero. Using eqs. (1.2)
and (2.4) this gives

with the following boundary conditions

Eq. (2.9) can readily be derived by returning to the
analog of eq. (2.6) written up for the last bead, where
only one elastic spring (instead of two) is involved.
The behaviour near the origin is the crucial point.
Richmond (probably inspired from the Thomas-
Fermi treatment of an atom [13]) noticed that since
there is one charge at the origin, the potential very
near r = 0 must be elso r. He essentially assumed
that this form remained valid at small but finite r
thus obtaining a field n times smaller than eq. (2.5)
this leads to

and gives r - n2/3 d. But eq. (2.7’) is not justified :
as soon as we have moved at a finite distance r, the

charge inside this radius is ne rather than e,
and. eq. (2.7) holds. (This is very different from the
Thomas Fermi problem, where the central nucleus
brings a huge delta function peak in the charge
density.)

Let us now return to the correct eq. (2. 7) and turn
to dimensionless variables :

u(x) at small x is nearly linear in x

At the other end (x - 1) u goes to a finite value

The overall size of the polyion is thus linear in N

in agreement with the simple estimate of eq. (2.3).

2.2 ELONGATED CHAIN MODELS. - The above
calculations of the chain size assumed spherical sym-
metry, and came out with rather strong dilatations.
This suggests that the chain may be in fact strongly
stretched on one specific direction, and that different
starting approximations should be divised. (This
point has been repeatedly emphasized by Des Cloi-
seaux.) We shall now discuss briefly one such model,
where the chain is assumed to be extended by a force F
acting at one extremity and a force - F at the other
extremity. The conformation of an ideal chain under
such tensions are well known : we shall use them as
our starting point in a variational calculation of the
free energy, and show that the earlier estimate (2.4)
of the chain length is essentially unchanged.
Our calculation assumes a weak coupling constant

(l/a  1) such that elastic deformations are not too
large. Then in the presence of the force F we expect
an average elongation per monomer

The density-density correlation function for an ideal,
elongated, chain has been computed by various
authors [16-17] and is of the form (in terms of Fourier
transforms)

We may then write the Coulomb energy as

And after integration over angles this becomes

where

Performing the q integral we get with logarithmic
accuracy

where R is the (unknown) chain length. We must
add to (2.18) the elastic term
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and we must minimise the sum with respect to A.

Working only up to logarithmic accuracy we may
treat the In factor in (2.18) as a constant, and we get

or finally a size

1/3Typically for N~ 104 the factor In 3 N 
1/3 

is of

order 1.3 and thus (2.21) is not very different from
the result of the spherically symmetric models.

2.3 ’REMARKS ON THE SINGLE CHAIN CONFORMATION.
- a) Weak coupling lla  1. A qualitative picture
of chains under tension has been introduced recently
by one of us (4). For the case discussed here this leads
to the picture of figure 1. The chain is made of suc-
cessive blobs of size

Inside one blob the chain is nearly ideal. Between
different blobs there are strong repulsions and suc-
cessive blobs pile up in a straight line.

b) Strong coupling Ila - 1. - Here we are not

able to make precise predictions. If we neglect all

screening effects we are led to expect that the chain is
fully extended. However when lla - 1 the counterion

atmosphere begins to condense around the polyion
[4, 9] and a much more elaborate discussion is required.
Thus we do not know whether the chain remains

extended, or whether it becomes partly bent.

3. The lattice regime. - We begin now to include
the interactions between different chains. In this

section, we consider only low concentrations c  c*.
Again, this makes the discussion somewhat academic,
since c* is very small for polyelectrolytes of large
mass. However, since the very basis of the scaling
methods is to connect the behaviour at c - 0 to the
behaviour at c &#x3E; c*, it is important to discuss the
regime of low concentrations - at least qualitatively.
We shall argue that in a certain concentration

range c**  c  c* the polyions should build up a
periodic 3-dimensional lattice. Similar lattices have
been observed with charged polystyrene spheres by
Williams and Crandall (5).

To discuss the lattice, we notice first that for c  c*
the distances D between neighbouring polyions will
be much larger than the size Nd of one polyion :
each polyion is point-like. Second, we remark that for
c  c* the screening length K -’ due to counter ions
becomes somewhat larger than D. This can be seen
from the equation for K :

and from the relation between c and D :

(where we have chosen to put the polyion centers on
a body-centered cubic lattice of cube edge D). Thus
we have

where we have used the definition (2.27) for c*.
We see that for c  c* the parameter KD becomes
somewhat than unity : screening is weak.

Let us now focus our attention to this limit

(KD  1). We are then dealing with point-like ions
(of charge - Q = - Ne) floating in a sea of uniform
positive charge (density ce). At low temperatures T
such a system is expected to build up a body centered
cubic lattice (6). At higher temperatures the lattice
will melt. A qualitative understanding of the melting
process can be obtained as follows : we first compute
the amplitude 5 of the thermal oscillations for one
polyion inside the lattice, using a simple Einstein
model. We then assume that the lattice is stable
towards melting whenever 61D is smaller than a fixed
number a (typically a N -1) (7).

Let us first calculate the restoring potential U(xyz)
for one polyion displaced by (x, y, z) form its rest

position. This energy is of the form U = - QV
(x, y, z) where V is the electrostatic potential due to all
surrounding changes (polyions plus uniform sea).
The cubic symmetry imposes

(4) PINCUS, P., Macromolecules, to be published.
(5) Phys. Lett. 48A (1974) 225.

(6) WIGNER, E., Phys. Rev. 46 (1974) 1002 ; FOLDY, L.,
Phys. Rev. B 3 (1971) 3472. 1

C) See for example, ZIMAN, J., Principles of the theory of solid.,
(Cambridge University Press, Cambridge) 1965, chap. 2.
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where we have used the Laplace equation. Finally
we can write for small amplitude motions

Applying the equipartition theorem we then find a
thermal average :

and using eq. (3.2) we arrive at

Qualitatively we may say that when D  3 N2 I,
the ratio 5/D is smaller than § and the lattice is stable
towards melting. At fixed temperature this appears
as a concentration threshold c &#x3E; c**

[Of course the numerical coefficient in (3.9) is very
approximate.] There will indeed exist a lattice only
if screening is weak, as assumed here, in the region
C - c**. Thus we must have

Returning to eq. (3.3) we see that this imposes

or, after injection of eqs. (2.27) and (3.9)

Eq. (3.10) explains why the lattice regime has never
been found experimentally. On one hand, we need
rather large values of N (of order 200 or more).
But, then the concentrations of interest are extremely
small : for I = a and N = 200 we would have

corresponding to concentrations of order 10-4 mole/I.
With concentrations which are so weak, all physical
measurements become difficult. Also, to maintain
the concentration of salt (or other impurities) below c,
special precautions have to be taken.
For all these reasons, the polyelectrolyte lattice

appears as a very rare possibility. It is conceptually

important, however, because it brings in phase
transitions which have no counterpart in neutral

polymer solutions. For the latter system there is a
smooth crossover between a dilute (gas like) system
of separate coils, and an entangled solution. For

polyelectrolytes starting from c = 0 and increasing c
we may have to face two successive transitions :
a cristallisation transition at c = c** and a melting
transition at c - c*.

The situation may be even more complex, because
each of our polyions is not really a point, but is in
fact a rod (for I - a). When c becomes of order c*
it may happen that the rods order along special
crystallographic directions in the lattice - the pro-
blem being reminiscent of the solid phases of diatomic
molecules like H2 or N2. We shall ignore these

complications in the present paper.

4. Semi dilute solutions. - 4.1 CHOICE OF THE
COUPLING CONSTANT. - We introduced in eq. (2.27)
a concentration c* as the concentration of monomers
inside one isolated globule. When c &#x3E; c* different

globules begin to overlap, and their conformation is
strongly modified. Also counter ions must now be
included in the discussion. We shall be concerned
here only with the semi dilute regime, defined by the
two inequalities

The vast majority of experiments performed on

polyelectrolytes (in the absence of salts) pertain to

this regime, because c* - N 21d3 is a very small
concentration and is often unattainable in practice.
For neutral polymer solutions, as explained in the

introduction, the essential parameters are a, c, N and
the excluded volume v. In good solvents, v is of order
a3, and it is often convenient to focus the discussion
on the case where v = a3, as was done in ref. [2].
Qualitatively, for all finite, positive values of vla3
the behaviour follows the same pattern, but the
condition v = a 3 avoids complicated factors of vla 3
which make the ideas less transparent (8).

For the present polyelectrolyte problem (para-
meters a, c, N and I) we shall make a similar simpli-
fication, assuming that lla = 1. Again, we expect
this to maintain most features of interest. Note that
this case is particularly important in practice, since
it corresponds to the condensation threshold : many
highly charged systems will automatically stabilize
to this value of lla. We also recall that in this case

(8) The complete dependence on v and the behaviour near the e
V 

point (;; ---&#x3E; 0 has been written down in recent work by Jannincka )
and Daoud (to be published).
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d = a (as shown by eq. (2.4)) and that the critical
length rc also, becomes equal to a : the short range
coil behaviour discussed in section 2 is thus comple-
tely eliminated.

4.2 THE HEXAGONAL LATTICE AND OTHER RELATED

MODELS. - In the absence of salt, the electrostatic
repulsions between monomers are very strong in the
semi dilute regime. [In fact, as we shall see, for lla = 1

the repulsive energy per monomer is of order T at
all c.] The entropy contributions due to chain flexibility
are smaller (since the chains remain rod like at least
on certain scale ç( a) which will be defined later).
At first sight it is then tempting to visualise the semi
dilute solutions in terms of a parallel stacking of
rods : this notion has often been used in the litera-
ture (9). It is described in figure 2.

This type of stacking would give a phase which is
macroscopically uniaxial (although, of course textural
defects may complicate the observation of the asso-
ciated birefringence). It is not a nematic crystal, but
closer to the hexagonal phases found in the soap-
water system (10) : these phases have been termed
canonic by F. C. Frank (11).
We have computed the energy of the hexagonal

phase for infinite rods (large N) using a simple
screened form for the interactions

where K - I (the Debye Huckel radius due to the

counterions) is still given by eq. (3 .1). The calculation
(described in appendix A) gives an energy per mono-
mer 

We have repeated similar calculations for a cubic

phase of rods (similar to the familiar fl tungsten
structure of cristallographers) displayed on figure 3b.
The interaction between chains is roughly 10 %
higher in the cubic phase than in the hexagonal phase
(appendix A). We have then performed two other
checks on the stability of the hexagonal phase.

a) We investigated the thermal fluctuations of one
chain in a fixed potential due to its neighbours,
allowing for both curvature energy and electrostatic
energy (appendix B). The lateral displacement of

(9) KATCHALSKY, A., ALEXANDROWICZ, Z., KEDEM, 0., in

(B. Connery and R. Barradas eds) Chemical physics of ionic solutions,
Wiley, New York (1966).

eo) LUZZATI, V. in Biological Membranes (Chapman ed.)
Academic Press, New York (1968); SKOULIOS, A., Adv. Colloid
Interface Sci. 1 (1963) 79.

(11) After the greek Kavcov = rod.

FIG. 2. - a) A hexagonal lattice of rods. b) The /I-tungsten
structure with these families of mutually orthogonal rods A, B, C.

c) Twist deformation of a hexagonal array of rods.

one monomer (transverse to the hexagonal axis)
is small and given by
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where dh is the distance between rods at rest. This

implies that the relative displacement

is small (since dh &#x3E;&#x3E; a in the semi dilute regime).
Thus the canonic phase appears quite stable from
the point of view of individual chain fluctuations.

b) We also investigate a cooperative distortion

analogous to a grain boundary (Fig. 2c). The energy
calculation of this twisted interface is also given in
appendix A. If our numbers are correct, the energy to
create such a defect is slightly positive (12) (but
independent of the twist angle).

Thus, while the hexagonal phase seems to be stable
with respect to the fl tungsten structure and the defor-
mations given in a) and b) above, we believe that it
is useful to study the other possibility of random
isotropic phase-consisting of overlapping partially
flexible polyions. It is difficult to give a sufficiently
precise calculation of the electrostatic energy of this
phase to compare with the lattice structures. We

conjecture however that such an isotropic situation
prevails. This model may then be analysed by scaling
methods which will now be described.

4.3 THE ISOTROPIC MODEL. - a) Construction of
a correlation length. - In the present picture the
various polyions set up an isotropic entangled system,
which is represented qualitatively on figure 3. The
local properties of this solution at fixed c become

independent of the chain length (of N) in the limit
of large N : let us first discuss this limit, i.e. restrict
our attention to spatial scales r smaller than the
overall chain size R(c). The major feature is the
existence of a correlation length ç(c) which must
satisfy the following requirements

FIG. 3. - Polyion solution in the semi dilute regime. On scales
r  ç the chains are nearly stiff. On scales r &#x3E;&#x3E; ’’-’ they are ideal.

(i) At fixed c (&#x3E; c*), j(c) must be independent
of N (since it is defined in the limit N -+ oo). The only

parameters available being c and a, ç must be of the
form j = af(ca’) where f is an unknown function

(ii) For c - c*, ç(c) must become comparable to
the radius R

where R(O) is the single coil size which was discussed
in section 2. For the present case (lla = 1), R(0) - Na.
We now assume that jla = f varies like a certain

unknown power of the concentration

Taking into account requirement (ii) this imposes

Both c* and R(0) depend on N, but ç itself must not,
as explained in (i) above. Since c* - IIN’ according
to eq. (2.27) and R(0) - N we must have m = 2

Thus ç(c) is a decreasing function of c, going from
R(o) (for c - c*) down to the monomer size at high
concentrations. Note that

(i) The length ç( c) scales like the interrod dis-
tance dh in the hexagonal model.

(ii) The length ç(c) scales like the Debye screening
radius K-1 (eq. (3.3)) due to the counterions. This
remarkable coincidence exists only in 3 dimensions.

b) The segment concept. - To reach a physical
interpretation for ç we use our earlier experience
with neutral polymers : at distances r  ç we expect
that the single chain behaviour is maintained, while
for r &#x3E; ç we guess that all interactions be screened
out.

Qualitatively it is very helpful to visualise the chain
as a succession of segments, each carrying a num-
ber g of monomers. Since, inside each segment,
we have the laws of section 2, we may write

Comparing this with eq. (3. 3) for ç we see that

On the latter form we see that each volume ç3 is

occupied by one segment on the average.
We now make the following conjecture (inspired

by the neutral case) : the complete chain is an ideal
necklace of N/g segments successive segments being
uncorrelated in their orientations. The overall radius
of the chain R(c) is then given by
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Inserting (3.14) and (3.13) into (3.15) we find

Eq. (4.7) may also be derived from a scaling argument,
assuming that R(c) - c-p Nl/2 (ideal chain behaviour
on large scales) and imposing R(c*) - R(0) - Na.
This gives the equivalent form :

We see. that with our conjecture the chain radius
contracts at increasing concentrations, going from
R(0) - Na to a much smaller value (- N 1/2 a)
at high c.

c) Neutron scattering by one labeled chain. - We
shall discuss two correlation functions connected
with the polyions : a function Sl(q) giving the corre-
lations between monomers on the same chain, and a
function S(q) giving the correlations between any two
monomers. The function S is directly accessible to X
ray or neutron studies whenever scattering by the
polyion is dominant. The function S, is also accessible
through the use of a few deuterated polyion chains,
immersed in a solution of normal (protonated)
polyion chains.

Let us start for instance from the one chain function

Si(q). When the wave vector q is larger than l/c;
we probe the inside of a segment, and we expect to
find the same scattering law which would obtain in
a single chain. Since I - d - a this is

On the other hand, at small qç, our conjecture pre-
dicts a form of Si based on an ideal chain, made of
N/g segments of size ç. The Debye law for this case
is of the form

(apart from a numerical coefficient which the scaling
laws do not predict). Note that for q - 1/ both
equations (3 . 8, 9) give qualitatively the same result

d) Coherent scattering. - Let us now turn to the
complete monomer-monomer correlation function

S(q). At high q, we are dealing with correlations inside
one segment. Since, as noticed earlier, different

segments do not overlap on the average we must
have S = Sl, in this regime

At low q, we do not know the form of S(q), but we
may relate S(0) to the osmotic compressibility

r

where np is the osmotic pressure contribution due to
the polyions (13). As already mentioned, the elec-
trostatic energy per monomer is of order T. The

entropic terms due to chain distortions are g times
smaller (since each segment acts as one unit) and do
not contribute very much to the free energy. We may
expect that the pressure TTp scales like the free energy
per unit volume and is thus of order

(Note incidentally that this is dimensionally compa-
rable to the counterion pressure.) Thus we are led to
assume that S(o) is of order unity, i.e. very small
in comparison with S(qj) - g. This suggests that the
plot of S(q) versus q should show a maximwn at
q - Const. -1. Such a peak may be interpreted as
demonstrating the short range order arising from
the hard-sphere like repulsion between segments.
The few neutron data presently available give us
contradictory evidence on this point. In one case (14)
(with carboxymethyl cellulose) no maximum has been
found. In another case (15) (with metacrylic acids
of low mass) a peak is apparently observed - but
it might be due to completely different effects (segre-
gation of the hydrophobic portions). More detailed
experiments are clearly needed.

It is not possible to write down a scaling form for
S(q) if we want to satisfy both S(0) a 1 and eq. (4.11)
at large q. However, a scaling form may be restored
in the limit g &#x3E;&#x3E; 1- i.e. in a limit where S(o) is negli-
gible when compared to S( -1). Then we can postulate

where f(x) is a dimensionless, universal function of x
(i.e., is the same at all concentrations in the semi dilute
regime). For large x, f - I Ix. For small x, f goes
to zero. The function /(jc) would have a maximum
for x - 1.

5. Concluding remarks. - 5.1 REMARKS ON THE

ONE CHAIN PROBLEM. - It is probably wise to empha-
size first the limitations of the present work : our
analysis of the conformations of a single polyion
is based on approximations of the Flory type [5]
which give good results for the excluded volume

problem (i.e. for short range repulsions). But the
success of the Flory method is due to a delicate

(3) To define 1tp it is convenient to introduce a model where
the coulomb interactions between polyion charges are screened with
a radius K-1, and where the counterions are eliminated from the
model. ’

(14) MOAN M. and WOLFF, C., Polymer 16 (1975) 776.
(ls) COTTON, J. P. and MOAN, M., J. Physique Lett. to be publish-

ed.
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compensation of overestimates in the two terms of
the free energy (elastic + repulsive) [18] : it is by
no means certain that this compensation is maintained
when we are dealing with long range forces. Thus
our discussion of section 2 should be supplemented
by a more rigorous approach.

It is interesting in this connection to see if there
is a critical dimensionality de above which a charged
chain would remain essentially unstretched.
One way to ascertain this is based on perturbation

expansions for the end to end radius R as a function
of the charge e, for small charge : this is formally
similar to the Fixman calculation for neutral
chains (16). For an arbitrary dimensionality d (17)
the Coulomb interaction between two charges e
separated by a distance r is proportional to

The expansion of R(e2) is then of the form

Since Ro = aNl/2 the expansion parameter is small
when d &#x3E; 6. Above d = 6 the deviations from ideality
are minor. Below d = 6 they are essential; the radius R
must be computed by more sophisticated methods (18).
It is expected to be of the form R = aN’’« with v &#x3E; 2-

5.2 QUESTIONS CONCERNING THE SEMI DILUTE

REGIME. - We have been led to consider the isotropic
model as the most plausible candidate for the repre-
sentation of semi dilute solutions. However we are
faced with many pitfalls.

a) The decision between hexagonal and isotropic
models is delicate, and might require inclusion
of a more sophisticated discussion of counterion

atmospheres [4, 5].
ti) Another possibility which is not ruled out is

to have a nematic type of order - without any hexa-
gonal lattice, but with one preferred orientation for
the rods. Nematic phases have been found long ago
for certain rod like molecules like helical polypep-
tides [19]. It may be that the flow birefringence data
(showing an extinction angle progressively reduced
by larger shear rates) represent in fact the progressive
elimination of defects and alignment of a nematic
texture : clearly many more experiments in this field
are required.

c) Even if the isotropic model is right, we may
still question our further conjecture on the shape
of the chains : is the radius of gyration proportional

(16) See ZIMM, B. H., STOCKMAYER, W. H. and FIXMAN, M.,
J. Chem. Phys. 21 (1953) 1716.

e 7) In this section, d is the dimensionality, and should not be
confused with the length d of section 2.

(18) The corresponding renormalisation group is currently
being analysed by us, together with P. Pfeuty.

to N.1/2 C--114 (as proposed here) or are the rods more
strongly extended ? A neutron experiment with label-
ed chains would solve the problem. At present the
only available (and rather preliminary) data are for
unlabeled chains of carboxymethyl celluloses (19).
They do show a crossover length ç which decreases
with concentration; but the detailed power laws
are still to be checked. Also the plots of S(q) do not
show the maximum at q - 1 which we would expect.

d) The viscosity j7 of polyelectrolyte solutions
remains a mystery. 
- The main results (in zero salt) concern extra-

polations at c -+ 0 which seem to confirm that the
single chain radius R is linear in N as expected.
- In the semi dilute regime, the usual finding

is [3, 4, 5]

where f (N) is essentially unknown, although some
early data by Eisenberg suggest f - N. A dynamical
scaling analysis (2°) based on the reptation model
would give

in strong disagreement with (5.3).
It is in fact, striking that l(c, N) increases much

more slowly with c and N than for neutral solutions.
Two lines of thought can be proposed here

(i) Either the polyelectrolyte chains are not entan-
gled - even when they overlap strongly (c &#x3E; c*).
They might, for instance, be locally parallel to each
other even if they have the coil radius R of eq. (4.6).

(ii) Or the entanglement contribution to the energy
of a distorted network is small compared to the
electrostatic contribution. This certainly has some
truth, but the ratio of these two energies is of order 1 jg
and probably not small enough to explain the data.
Along the lines of (i) we can make the following

remark : if we assume that entanglement effects are
negligible, we may try to predict the viscosity by a
simple free draining argument of the Rouse type [20].
This gives

where f i is the friction factor for one monomer

against the solvent. Inserting our form (4-6) for RG
and a monomer hydrodynamic radius aH (such that
fl = 6 nqo ah we would get

The concentration dependence would agree with

eq. (5. 3). The dependence on N remains to be checked.

(19) MOAN, M. and WOLFF, C., Polymer 16 (1975) 776. 
’

(20) F. BROCHARD, unpublished.
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APPENDIX A

The electrostatic lattice energies. - Let us first
calculate the electrostatic energy between two infinite

parallel chains separated by a distance p, using the
screened interaction (4. 1).
We take the z-axis parallel to the chains; thus

the energy per monomer is given by

where Ko(Kp) is the modified Bessel function, which
in all our calculation can be approximated by its

asymptotic expansion for Kp &#x3E; 1. (We also take
I = a ; i.e. strong coupling limit.) Then

The hexagonal lattice energy, figure 2a is calculated
from (A. 2) by adding the energy contribution of the
chains around a given one

where -1 F’(p) gives us the contribution of a chain at
a distance p, z, = 6, z2, ... are the number of nearest,
next-nearest neighbours and p 1 = dh, P2 = .,/3- dh, ...
the corresponding distances. The nearest neighbour
distance dh is determined by the condition

where c is the concentration and A the area per chain
in semi dilute regime; in the hexagonal phase

and

The most important contribution to the interaction
energy is the nearest neighbour energy, then we will
only take the first term in eq. (A. 3). Substitution

of dh in eqs. (A. 2) and (A. 3) gives us the interaction
energy

To obtain the total energy we must add the self-energy
of a chain

Then in the strong coupling limit (I = a) we obtain
the total energy per monomer of a chain in hexagonal
phase eq. (4.2).

In order to calculate the energies in fl-tungsten and
the grain boundary structures, figures 2b, 2c we have
computed the interaction energy between two chains
separated a distance 5 and making an angle T, e.g.
an arbitrary chain on plane 1, and a chain in plane 2,
figure 2c. The interaction energy is calculated in the
following manner : we consider a monomer i on
chain 1 and a monomer j on chain 2 separated a
distance r, the screened Coulomb interaction is

The energy per unit length E12 between the pair of
chains is then

where p(r) is the probability per unit length of finding
monomers (i, j) separated by r.

To calculate p(r) let us take the z-axis along chain 1,
Si is the distance between the origin and monomer i;
the coordinates or monomer j are (S2 sin qJ, 6, S2 cos T).
Then the distance r between the pair (i, j) can be
written as

Eq. (A. 9) represents an ellipse in the plane Sl S2
with an area

The probability p(r) is then 

Finally

In figure 2c we note that there exist many crossings
of this type between the chains on plane 1 and the
chains in plane 2, in fact there are ) sin (p 1/ p per unit
length where p is the distance between chains on a
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plane (e.g. planes 1 or 2). Then the interaction energy
per monomer is

We note that the interaction energy is independent
of 9.
Now consider an arbitrary chain in the fl-tungsten

structure, figure 2b. The nearest neighbours make
an angle 9 = n/2, so their energy contribution is

proportional to eq. (A. 13) :

where z, = 2 is the number of nearest neighbours and
F’(61 pi)/2 gives us the contribution of a chain, and
we note that the distances between planes and chains
are anual : : 6 1 = p 1 = d.. The next nearest neighbours
are parallel and the energy is proportional to (A. 2).
Then the lattice interaction energy can be written as

The nearest neighbour distance is calculated from

eq. (A. 4)

To compare hexagonal and fl-tungsten lattice energies
we take only the nearest neighbours contribution
in eq. (A. 14). (The self energy of the chains is of

course the same in the two phases.)

We see ahat the p-tungsten energy is about 10 %
greater than the hexagonal phase energy.

Let us now consider the grain boundary structure
which is obtained from the hexagonal structure by
the cooperative distortion of twisting a plane by an
arbitrary angle T as shown in figure 2c. The interaction
energy of a chain on plane 1 with the chains in plane 2
will be proportional to eq. (A. 13), in fact

The distance between the planes 1 and 2 is

and the distance between the chains in each plane
is p = dh as indicated in figure 2c. Then

Now we compare the energy F,, with the interaction
energy, the chain on plane 1 would have in the undis-
torted phase. In the undistorted phase the considered
chain in plane 1 is parallel to the chains in plane 2
and it has z’ = 2 nearest neighbours at a distance dh,
then the interaction energy is given by eq. (A. 2)
which we call

A comparison with eq. (A. 17) gives us

We see the interaction energy in T structure is greater
than the undistorted phase energy, but all the inter-
action energies are of the same order of magnitude.

APPENDIX B

Thermal fluctuations in the hexagonal phase.-We
describe the calculation of the lateral chain displa-
cement in the hexagonal phase produced by thermal
fluctuations.
The total energy per monomer of a deformed chain

in the hexagonal phase has two main terms : an
electrostatic repulsion produced by the chains in
the immediate neighbourhood, which opposes to

lateral deformation, and the curvature energy. The
first term can be calculated from

where bx and by are the lateral displacements and V
is the potential produced by the neighbouring chains

Z 1 is the number of neighbours (zi = 6) and Felectrostatic
is given by (A. 2), then eq. (B. 1) reduces to
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The curvature energy per monomer (I = a) for an
isolated chain is given by

Taking Fourier components for the displacements

n

and adding (D. 4) (D.5) we obtain the total energy

The thermal average gives us the value of  bxaq) &#x3E;

and

then
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