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THE CURVATURE ELASTICITY OF FLUID MEMBRANES :
A CATALOGUE OF VESICLE SHAPES

H. J. DEULING and W. HELFRICH

Institut fuer Theoretische Physik
Freie Universität Berlin, D 1 Berlin-33, Amimallee 3, Germany

(Reçu le 21 mai 1976, accepté le 15 juin 1976)

Résumé. 2014 Les formes des membranes fermées fluides formées par la lécithine dans l’eau ont été
calculées en fonction du volume délimité, de la surface de la membrane, et de la courbure spontanée.
Diverses formes symétriques par rotation sont présentées avec des indentations, des cavités et des
surfaces de contact. 

Abstract. 2014 Shapes of closed fluid membranes such as those formed by lecithin in water were
calculated as a function of enclosed volume, membrane area and spontaneous curvature. As the area
can be taken to be constant, the only elasticity controlling the shapes of these vesicles is that of
curvature. A large variety of rotationally symmetric shapes are presented, allowing for indentations,
cavities and contact of the membrane with itself.
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1. Introduction. - Lipid bilayer membranes have
been the subject of many investigations over the last
decade, because they seem to be closely related to
biological membranes. They are composed of a double
layer of lipid molecules. The hydrophilic heads of
the molecules are pointing towards the aqueous
medium and the hydrophobic ends of the hydrocarbon
chains are pointing towards the interior of the film.
Lipid bilayers can be prepared in such a way that the
membranes close to form vesicles whose diameters
can range from a few hundred A [1] to several mm [2].
The shape of such vesicles is controlled by the elastic
properties of the lipid bilayer. Provided that the
membrane is fluid and the vesicle does not form a

sphere, the only important elasticity is that of curva-
ture [3].

In the following, the lipid bilayer membrane is

always assumed to be a two-dimensional fluid charac-
terized by a vanishing modulus of shear elasticity.
Area dilation of the membrane is negligible, except for
spherical vesicles under excess internal pressure, as
much more energy is required for area dilation than
for curvature. Practically all the deformational energy
of a vesicle is therefore stored in the curvature (or
bending) of the membrane. On the basis of Hooke’s
law one should expect the curvature energy per unit
area of the lipid bilayer to be proportional to the
curvature squared. Such an ansatz would imply that
the plane bilayer is the equilibrium state in the absence
of external forces. A lipid bilayer may, however,
possess a built-in asymmetry due to either a different

lipid composition of the two constituent monolayers

or different environments on the two sides of the

bilayer. Then the membrane has non-zero curvature
in its state of lowest elastic energy. Allowing for such a
spontaneous curvature, we may write for the bending
energy per unit area [3]

where kc and kc are elastic constants and cl and C2 are
the two principal curvatures. The phenomenological
parameter co is the spontaneous curvature. If the
constituent monolayers are free to slide over each

other, as is generally assumed, co is constant over
the entire area of a vesicle. It may be noted that for
actual shape changes co may be a time-dependent
functional of the deformation [4]. The concept of
curvature elasticity, including spontaneous curva-

ture, has recently been applied to red blood cells [5] to
explain the biconcave discoid shape of erythrocytes.
Analyzing the experimental data of Evans and Fung
[6], the present authors [7] found co = - 0.74 um-1
for the membrane of normal human erythrocytes
under physiological conditions. (The minus sign
indicates a spontaneous curvature opposite to that
of the sphere.) In the present paper we use the concept
of curvature elasticity to calculate theoretical shapes
of lipid bilayer vesicles and classify the most important
solutions of rotational symmetry. We also calculate
the dependence of vesicle volume on the difference in
osmotic pressures inside and outside the vesicle as
well as the relation between the total curvature energy
and volume for the different types of shapes. To
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designate vesicle shapes, particularly the more exotic
ones, we will often use the nomenclature developed
for red blood cells [8]. In all cases examples of the
shapes are shown in the figures.

2. Theory. - Expression (1.1) for the bending
energy per unit area of a lipid bilayer membrane is
closely analagous to that for the energy density of a
liquid crystal [9], the first term in (1.1) corresponding
to the splay term of liquid crystals and the second
term being analoguous to the saddle splay term [10].
This second term, when integrated over the surface
of a vesicle, gives a contribution to the total curvature
energy which is independent of the shape according
to Gauss’ theorem. Consequently, the shape of the
vesicle is determined only by the first term in expres-
sion (1.1). For a vesicle with surface area S we define
an equivalent sphere radius .Ro by S = 4 7rR’. The
maximal volume of the vesicle at constant surface
area S is Vo = (4 n/3) Ro. When the volume V is
reduced below Vo, the vesicle becomes easily defor-
mable and can assume a large variety of shapes depend-
ing on S, V, and co. To find the equilibrium shape of a
vesicle, we have to look for minima of the total curva-

ture elastic energy E = g c dS at constant surface
area and constant volume. We introduce Lagrange
multipliers dp and A for the constraints V = const.
and S = const., respectively. Ap = Pe - pi repre-
sents the osmotic pressure difference between the
outer and inner medium and A represents a tensile
stress. The shape of the vesicle at equilibrium is
found from the equation

To keep the problem simple, we consider only forms
having rotational symmetry. The principal curvatures
in this case are those along the meridians (ci and
along the parallels of latitude (cp). , We describe the
contour of the cell by a function z(x), the z-axis

coinciding with, and x being the distance from, the
axis of rotation. Denoting by § the angle made by
the surface normal and the z-axis, we can express
the curvatures c. and cp by ql(x)

The angle ql(x) in turn is related to the contour z(x) by ,

Eliminating O(x), we obtain a differential equation
expressing the assumption of rotational symmetry

We express the contour z(x) and volume and surface
area in terms of x and cp

When using expressions (2.6) and (2.7) we have to
take into account that z(x) is double valued. We have
to integrate over x from 0 to the maximal value xm
and back to zero to obtain the total volume and sur-
face area, respectively. With the aid of expres-
sions (2.4), (2.6) and (2.7) we can rewrite the varia-
tional problem in the following form

The Euler-Lagrange equation corresponding to this
variational problem reads

The two non-linear differential equations (2.4) and
(2.9) can be solved numerically [5]. From the solu-
tion cp(x), the contour z(x) is obtainable by a further
integration using expression (2.5). The boundary
conditions for the equations (2.4) and (2.9) can be
discussed more easily when a slightly different for-
mulation is used. We replace the independent variable
x by the normalized surface area s using the relation

The variable s ranges from s = 0 at the upper pole
to a value sm at the dividing parallel of latitude and
from there to s = 1 at the lower pole. dx/ds is positive
in the upper half and negative in the lower half. We
also use f = x2 instead of x. With these substitutions
we obtain a system of three non-linear equations for
the three dependent variables cm(s), cp(s) and f(s)

These equations have different classes of solutions
which are characterized by different boundary condi-
tions which we shall discuss in detail below.
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From the solution f (s), cp(s), cm(s) we find the

volume V and the contour z(s) by further integrations

For weak deformations of a sphere, i.e. V N Vo,
there exist two solutions of equations (2 .11 )-(2 .13)
representing an elongated ellipsoid of revolution
and an oblate ellipsoid of revolution, respectively.
The value of co determines which of the two shapes
has lower elastic energy. When co is below a critical
value Coc, the oblate shape has lower energy than the
prolate form. If however co is greater than Coc the
elongated ellipsoid of revolution represents the stable
form. The critical spontaneous curvature Coc was
found to be COc = - (39/23) Ro 1. The derivation is

given in appendix B. As the volume is increased to the
maximal value Vo, the osmotic pressure difference

Ap between the inside and the outside of the ellipsoids
attains the value [3] Apc = (12 - 2coRo)kcRõ3.
In the following we will always give Ap in units of Apc

3. Numerical results and discussion. - The diffe-
rential equations derived in section 2 have a singularity
wherpver either f (s) goes to zero or f (s) c2p (s) approa-
ches 1. We can remove these singularities by choosing
correct boundary conditions. At the poles of the
vesicle, i.e. at s = 0 and s = 1, we have f = 0. As we
approach the poles, however, the difference cm - cp
also goes to zero. We can therefore take the correct
limit of equation (2.12) and obtain

Whenever f (s) reaches an extremum at some point
s = sm the quantity f (s) c’(s) becomes equal to 1 and
equation (2.11) has a singularity. We can remove
this singularity by the boundary condition that at

s = sm the expression in curly brackets in equa-
tion (2.11) also vanishes. This defines either the

Lagrangian multiplier A or the curvature cm(s) at

s=sm :

Taking the correct limit s - s. of equation (2.11)
we find the equation to be consistent with any value of
y = (dcm/ds)S=Sm. The second derivatives are all well
defined at s = sm. Therefore we make a Taylor
expansion around the point s = sm at which equa-

tion (2.11) is ill-defined :

Besides rotational symmetry, ellipsoids of revolu-
tion and disk-shaped cells (discocytes) also possess
reflection symmetry with respect to the equatorial
plane. Dealing with these forms we have only to
consider the interval 0  s  0.5. At s = 0 we have

f = 0 and cm = cp = cm. At s = 0.5 we have f = f m,
cp = I;. 1/2 and cm = cm. The parameter y is zero
because the solution is symmetric with respect to the
point s = 0.5. We start the solution at s = 0 and at
s = 0.5 and match the branches at s = 0.25 or at
some other intermediate point. The matching condi-
tion for the three functions cm(s), cp(s) and f (s) gives
three non-linear equations for the unknown boundary
conditions c0m, 1m and cm. These three non-linear
equations which we solve by the Newton-Raphson
method [11] may have several solutions as we shall
see below. Figure 1 shows such a solution for

V/Yo = 0.75 and co Ro = - 2.0. The contour of the
cell corresponding to this solution is found by a further
integration. It is shown in figure 3a. This type of cell
is called discocyte. The scheme outlined above serves
to find solutions for a given value of Ap/Apc. To cal-
culate a cell-shape for a given volume V/ Vo we treat
Ap as an additional variable which is to be determined
by equation (2.14).
When there is no reflection symmetry we have to

solve the equations in the entire interval 0  s  1.
At s = 0 we again have cm = cp = cm and at s = 1

FIG. 1. - Plot of f (s), cm(s) and cp(s) versus s for a discocyte
with VIVo = 0.75 and co Ro = - 2.0. The curvatures are given

in units of Ro 1, f (s) is given in units of R2
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FIG. 2. - Plot of f (s), cm(s) and cp(s) versus s for a cup-shaped
cell with VIVO = 0.75 and co Ro = - 2.0.

FIG. 3. - Contours corresponding to the solutions shown in

figure la and figure 2b.

C. = cp = c1m, the superscripts u and I referring to
the upper and lower half of the cell respectively.
cm and cm are unknown and still to be determined by
boundary conditions. The function f (s) reaches its
maximum fm at some point s = sm. At this point cm(s)
has some value cm. The parameter y is now different
from zero. So we have to determine six unknown

parameters cm, cm, cmm, fm, Y, sm. Matching of the
functions cm(s), cp(s) and f (s) at two intermediate

points in the intervals 0  s  sm and sm  s  1
gives us six non-linear equations for the six unknown
boundary conditions. These non-linear equations
have more than one solution as we shall see below.

We calculate the solutions using again the Newton-
Raphson method. Figure 2 shows the solution for
V/Vo = 0.75 and co Ro = - 2.0. The contour cor-
responding to this solution is shown in figure 3b.
This type of vesicle is called a cup-shaped cell. Both
solutions correspond to minima in the deformational
energy, as is discussed in detail in appendix A.
As pointed out above, the non-linear equations for

the boundary values have several solutions. In figure 4
we show two other symmetrical solutions representing
higher order deformations of the sphere (only one
quadrant is shown). Figure 5 shows a higher order
asymmetric solution assuming a bell-shaped form
when the volume is decreased further. Figure 6 and
figure 7 show two other higher order deformations of
the sphere. We have not investigated the stability of
these forms.

FIG. 4. - Contours of two symmetric solutions of higher order
(only one quadrant is shown, the rotational axis is along z).

When the volume is sufficiently reduced and the
spontaneous curvature is not too small, the two halves
of the symmetric discocyte (Fig. 3a) touch at the center.
They are in contact over a circular area of radius
x o = fJ/2 and area f o/4 (in units of 4 nRg). In the
range 0  s  f o/4 we have cm(s) = CP(s) = 0. At
s = f o/4, cm(s) changes discontinuously to some

value cmo. The discontinuity corresponds to a normal
force per unit length along the circle bounding the area
of contact. The force in the upper half of the cell is

balanced by an opposite force per unit length at

s = 1 - f o/4 in the lower half. At s = 0.5 we have the
same conditions as for discocytes. Now we have four
unknown boundary values fo, cm, fm, c’. The match-
ing conditions give three equations as before and a
fourth equation is obtained by the condition of
contact z (s = fo/4) = z (s = 0.5) = 0. The four
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FIG. 5. - Contours of asymmetric solutions which are charac-
terized by an almost triangular cross-section.

FIG. 6. - Contour of an asymmetric solution of higher order
having pentagonal shape.

equations are solved by the Newton-Raphson method.
Contours of two such torocytes are shown in figure 8.
In calculating the torocytes we have neglected the

FIG. 7. - Contour of an asymmetric solution of higher order
having heptagonal shape.

FIG. 8. - Two contours of torocytes (only one quadrant is shown,
the rotational axis is along the z direction).

cohesive energy between the membrane regions which
are in contact.
For the three types of solutions discussed so far we

have calculated the dependence of volume V on
osmotic pressure difference J1p for certain values of
spontaneous curvature. Such a plot is shown in

figure 9 for co Ro = - 2.0. The asymmetric branch
of solutions representing cup-shaped cells (see Fig. 3b)
meets the symmetric branch of discocytes at a point
marked by a critical pressure difference Ap, and a
critical volume Vt. No asymmetric solutions exist for
Alp &#x3E; Apt and V  V,. The occurrence of such a
threshold in the volume versus pressure diagram is a
consequence of breaking reflection symmetry in going
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FIG. 9. - Plot of volume V (in units of Vo) versus pressure diffe-
rence Ap (in units of Apc) for discocytes, cup-shaped cells and

torocytes calculated for co Ro = - 2.0.

FIG. 10. - Plot of volume V versus pressure difference Ap calcu-
lated for co Ro = - 4.0. A volume gap appears between the toro-

cyte and the discocyte branch.

from the discocyte to the cup-shaped cell. Figure 10
shows the same diagram calculated for co Ro = - 4.0.
The discocyte and torocyte branches are no longer
connected. With decreasing pressure difference Ap,
the volume of the discocytes decreases at first and then
increases again after having passed through a mini-
mum. For a given volume we therefore find two sym-
metric solutions as is shown in figure 11 for

FIG. 11. - Two discocytes of volume VIVo = 0.75. These solu-
tions differ in their values for Api Apc.

V/ Vo = 0.75. The volume of the torocytes increases
first with decreasing Ap and decreases again after

passing through a maximum. Between this maximum
volume for torocytes and the minimum volume for
discocytes there is a volume gap where neither toro-

cytes nor discocytes exist (but other rotationally
symmetric forms may, of course, exist). If we had, for
example, a discocyte with V/Vo = 0.65 and

co Ro = - 2.0 and then by some chemical means
decreased the spontaneous curvature co, we would
reach a point where the vesicle could no longer have a
biconcave-discoid shape but would undergo a sudden
transition to a new equilibrium shape which might
no longer have rotational symmetry. We can construct
such a solution, if we compare the cup-shaped cells
and the discocyte for Ap = - 0.5 Ape? which are
shown in figure 12. Both forms are nearly spherical.

FIG. 12. - Contours of a cup-shaped cell and a discocyte for
which the deviations from the spherical shape have become very

localized.

The deviations from the sphere having become very
localized at the poles we obtain spheres with defects.
We find an energy E = 0.043 Eo and a volume
decrease AV = - 0.047 Vo per defect for the shape
of figure 12. Placing a number of such defects on a
sphere in a regular or almost regular pattern, we
obtain non-rotationally symmetric solutions, which
are called inverted echinocytes. Another possible
solution could be a form where the spikes point
to the outside of the sphere rather than to the inside,
which would be called an echinocyte. However,
we cannot prove at present that the vesicle will assume
either of these forms. From the numerical results
shown in figure 10 we can only conclude that the dis-
cocyte becomes unstable when co is made sufficiently
negative.

Instead of oblate ellipsoids and discocytes which
we found for Ap  Apc, we can obtain prolate ellip-
soids, if we choose Ap &#x3E; Ap,,. (This holds only for
co  COco For co &#x3E; cos we find oblate ellipsoids above
Apc and prolate ellipsoids below Ap,.) For these
forms we have cm(s)  cp(s). As we reduce the volume,
the curvature at the dividing parallel of latitude

cm (0.5) quickly goes to zero. If we reduce the volume
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further, we get dumbbell-shaped vesicles, as shown in
figure 13. The calculation for dumbbells is complicated
by the fact that we now have an additional singularity.
The function f (s) has a minimum fo at s = 0.5 and a
maximum fm at some value s = sm. At s = 0.5 we have
the initial conditions f = fo, cp = f- 1/2 = C’mm.

FIG. 13. - Contour of a dumbbell (only one quadrant is shown).

The parameter h is now found from equation (3.2)
and the solution is started with the expansion (3. 3),
where we have to put y = 0, since the form is symme-
tric with respect to the equatorial plane. At s = sm
we have the initial condition f = f., cp = fm l/2 .
The initial value for cm(s) at s = sm is now found from
equation (3. 2), since A has been determined at s = 0.5.
We start the solution again at s = sm by using the
expansion (3. 3), where we now have to allow for a
linear term with y # 0. At s = 0 we have the initial
condition cp = cm = cm. The six unknown parameters
cm, cm, fo, fm, s., y have to be determined by matching
the three functions f (s), cp(s) and cm(s) at two inter-
mediate points in the intervals 0  s  sm and

sm  s  0.5. The calculation becomes inaccurate in
the vicinity of the point where the vesicle goes from
the dumbbell-shape to the ellipsoidal form, since at
this point we would have to go to fourth order in the
expansion (3.3) at s = 0.5 and at s = sm. In figure 14
we show the dependence of volume on pressure
’ference Ap for co Ro = - 2.0 and co Ro = - 4.0.
1 he branches for ellipsoids and for dumbbells do not
join smoothly because of the inaccuracy of our calcu-
lation mentioned above. In figure 15 we give the

dependence of the total deformational energy E on
volume V. The energy is given in units of

FIG. 14. - Plot of volume versus pressure difference for prolate
ellipsoids and dumbbells.

FIG. 15. - Plot of the deformational energy E (in units of the
energy of a sphere Eo) versus volume V (in units of Vo) calculated

for various forms with Co Ro = - 2.0.

which is the energy of a sphere. The results in figure 15
calculated for co Ro = - 2.0 show the energy of the
cup-shaped cells to be higher than the energy of

discocytes having the same volume. The sign of the
energy difference is independent of the magnitude of
Co.
As pointed out above, cup-shaped cells exist only

above a critical volume Yt. The magnitude of Vt de-
creases with increasing co. Choosing co to be zero or
slightly positive, we can obtain cup-shaped cells
which are very thin at the center. Such a form is
shown in figure 16 for co Ro = 0. Increasing co and
at the same time decreasing the volume, we can cause
the two halves of the cell membrane to make contact
over some area at the center. Such a cell is shown in

figure 17 and referred to in the following as codocyte I.
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FIG. 16. - Contour of a deep cup-shaped cell.

FIG. 17. - Contour of a codocyte I.

We calculate this type of solution using the following
boundary conditions. In the range of 0  s  so and
1 - so  s  1 the two membrane halves are in
contact and the curvatures are cm(s) = cp(s) = const.
At the points s = so and s = 1 - so the curvature

cp(s) is continuous, whereas cm(s) changes disconti-
nuously to a value cm at s = so and to cm at s = 1 - so.
The discontinuities in cm(s) at s = so and s = 1 - so
respectively correspond to normal forces per unit

length along the circle bounding the area of contact.
Since the contributions of the upper and lower halves
must balance each other, we have

in the range 0  s  so and

in the range 1 - so  s  1. The boundary value
fo for f (s) is easily found to be

At the outer rim of the cell we have the same condi-
tions as for a cup-shaped cell. So we now have seven
unknown boundary values so, C’, cm, em9 fm, y, sm.
The matching conditions at two intermediate points
in the intervals so  s  sm and sm  s  1 - so
give us six equations. The seventh equation is obtained

from the condition of contact z(so) = z(l - so).
The seven non-linear equations are solved by the
Newton-Raphson method. We may view the codocyte I
as an asymmetric torocyte. In analogy to the cup-
shaped cell the codocyte I becomes more and more
symmetric as we reduce the volume (or increase Ap).
In figure 18 the volume is plotted versus the pressure
difference /p for codocytes as well as for torocytes.
As for the cup-shaped cell, we find a critical volume V,
below which no solution of codocyte I type exists.

FIG. 18. - Plot of volume versus pressure difference for torocytes
and codocytes I. The torocyte branch ends at a point slightly
above the threshold vt’ for codocyte I where it joins the discocyte

branch not shown in this figure.

Let us now return to the deep cup-shaped cell of
figure 16. If we reduce the pressure difference Ap,
the volume increases slowly and the cell becomes
more asymmetric. Finally the vesicle assumes a new
type of shape, called stomatocyte, where the deep
indentation in figure 16 becomes almost totally
concave as shown in figure 19. The numerical calcula-
tions are rather difficult for these forms because the
variable f (s) now has two maxima and one minimum
as compared to only one maximum for the cup-
shaped cell. The additional extrema in the function
f (s) present two additional singularities which have

FIG. 19. - Contour of a stomatocyte.
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to be removed in the same way as was outlined above
for the cup-shaped cell. We have to divide the interval
0  s  1 into five parts and find the solutions

cm(s), cp(s), f (s) in these five intervals. The matching
conditions at the four intermediate points which
separate the five parts of the interval 0  s  1

provide twelve non-linear equations. Figure 20 shows
the volume Y/ vo as a function of Ap/Apc for stoma-
tocytes and for cup-shaped cells. We could not cal-
culate the solutions in the range of Ap where the cell
goes from the cup-shaped form to the stomatocyte
shape, because higher order terms in the expan-
sion (3.3) are required to obtain sufficient accuracy.

FIG. 20. - Plot of volume versus pressure difference for stomato-
cytes and cup-shaped cells.

For co = 0 the stomatocytes were found to have
a slightly lower energy than cup-shaped cells of the
same volume. For sufficiently negative values of co
the volume of the stomatocytes is nearly Vo and
increases with decreasing Ap. Figure 21 shows a

stomatocyte for co Ro = - 2.0.
If we make co sufficiently positive, the thickness at

the center of the stomatocyte is reduced and we obtain
contact as is shown in figure 22. This type of solution
is called codocyte II. The boundary conditions at the
circle bounding the area of contact are identical to
those of codocyte I. The other boundary conditions
are the same as for stomatocytes. As the volume of
the codocyte II is reduced, the opening at the top
becomes narrower and the area of contact increases

(Fig. 23). Figure 24 gives volume V versus pressure-
difference Ap for codocyte I and codocyte II, the curve
being similar to the corresponding function for sto-
matocytes and cup-shaped cells as shown in figure 20.

4. Concluding remarks. - Many of the shapes
calculated here have recently been observed experi-

FIG. 21. - Contour of a nearly spherical stomatocyte.

FIG. 22. - Contour of a codocyte II.

mentally [12, 13]. The vesicles were obtained by
simple swelling of small pieces of lecithin in water.
Some of them were quite large, having diameters
between 10 and 30 p.

Well-defined contours could be seen and photo-
graphed under a phase contrast microscope. The
number of bilayers forming the membrane varied,
but was apparently one in many cases. With the

spontaneous curvature as the only adjustable para-
meter, theoretical shapes could be fitted very accura-
tely to the experimental ones. These comparisons,
which will be published elsewhere, leave no doubt
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FIG. 23. - Contour of an almost closed codocyte II.

FIG. 24. - Plot of volume versus pressure difference for codocyte I
and codocyte II.

that the shape of the closed membranes in their fluid
state is controlled solely by curvature elasticity.
They also confirm that the two halves of the membrane,
where they are in contact, do not noticeably attract
each other, as was assumed in the above calculations.
An important difference between vesicles and drops

which is sometimes overlooked is the absence of
surface tension in the former. A closed fluid membrane

experiences virtually no tensile stress unless water is
pumped into the enclosure, e.g. by osmosis, beyond
the point where the spherical shape is reached. For
smaller volumes, the membrane, whose area is prac-
tically constant, undergoes out-of-plane fluctuations.
They do not destroy the equilibrium contour, but
were found to be easily visible under the microscope if
the membrane consists of only a small number of
lecithin bilayers [12, 13]. In fact, they can be used to
determine the value of the curvature-elastic modulus

kc. Theory [3, 4] and experiment [13] indicate the
order of 10-12 erg for kc. Although the equilibrium

shape is governed by curvature elasticity, it gives no
information on kc. For large vesicles, the elastic
modulus is too small by many powers of ten to affect
significantly internal pressure and hence shape under
given osmotic conditions. As an example, the critical
pressure calculated from equation (B.4) with

kc = 10-12 erg and Ro = 10 Jl is of the order of
10-3 dyn cm-2.
The curvature elasticity of fluid membranes can be

used to explain certain red blood cell shapes [5, 7].
It may be important for some biological processes
since it might govern the elastic behaviour of plasma
membranes. Artificial vesicles and bilayer elasticity
could also have other applications. From a funda-
mental point of view, vesicles seem to offer attractive
possibilities for the study of phase transitions in two-
dimensional systems. For instance, the fluid-solid
transition of lecithin bilayers was seen under the

phase contrast microscope [12] and some bilayer
properties near the transition, which is probably
close to second order, may be obtainable by more
refined optical studies.

Appendix A : Stability of the solutions presented
in figures 1-3. - To investigate the stability of the
solutions we have to calculate the deformational

energy of vesicles which have the same volume and
surface area as the forms in figure 3 but differ slightly
in shape. As is readily seen from figures 1-2 the func-
tion ep(s) may be well represented by the first few terms
of a Fourier series. We write

with five coefficients still to be determined. For a

symmetric solution y and 6 are zero by definition.
From expression (A.1) we easily find the value sm
at which cp(s) has a maximum. For vesicles having
rotational symmetry the curvatures cm(s) and cp(s)
are connected with the variable f (s) = x2 by the
following relations which have been derived in sec-
tion 2

We solve equation (A. 2) for f (s) in the intervals

0  .s  sm and sm  s  1 starting at s = sm with
the initial condition f (s.) =[CP(S.)] - 2 The boun-
dary conditions f (0) = 0 and f (1) = 0 along with
the constraint
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determine the coefficients a, 3 and 6. We find the
function cm(s) from relation (A. 3) which we rewrite as

We can now calculate the deformational energy

as a function of the coefficients s and y and find the
minima of E with respect to s and y. The results
obtained in this way agree well with the results shown
in figures 1-3.
A simple way to tell from a V - ep plot which of

two shapes of equal volume has the lower elastic

energy is to make use of the integral

along the equilibrium curve connecting the shapes 1

and 2 which is just equal to the difference El - E2
of the elastic energies. Consequently, the shape at

smaller Op has lower energy if the connecting curve
goes through larger volumes. The shape at larger Ap
is favoured if the path is through smaller volumes.

Appendix B : Calculation of the critical spontaneous
curvature. - Here we give an outline of the calcula-
tion for the critical spontaneous curvature COc below
which oblate ellipsoids are more stable than prolate
ones for infinitesimal deformations.
We started from the balance of torque densities

(per area) for rotationally symmetric forms,

which is equivalent to equation (2.1). For the sphere
the tilt angle § of the membrane as a function of
radius x is given by x = Ro sin t/lSPh. We then intro-
duced an ellipsoidal deformation represented by the
second Legendre polynomial

where Ro(s2) is the renormalized sphere radius keeping
the membrane area constant and 0 the polar angle.
The associated change Ao as a function of x is

where x = Ro sin i/!SPh relates x and t/lSPh. The curva-
tures em and cp and their derivatives as well as cos §
and sin 4f were expanded in powers of S21RO up to
second order, always using sin t/lsPh and cos t/lSPh
instead of x.
The expansions were inserted in to (B. 1) and the

coefficients of equal powers were equated to zero.
The equation for s2 recovers the critical pressure

at which the sphere is in neutral equilibrium. The
equation for s2 contains contributions which must be
balanced by a deformation corresponding to the
fourth Legendre polynomial. Upon separating them
and inserting Apr in the remaining equation, one
obtains cor Ro = - 39/23 for the critical spontaneous
curvature. The computation involves too many terms
to be shown here.

Energetically the calculation amounts to a Landau
expansion. Only terms quadratic and cubic in the
order parameter S2 are considered. The critical

spontaneous curvature makes the cubic term vanish.
To lowest order, the amplitude s4 of the fourth

Legendre polynomial is proportional to S2 . The

associated energy varies as s24 and is thus irrelevant
for the present purpose.
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