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DYNAMICS OF THE FIRST SINGLE GRANDJEAN-CANO LINE
IN CHOLESTERICS UNDER WEAK APPLIED MAGNETIC FIELDS

G. MALET, J. MARIGNAN and O. PARODI

Groupe de dynamique des phases condensées (*), Laboratoire de cristallographie,
Université des sciences et techniques du Languedoc, place Eugène-Bataillon, 34060 Montpellier, France

(Reçu le 17 décembre 1975, accepté le 19 mars 1976)

Résumé. 2014 Nous présentons ici des résultats expérimentaux et une analyse théorique portant
sur la dynamique de la première ligne de Grandjean-Cano sous champ magnétique faible. Le pro-
cessus dissipatif est essentiellement dû à la réorientation du directeur lors du mouvement de la ligne
ce qui nous a conduit à étudier de façon très détaillée la configuration autour de la ligne à partir du
modèle planaire de de Gennes. Nous analysons ensuite la dynamique de la ligne. La comparaison
entre les résultats théoriques et expérimentaux permet d’atteindre, entre autres paramètres physiques,
le rayon du c0153ur de la disclinaison dont l’ordre de grandeur est du domaine macroscopique.

Abstract. 2014 Experimental results and theoretical analysis of the dynamics of the first Grandjean-
Cano line under a weak applied magnetic field are presented here. The dissipative process is essen-
tially due to the director reorientation following the line motion. We therefore give a detailed study
of the director configuration around the line, starting from de Gennes planar model. The dynamics
of the line is then analysed and compares well with the experimental results. A macroscopic discli-
nation core radius (~ 0,5 03BC) is deduced from this comparison.
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1. Introduction. - It is well known that a magnetic
field can distort the usual structure of a cholesteric

liquid crystal with positive magnetic anisotropy
(Xa &#x3E; 0) [1, 2]. A static theory of the resulting variation
of the pitch P has been developed by de Gennes [3]
and Meyer [4]. In experimental verifications performed
by the Orsay [5] and Harvard [6] groups, the pitch was
derived from the equilibrium position of the Grand-
jean-Cano lines in a Cano wedge.

However, a dynamical study of the lines motion
has not yet been undertaken. In a recent letter [7] we
briefly presented the main results concerning the

dynamics of the first single line under weak magnetic
fields. The purpose of the present paper is to develop
in a more detailed and complete version, the experi-
mental and theoretical results on this problem. It is

worth pointing out that a similar study has been
independently performed by Geurst et al. [8] in twisted
nematics.
The effect of a magnetic field normal to the helical

axis is double : i) the helix is distorted, ii) the pitch is
changed and, as a consequence, in a Cano wedge, the
Grandjean-Cano lines move. The first process has
been already analysed [9] and we have also recently
published a theoretical analysis on this problem [10].

We have found relaxation times for the reorientation
of the director of the order of 10-1 s. We intend here
to analyse the second process. Our experimental
results give relaxation times for the line motion of the
order of 102 s. We shall therefore make the a priori
assumption that these two processes can be treated
independently, i.e. that the fast reorientation process
is completely achieved when the motion of the lines
begins. This means that, in the second process, the
energy dissipation is due only to the friction of the line
itself. This friction is due to the reorientation of the
director in the immediate neighbourhood of the line.
To evaluate it, we need a detailed knowledge of the
director configuration around the line. This analysis
is based upon the de Gennes planar model. 

In section 2 the experimental apparatus is described.
In section 3 the static theory is presented; this theory
leads to the equilibrium conformation of the mole-
cules around the disclination, and the equilibrium
position of the line under weak magnetic fields.
In section 4, the balance between the change in free-
energy and the dissipation leads to the equation of
motion for the line. In section 5, the experimental
results are given and compared with the theoretical
predictions.

2. Experiments. - 2 .1 THE CHOLESTERIC SAMPLE.
- For this experimental study we need a cholesteric
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material having a positive magnetic anisotropy xa.
Moreover the experiments are much easier when the
sample is cholesteric at room temperature and shows
regular Grandjean-Cano lines. Finally in order to

have reasonable critical field values Hc for the choles-
teric-nematic transition one has to work with large
pitch cholesterics.
Among the cholesterol esters, the cholesterol cin-

namate of formula

gives rise to a stable cholesteric mesophase between
156 °C and 197 OC. This material has the advantage
to show a set of beautiful and regular Grandjean-
Cano lines [11]. But cholesterol esters usually have a
negative anisotropy; we therefore have used the classi-
cal procedure to obtain cholesterics with positive Xa :
the chiral molecules were dissolved in a conventional
nematic.
The equimolar mixture of 4-methoxy-4’-pentyl

tolane (MPT) with formula ,

and 4-propoxy-4’-heptyl tolane (PHT) of formula

gives a very stable nematic phase at room tempera-
ture [12]. Thus we have dissolved the cholesterol
cinnamate in this nematic matrix.
The pitch Po and the cholesteric concentration c

are related by the law [13, 14] :

In order to get large pitches, we have to choose very
small cholesteric concentrations :

2.2 THE CANO WEDGE. - The liquid crystal is
introduced in a Cano wedge comprised of a cylindrical
lens and a flat plate [13]. The surfaces of the glasses are
monitored under the microscope by means of an inter-
ferential method which gives also the radius of the
lens :

The glasses are cleaned in a sulfochromic mixture,
and then precoated with thin films of SiO evaporated
under oblique incidence, in order to obtain a strong
anchoring with the easy axis normal to the contact
generator [15].
The Cano wedge is fixed in a cell (made of brass) in

order to obtain a better contact between the lens and
the flat plate.
The pitch is derived from the microscope measure-

ments of the positions of the Grandjean-Cano lines

on both sides of the contact generator. For the cho-
lesteric samples used, the unperturbed pitches are :

with an absolute incertainty of 0,5 g.

2. 3 EXPERIMENTAL APPARATUS. - The magnetic
field is obtained from a water cooled conventional

magnet (with variable air-gap), fed by a stabilized

supply. For a 30 A maximal electric current and an
5 cm air-gap, the magnet gives a 104 G field. The
magnetic field is deduced from the electric current
measurements. The field calibration was performed
by means of a Hall effect gaussmeter.
We use a modified Leitz microscope. Modifications

were needed for use in a strong magnetic field. All
magnetic pieces were removed and replaced by
non-magnetic ones. Adaptation pieces for use in the
magnet were also provided. A micro-extension piece
supplied with an antivibration device for the adapta-
tion of a Leica camera and a posemeter, are fixed on
the top of the microscope.

2.4 MEASUREMENTS. - The Cano wedge is placed
with the easy axis parallel to the magnetic field. The
sample is lit by a monochromatic collimated beam
and the positions of the Grandjean-Cano lines are
observed with different objectives, and by means of a
micrometer eye-piece. For each of the three objectives,
one division of the micrometer corresponds respecti-
vely to 34,0 + 0,2 u, 10,70 + 0,07 g, 6,25 ± 0,02 g.
The unperturbed pitch was controlled before every

experiment, and, for each value of the applied magne-
tic field, a photographic survey is performed at fixed
times (generally every fifteen seconds on the beginning,
then every half a minute and finally every minute).

Experimental studies have been achieved on four
single lines and three double lines under different
values of the applied magnetic field H!5 H,, and in
cases of increasing and decreasing fields. The corres-

. ponding curves giving the displacement versus time
are very regular.

Figure 1 shows a set of lines for three values of the
magnetic field, and figure 2, corresponds to a field
superior to the critical one.
We will give in this paper (section 5) only the results

concerning the first single line, and compare them to
the theoretical analysis that will be developed in the
next two sections. Theoretical and experimental
results concerning the other lines will be published
later.

3. Static theory. - 3 .1 PLANAR STRUCTURE OF THE
FIRST SINGLE GRANDJEAN-CANO LINE. - 3 .1.1 The

Grandjean-Cano lines. - A cholesteric liquid crystal,
placed in a variable thickness cell, shows regular
striations which can be easily observed under the

microscope.
In the pioneering observations by Grandjean [16]

these defects, first identified as walls, were obtained
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FIG. 1. - Set of Grandjean-Cano lines for three values of the
applied magnetic field H. The cholesteric sample is a mixture

MPT-PHT, cholesterol cinnamate, c = 0.57 % Po = 33.1 um.
The contact generator is on the left of the photographs. One
division of the micrometer corresponds to 34 pm, a) Four single
lines and two double lines at H = 0. b) Equilibrium position of the
set of lines at H = 5 120 G. The double lines are deformed into

typical zig-zags. c) Position of the lines at H = 7 600 G four
minutes after applying the field (the initial field is Ho = 7 200 G).
The two double lines have already disappeared from the photograph.

FIG. 2. - H &#x3E; He ; typical double refraction fringes of the nematic
liquid monocrystal between crossed polarizers.

with a cleavage gap inside a sheet of mica. It had
before pointed out by Friedel [17] that these walls
were in fact threads corresponding to twisting dis-
continuities, in the helical structure of the cholesteric.
In more recent studies Cano [13] inserted the choles-
teric sample between rubbed cylindrical lens and flat
plate (Cano wedge) and obtained regular threads
ordered in parallel lines; by measurements of optical
rotatory power, that author [18] has successfully
verified that the discontinuities correspond to torsion
jumps of one half pitch in helicoidal texture. These
results were confirmed by Kassubeck and Meier [19].
In fact, one must distinguish, when one uses thicker
wedges, two kinds of lines : thin threads (single lines)
which correspond to Cano’s work and thick threads
(double lines) as shown by the Montpellier and Orsay
groups [20, 21]; the latter threads allow torsion jumps
corresponding to two half-pitches jumps.
Two models have been proposed to interpret the

singular lines which appear in a Cano wedge : a planar
configuration previously described by de Gennes [22],
and an application of Volterra process performed by
Friedel and Kleman [23].
A very detailed paper on these Grandjean-Cano

lines was recently published by Bouligand [24]. He
showed that de Gennes model applies to the first

single line (and for the other single ones when they
are moving), and the Kleman-Friedel model to

double lines.

Using de Gennes planar model we will now give a
detailed description of the configuration of the mole-
cules around the first thin Grandjean-Cano line.

3.1.2 Detailed configuration of the molecules around
the first Grandjean-Cano line. - The first Grandjean-
Cano line appears near the contact generator of a Cano
wedge.

In a Cano wedge, the two limiting surfaces are not
parallel. However, we will later show that the pertur-
bation of the cholesteric configuration due to the
disclination has a range of the order of d along the
x-axis, where d is the local thickness of the edge.
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As the thickness variation is very smooth, one can
neglect the x-variation of d over this range and make
the assumption that the boundaries are parallel plates.
This indeed is true as long as we look at the static
configuration of the line. When the line moves, free-
energy variation and dissipation are functions of d,
which in turn depends on x.

It is obvious, from symmetry considerations, that
the line should be parallel to the contact generator.
A less obvious assertion is that the line is located at

equal distances from the two plates. From symmetry
arguments one can only say that, if the minimum

energy configuration is not the symmetric one, there
are two symmetric configurations which minimize
the free-energy. However a detailed calculation of the
energy versus the line position, which will not be given
here, shows that the minimum energy configuration
corresponds effectively to the symmetric one.
We have thus the following geometry : the line lies

along the y-axis and the sample is limited by two
planes z = + d/2. This is exactly the geometry of
de Gennes model : take the helical axis along the
z-axis and call cp(x, z) the twist angle; the director has
components :

Like de Gennes, we will assume our cholesteric to
be isotropic, i.e. K1 = K2 = K3, where Ki are the
elastic Frank constants. In fact taking K2 = K1
(or K3) can be done with a convenient scaling of the
x-axis. The only physical assumption is K1 = K3,
which is not exactly the case for real cholesterics
where (K, - K3)/(K1 + K3) is of the order of 3.

Then, minimizing Frank’s free-energy, one finds,
for the equilibrium condition

The line separates two regions characterized at

large distances by a nematic configuration on the left
side and an helicoidal configuration with pitch 2 d
on the right side (Fig. 3).
Then we have the following boundary conditions,

assuming strong anchoring at walls :

Taking into account these boundary relations (3. 3),
the partial differential equation can be solved using 
the technique of conformal mapping. This calculation
is performed in appendix A, and the result is :

where E(x) is the Heaviside step function (E(x) = 0
for x  0 and E(x) = 1 for x &#x3E; 0).

FIG. 3. - The region around Oz-axis is the connection zone
between nematic and cholesteric regions. The thickness d is assumed

to be constant. The distortion range is din.

The main characteristics of the configuration des-
cribed by eq. (3.4) are the following ones :

1) Far from the line i

(cholesteric)

(nematic) .

2) On the plates

Note that the n discontinuity has no physical
meaning.

3) In the central horizontal plane (z = 0)

This discontinuity is classical in de Gennes model.
4) In the central vertical plane (x = 0)

Here again the n discontinuity for z &#x3E; 0 has no

physical meaning. On the other hand the line intro-
duces a n/2 discontinuity which was not pointed out
before.
The general configuration is given in figures 4 and 5.

Starting from the right hand side, one finds at long



869

range, a regular half helix (region B) whose spatial
period is L = d (3. 5). Drawing near to the yoz plane,
the cholesteric spiral will distort ; nearest this plane
one finds a regular helicoidal structure of double

spatial period (region B’), except close the xoy plane
where the twist angle abruptly increases form n/4 to
3 n/4, (3.11) (3.13), with a value n/2 at z = 0 (3.10).
This steep increase tends to a n/2 jump at x = 0 +.

Starting now from the left hand side, the liquid
crystal is nematic at long range (3.6) (region A).
Drawing near to the yoz plane the nematic structure
will distort, and close to this plane one has again a
regular twist distortion (region A’) corresponding to
the spatial period 2 d, except near the xoy plane where
a sudden twist reversal appears, the twist angle
annealing in the xoy plane (3.9) ; here we get a - n/2
jump (from rc/4 to - n/4) at x = 0- (3.12) (3.13).

FIG. 4. - Planar configuration of the molecules around the first
thin line. The core of this line lies along the Oy direction. The upper
and lower planes nearest the plane z = 0 are infinitely close to the
latter. The numbers represent the different values of the tilt angle

cp(x, z) between the director (arrows) and the x-axis.

FIG. 5. - Details of the perturbed field around the first single
line : the nematic configuration (region A) and the cholesteric
helicoidal one whose spatial period is L = d (region B) are separated
by the connection zone. This zone is characterized on both sides of
the line by a helical structure of spatial period L = 2 d, which
exhibits a typical jump of torsion respectively opposed and occurring
close to the xoy plane (regions A’ and B’). The full lines represent
the head of the arrows drawn on figure 5, and the dotted ones the

end of these arrows.

Twist reversal. - ôcplôz is easily derived from

eq. (3.4) :

twist reversal then occurs for

Eq. (3.14) can be satisfied only for x  0. The twist
reversal surface is defined therefore by

The corresponding twist angle is given by

i.e., for z  0

and for z &#x3E; 0

Hence the twist reversal is steep for small values
of zr, i.e. for I x  njd.

It extends over a range 7r/d along the x direction.

3.2 EQUILIBRIUM POSITION OF THE FIRST SINGLE

GRANDJEAN-CANO LINE UNDER APPLIED MAGNETIC

FIELD. - In a Cano wedge, the cholesteric liquid
crystal is inserted between a cylindrical lens and a flat
plate (Fig. 6). The frame of reference is the same as
above and the cholesteric material has a positive
magnetic anisotropy (Xa &#x3E; 0).
When a static magnetic field H is applied along the x

direction (i.e. normal to the helical axis Oz), the pitch
increases and, as a consequence, the Grandjean-Cano
line moves to a new equilibrium position.

FIG. 6. - Cholesteric sample in cylindrical geometry (Cano wedge).
The equilibrium position of the first Grandjean-Cano line, under
the initial magnetic field Ho, is assumed to be along the y-axis.
The distorted region (D) separates the nematic (A) and cholesteric (B)

configurations.



870

We will now derive this equilibrium position from
the minimization of the free-energy in presence of the
applied magnetic field. The sample can be divided into
three regions :
- left of the line, the sample is nematic (region A),
- in a range d around the line, the sample has

the distorted configuration previously described

(region D),
- on the right of the line, the sample has a distorted

cholesteric configuration (region B).
The latter distortion has been described in a pre-

vious publication [10]. In this earlier paper, only twist
deformations were taken into account. However, as
the variation of d is very smooth, one can easily show
that the bend and splay terms in the free-energy
expression due to the variation of d can be neglected
in regard of the twist and magnetic terms.
When the field increases, region D moves to the

right. Its free-energy can be assumed to be constant.
As the distortion range is proportional to the width d
of the sample, one can assume that the core radius is
also proportional to d. As the core radius is taken into
account only through its logarithm (appendix B),
this is not a very severe restriction. 
Then the change in free-energy is due to the exten-

sion of region A, and to the subsequent decrease of
region B.
The energy per unit-surface area of region A is :

where ç is the magnetic coherence length :

The energy per unit surface of region B is [10] :

here E(k) is the complete elliptic integral of the second
kind [25] and its modulus k is defined by the implicit
equation :

where K(k) is the complete elliptic integral of the first
kind.

In eqs. (3.15, 16 and 17), d is a function of x. Take
the y-axis at the initial position of the line (under the
initial applied field Ho). Then d is given by :

where R is the lens radius, xo the distance between the
contact generator and the y-axis.

Let xL be the position of the line, then the total
free-energy is :

where FD is the excess free-energy of the strong distor-
tion due to the disclination line (FD is calculated in
appendix B). Then the equilibrium condition is :

which gives, using eqs. (3.15 and 16)

or using eq. (3.17) :

where k’2 = 1 - k2. 
Note that eq. (3.21) provides the de Gennes-Meyer

formula for the critical field of the cholesteric-nematic
transition :
From eq. (3.17), d diverges for k = 1; then using :

one gets :

which gives the classical value for the reduced critical
field hc :

Moreover, for H = 0, k = 0, one finds the usual
relation :

In the case of weak magnetic fields, k - 0. E(k) and
K(k) can then be expanded in series in k :

then eqs. (3.20) and (3.21) reduce to :
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The local thickness corresponding to the equilibrium
position of the line is then given by :

It is worth noticing that eq. (3.23) gives for H = 0,
d = n/2 qo i.e. d = Po/4, which effectively gives the
position of the first Grandjean-Cano line in the absence
of magnetic field.

4. Dynamics. - 4.1 DIFFERENTIAL EQUATION FOR
THE LINE MOTION. - The dynamics of the line will be
derived from the energy conservation law. We have

already shown that the change in free-energy is

essentially bound to the line motion (section 3

eq. (3.20))

This free-energy variation will be balanced by the
entropy production bound to the reorientation of the
director. This reorientation takes place in region (D),
(Fig. 6), i.e. in a range d around the disclination line.
It involves a twist rotation, which is well known to be
uncoupled to the hydrodynamic motion (this can be
easily deduced from Leslie’s eq. [26]).
Then the expression for the entropy source is :

where 71 is a Leslie friction coefficient.
We must here point out that, in this expression,

d should be a function of x. However, as the effective
range of the disclination is din, the integrand has a
significant value only for xL - d  x  XL + d, and
we cail neglect the variation of d in this interval. As a
consequence, we can consider d as constant in the

integration of the r.h.s. of eq. (4. 2).
Around the disclination, cp is a function of (x - xL, z),

dcpldt is the total time derivative of T(M) where the
point M(x, z) is fixed in the laboratory frame of
reference. Then,

and eq. (4. 2) can be rewritten :

The expression for ocplox is derived in appendix A.
One finds : 

where K : 

As mentioned above, ayax has a significant value
only near the disclination, which allows well for pur
previous assumption d = const. in the integration of
eq. (4. 3).
Now define the dissipation integral :

Eq. (4.3) now reads :

The next step is to write the energy balance equa-
tion :

In this expression, we must now take d as a function
of XL-

Eq. (4.7) is the differential equation for the motion
of the line.
A more explicit expression for the r.h.s. of eq. (4.7)

can be written in the weak field approximation. We
must here point out that the detailed configuration
around the line has been obtained in the zero-field
case. In fact, this approximation holds as long as the
distortion range din is smaller than the magnetic
coherence lengths i.e. for magnetic fields smaller
than the critical field He (1). Then, in the weak field
approximation, one has [10] :

and eq. (4 ,1) becomes :

Using eqs. (4.6) and (4.8), eq. (4.7) becomes

where one has replaced d by the expression (3.18),
using the notation

Define now the following reduced variables :

(1) One must have

this implies that d‘/‘  2 n:l or (H/Hc):l  32/7r’.
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The differential equation of motion (4.9) of the line
takes the form :

A detailed calculation of the dissipation integral
V(d) (eq. (4.5)) is given in appendix B. One gets a
logarithmic divergence at the line position and one
has to introduce, as a cut-off radius, the core radius
of the disclination line, E. The result is then :

where G is the Catalan’s constant : G ~ 0.916. Note
that this logarithmic divergence is usual in disclination
problems.

4.2 MOTION EQUATION OF THE LINE. - We have

already assumed in section 3 that the core radius e is
proportional to the range of the connection zone, and
therefore to the local thickness d. Thus, in eq. (4.13),

the term In

t 

can be taken as a constant.

One can now integrate the differential equa-
tion (4.12) with V = const., define the following
notations :

Eq. (4.12) becomes :

Let,

This condition is satisfied for

Define now

Taking into account the boundary condition :

One can then integrate eq. (4.15) [27] :

Note that the products CG- and CG+ are always
negative; thus :

According to eqs. (4.16) and (4.18) one gets :

the equilibrium position is obtained for

which gives, expressed into the initial variables (eqs. (
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or

which is the expression already found in eq. (3.23).
A detailed discussion of logarithmic terms in eq. (4.19) is given in appendix C. One finds, introducing the

functions tanh-1 and coth-1 :

i) In case of increasing fields (H &#x3E; Ho)

ii) In case of decreasing fields

Insert now eqs. (4.10, 11) in eqs. (4.21, 22) and define the following quantities :

The equations of motion take the forms :

and in the last equation x takes evidently negative values.

5. Experimental and theoretical results. -

5.1 PITCH VERSUS MAGNETIC FIELD. - The experi-
mental variation of the pitch P versus the magnetic
field H is given in figure 7. In this experiment the pitch
is derived from the equilibrium position of the Grand-
jean-Cano lines in the Cano wedge. The experimental
curve is quite similar to the ones found by several
authors [5, 6].
From this curve one can deduce the critical field for

the cholesteric-nematic transition : the unperturbed
pitch here is Po = 29.5 u and one finds : Hc = 7 700 G.
The de Gennes-Meyer formula :

gives then

Taking into account the experimental value of

Za (2) : Xa ~ 10-’ u.e.m.c.g.s., one deduces the twist
elastic constant :

This result is in good agreement with the value
found by Sicard [28] on the same material.

5.2 EQUILIBRIUM POSITIONS OF THE SINGLE THIN
LINE. - The expression for the equilibrium position

(2) Achard, M. F., Sigaud, G., private communication.
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FIG. 7. - Pitch P versus magnetic field H. The initial pitch is here
Po = 29.5 um and the critical field He = 7 700 G. The black

ciroles are the experimental points.

of the first single line under an applied magnetic field
has been given in section 3 (eqs. (3.18), (3.23)). It can
rewritten :

where Xe = x + xo is the equilibrium position
measured from the contact generator.

This theoretical expression is compared in table I

to our experimental results. The measurements have
been made both for increasing and decreasing fields.
The relative discrepancies

are given in the last column. They do not exceed the
experimental accuracy of the measurements.

5. 3 MOTION OF THE FIRST THIN LINE UNDER WEAK
MAGNETIC FIELDS. - In order to give a physical inter-
pretation of the relaxation times T eq. (4.23) occurr-
ing in the equations of motion for the line, eqs. (4.25)
and (4.26), let us introduce the following parameters :

then :

where

and

io is the field independent relaxation time and yeff
an effective viscosity.

Replacing yeff, c;b Hl and Hc by their expressions,
eq. (5. 2) can be rewritten :

To therefore appears to be a purely elastic relaxation
time.
The physical meaning of the two relaxation times,

i+ and T- is less evident. We will now show that, for
low magnetic fields, their behaviour is quite different.

FIG. 8. - Time t as a function of the line displacement x in case of
increasing fields and for a mixture of unperturbed pitch Po = 29.7 gm.
The full lines are theoretical, the circles and stars correspond to the
experimental data. Ho is the initial field, H the applied one and!-
the relaxation time.
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TABLEAU I

Equilibrium position of the first single line under weak magnetic fields

FIG. 9. - Time t as a function of the line displacement x in case of
decreasing fields (H  Ho). The full lines are theoretical and the
open circles correspond to the experimental data.
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For that, it is useful to perform, in the expression
for f:t(HIHJ a series expansion of a in HIHI. One gets :

In the expression for i-, the magnetic field occurs
only through a second order correction term. Thus for
low fields, T- appears to be essentially an elastic
relaxation time.
On the other hand, i+ diverges for low fields as H -1.

It thus appears as a magnetic relaxation time, bound
to a magnetic relaxation process which disappears at
zero-field.
The pure elastic relaxation time ro is obtained by

plotting the theoretical curves giving t/io versus x,
for different values of Ho and H, and fitting these
curves with the experimental ones. One thus obtains :

The motion diagrams for respectively increasing
and decreasing fields are shown on figures 8 and 9.

It is worth pointing out here that the relaxation
time i- is about 103 higher than the relaxation time
corresponding to the director adjustment [10]. This
gives an a posteriori justification for our approach
based on the separation of the dynamical study in two
parts : fast reorientation of the director and then line
motion.
The effective viscosity is obtained from eq. (5.2)

one gets :

This large value of yeff is quite typical of line relaxa-
tion processes and explains the large values found for
the relaxation times.

Finally, making use of eqs. (5.3) and (4.13), one can
deduce the core radius £ of the line. For that we need
the twist viscous coefficient yl. It was measured
for us by the Bordeaux group (3), and they found
Yl ~ 2.2 poises. The ratio K2/K can be taken rea-
sonably equal to 1 : then for an average local thick-
ness d rr 8 jmn, one finds :

Contrary to prevalent ideas on the size of the core
line, this result suggests that core has a macroscopic
size. This result is in good agreement with the one
found by Geurst et al. [8] working on twisted nematics.

6. Conclusion. - A direct analysis of the magnetic
effects would have been quite untractable without the
rather crude assumptions we have made.

(3) Achard, M. F., Gasparoux, H., private communication.

The first assumption was to distinguish a fast
director adjustment motion and a much slower motion
of lines, and to treat them separately. The orders of
magnitude of the time constant characterizing these
two processes have a posteriori justified this assump-
tion.
The second assumption concerned the perturbed

region around the line. We have neglected i) the
thickness variation along the perturbation range,
ii) the magnetic effects, as much smaller than the
elastic ones in this region of strong distortion, and
iii) the difference K1 - K3 between the splay and
bend Franck constants.

Our third crude assumption was that the core radius
was proportional to the local thickness, i.e. to the
distortion range around the line.

In spite of the crudeness of these assumptions, our
theoretical predictions seem to account fairly well for
the experimental results. This is perhaps not very
surprising. Most of our assumptions have been

justified above. Perhaps the least justified assumption
is to take K1 = K3. In fact, if K1 =F K3 one would
find, as a consequence, a slight modification of the
director configuration around the disclination, and
hence of (ocplox)2. This term plays a central role in the
dissipation integral V(eld). From the experimental
data, we had an evaluation of d, hence of c, the core
radius. As V depends of eld through a logarithm, the
slight difference in V(eld) obtained for K1 =F K3,
could have a dramatic influence on the value of E/d.
In other words, the macroscopic character of the core
radius could effectively be a consequence of the

assumption K1 = K3.
The same criticism obviously applies to the analysis

made by the Phillips group on disclination dynamics
in twisted nematics.
The use of a computer would probably allow for a

complete treatment of the general case (K1 =F K3)
and give a more reliable evaluation for the core radius.
On the other hand, one could expect the core-radius

to depend on the line velocity. This would probably
be true for much higher velocities than the ones
achieved in these experiments. If this was true, our

analysis, which takes V as time-independent, would be
completely wrong, since the experimental data show,
strong variations of the line velocity. The agreement
obtained shows that for such slow motions, one can
neglect the velocity-dependence of e.
We can conclude that in spite of the fact that the

macroscopic character of eld is not very strongly
established, our analysis gives a good description of
the dynamical process, and that the line motion is
characterized by a long relaxation time (r 102 s)
due to a strong effective viscosity (7eff - 450 poises).
It is worth to point out that this strong viscosity is
bound to a twist reorientation motion which, in a
cholesteric coarse grain model, is strictly similar to
permeation in smectics. Of course a coarse grain
model would not apply very well for this case where
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the sample thickness is of the same order than the

pitch. It remains that even in this case a calculation
based on Leslie’s equations predicts a very strong
effective viscosity characteristic of permeation pro-
cesses.
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APPENDIX A

Tilt angle V(x, z) of the molecules for the first

single line. - The twist angle cp(x, z) between the
director and x direction must verify the equation
(section 3.1.2)

with the following boundary conditions :

Therefore we must introduce a cut-off at x = 0
when z &#x3E; 0 (Fig. 10).
The easiest way to solve Laplace’s equation is the

conformal mapping method. Dqfine C = x + iz and :

where x and T are real functions of x and z. If 4l is an

holomorphic function in the complex plane satisfying

FIG. 10. - The (-complex plane. 0 is an holomorphic function of (

in the stripe -d - c - dexcept along the cut-off line x = 0, z &#x3E;- 0.
2 2 

the boundary conditions (3.3), then eq. (3.2) is
satisfied.
Perform now the conformal transformation

The stripe - d/2  z  d j2 is now transformed
into the whole complex plane. The cut-off contour is
now the upper half-circle centered at the origin with
radius one and the half axis Im Z = 0, Re Z  - 1

(Fig. 11). The boundary conditions are transformed as
follows :

FIG. 11. - The Z-complex plane. The cut-off line is now composed
of the half axis Im Z = 0, Re Z  - 1 and the upper half unit
circle. The numbers are the numerical values of Im 0 corresponding

to the boundary conditions.

The n discontinuity along the cut-off suggests the
solution

which is holomorphic and satisfies conditions (A. 3).
Hence, from (A. 2) one gets :

Taking the imaginary parts, one gets, for x &#x3E; 0

For x = 0, this function has a - discontinuity along
the lower half unit circle. In order to remove this

discontinuity, one must add - n/2 E( - x) where E(x)
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is the Heaviside function (E(x) = 0 for x  0;
E(x) = 1 for x &#x3E; 0). One then gets :

ap/ax and ocp loz can be easily derived :

where 6(x) is the Dirac’s function. The last term of
the r.h.s. results from the discontinuity of the function
Arc tan (sgn (z) = 1 for x &#x3E; 0 and sgn (z) = - 1

for x  0).
Finally, a/ax can be expressed as follows :

The term in 6(x) has no physical signification, and
will not be taken into account : one therefore can
write :

Eq. (A. 5) shows clearly that ocp I ax has a significant
variation only near the disclination line.
The derivation of ocploz is straight forward. One

finds :

APPENDIX B

- Energy of the first disclination line. - The planar
structure of the first single Grandjean-Cano line was
studied in section 3. l. This study was performed by
assuming the cholesteric to be isotropic.

Consider now the cholesteric with elastic constants

The tilt angle 9(x, z) calculated in appendix A
(eq. (3.4)) then becomes :

This expression was obtained by assuming the local
thickness d to be constant along the strongly distorted
domain D around the disclination line.
The distortion free-energy density is [30] :

In this static configuration the director has the

following components :

that leads to :

The spatial derivatives OTIOX and ocploz have been
calculated in appendix A (eqs. A. 5 and A. 6). They
can be written now :

More exactly we want to calculate the excess free-
energy of the strong distortion due to the disclination
line, introduced in eq. (3.19).

This free-energy FD (per unit length along y-axis)
can then be expressed by :
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where we have taken off the free-energy of nematic
and cholesteric configurations on both sides of the
disclination line (the two last terms in r.h.s. of

eq. (B. 4)). Since qo = n/2 d eq. (B. 4) can be rewritten :

Or

The first step is to calculate V(d) :

where is the cut-off square side

(Fig. 12), g being the core radius of the disclination
line. This core corresponds to the locus of undetermin-
ed orientation of the director; taking into account the
smallness of the core, the choice of such a cut-off ,
square can be considered as a good approximation.
83 is the area between the straight lines W = + p
except for the cut-off square.

Define the following quantities

FIG. 12. - The domain of integration in the 0, ql space is divided
into three parts, Si , S2 and S3. The cut-off region is approximated

by a square whose sides are equal to 2 p.

Using the following notations :

and inserting eq. (B. 2) into eq. (B. 7), one finds :

v(d) diverges on the disclination line (o = 0 = 0).
We shall therefore perform a cut-off excluding a small
square around the line.
The domain of integration can now be divided into

three parts :

Then V is rewritten

We shall now perform the integrations occurring
on the r.h.s. of eqs. (B 10) and (B .11). After a partial
integration, one gets from eq. (B. 10) :

Define now

Then

where C is the circle with center 0 and radius 1 in the

complex plane. V2’ is now easily integrated by residues
and one gets :
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The integration on ql gives

Since p  1, V2 can be rewritten as

From eq. (B. 11), a partial integration gives

where

This last integral is classical. The integration gives

Since p and tf are much smaller than one, V3 can
be rewritten

From eqs. (B .1 l, 14 and 15) one now gets

Using the following expansions :

the first integral in r.h.s. of eq. (B .16) is equal to 2 1t.
The second integral is readily calculated using the
relation

where G is the Catalan’s constant (G rr 0.916).
Then

and finally :

Inserting eqs. (B .13) and (B .17) into eq. (B .12),

and neglecting P and P 2 with respect to In 21 p , ,
V reduces to

The second step is to calculate W(d) in eq. (B. 6).
From eq. (B. 5) one has :

Use the expression (B. 3) of ocploz, introduce again
the 0 and t/1 variables (eq. B. 8), divide again the domain
of integration into three parts (Fig. 12) and define the
following notations :

Then W(d) is rewritten

W2’ (eq. B .18) is readily integrated, one obtains :

Then recalling that p  1 :

Turning back to W3 (eq. B. .19) one obtains :
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Using again the expansions of the trigonometric
functions, one finds :

then : 

Insert eqs. (B. 21, 22) into eq. (B. 20) and neglect the

term in p with regard to ln 1/2p. Recalling thatP g 
2p 

g

W can be expressed in the following terms :

Inserting eqs. (4.13) and (B. 23) into eq. (B. 6) one
obtains : 

One remarks that in this expression the core radius s
of the disclination line appears through the logarithm

of9 This result is quite typical of such problems.e

APPENDIX C

. 

Discussion on logarithmic terms in eq. (4.19).
- In section 5.2 we have found the following motion
equation :

The equilibrium position of the line is obtained for
(eq. 4.20) :

and one has :

(increasing fields)

(decreasing fields)

where H is the applied field and Ho the initial one.
Therefore one can write :

This remains true for X’ = Xo, therefore
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The case of decreasing fields (H  Ho) for these two
last terms is less obvious :
one can first write

turning back to the initial variables :

one obtains
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moreover from eqs. (3.23) and (4.17) :

thus

that finally leads to :

Therefore

One can now introduce in eq. (4.19) the functions
tanh -1 and coth -1. Taking into account the relations
(C. 1, 2, 3, 4) one then finds :

(increasing fields)

and, for H  Ho (decreasing fields)
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