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Resume. 2014 Dans la première partie de ce travail (réf. [1]) nous avons étudié la transmission et la
diffusion Mössbauer en l’absence de relaxation. Nous introduisons maintenant la relaxation. Nous
trouvons que l’indice de refraction mesuré dans une expérience de transmission dépend seulement
d’une matrice de Liouville; au contraire le spectre diffusé fait intervenir la somme de trois produits
de trois matrices de Liouville. Il s’ensuit que la diffusion n’est pas une très bonne méthode d’étude
de la relaxation, à l’exception de la relaxation des populations à température finie. Au contraire la
comparaison entre les spectres en émission et en transmission pourrait donner d’utiles informations
sur les réarrangements électroniques dans les sources.

Abstract. 2014 In part I of this paper (ref. [1]) we have studied Mössbauer transmission and scattering
in the absence of relaxation. Here we introduce relaxation. We find that the refraction index observed
in a transmission experiment only depends on one Liouville matrix, while the scattered spectrum
involves a sum of three products of three Liouville matrices. It follows that scattering is not a very
good method to study relaxation except for the case of population relaxation at finite temperature.
On the contrary comparison between emission and transmission spectra might give useful informa-
tion on electronic rearrangement effects in source experiments.
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1. Introduction. - In appendix 1 of reference [2]
we have derived a rule for introducing thermal

relaxation in an atomic physics problem. Let

be the evolution operator of the atom in the absence
of relaxation. For introducing relaxation, the atomic
observable of interest is first written as a trace with
all operators Uo on the left of the atomic density
matrix Q and all operators Uo+ on its right, the cor-
responding time intervals being ordered. The trace
is then expressed in terms of Liouville evolution

superoperators

(*) Associés au C.N.R.S.
(**) New address.

which satisfy the identity :

Finally Vo(t) is replaced by the associated Liouville
evolution superoperator in the presence of relaxation :

where S is the relaxation matrix, defined in refe-
rence [2], which characterizes the relaxation of the
atomic density matrix a. 

’

2. Relaxation effects in a transmission experiment. -
As shown in part 1 of this paper [ 1 ], the refraction
index n of the absorber is such that
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where, for a powder and in the absence of relaxation :

in which f and g are assumed to be eigenstates of the atomic hamiltonian Xo; (J, the Boltzmann density matrix
of the Môssbauer ground state, is then diagonal.

Let us introduce relaxation by use of eq. (2) :

This expression is to be compared with the corresponding result for an emitter, eq. (2) of part I, which, by virtue
of eq. (31) of [2] and taking account of the width r’ of the analyser, can be put into the form (go = Wk - Q) :

where :

and u:n is the initial value of the density matrix of the excited Môssbauer state just after feeding by upper nuclear
states.

At high temperatures, the density matrices of both the excited and the ground Môssbauer states are pro-
portional to the unit matrix, and it is clear from eq. (5), (6), (7) that the quantity which is measured in the two
experiments is exactly the same.

On the contrary at low temperatures, uI(l/r) depends on the relaxation in the excited state, while the Boltz-
mann density matrix of the ground state does not. Consequently as concerns relaxation, the transmission expe-
riment can only give information on the range S - JCÔ ln, while as already discussed in [3, 4], the emission
experiment can explore both domains S - Xô /h and S - r (in this last case however, only on the additional
condition that simultaneously Xô &#x3E; kB T). Another difference is that in a emission experiment one might
happen to observe highly excited electronic states out of thermal equilibrium due to incomplete electronic
rearrangement following a fi transition [5]. By contrast in a transmission (or scattering) experiment the electronic
state of the absorber in the ground and excited nuclear states is the same.

3. Relaxation effects in a scattering experiment. - 3.1 GENERAL FORMULA. - In this case we have to
use the expressions of /1’ /2’ 4 given by eq. (45), (46), (47) of part 1 and the expressions of the traces given by
eq. (48), (49), (50) of part I. After replacing Vo by cU, performing the triple time integration and adding 1,, 12
and 13, we finally find that the number dnk/dt of photons (k, Wk) scattered per second is given by :
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where, with respect to the eigenstates f and g of Jeo :

This expression is very complicated and suggests that, in general, Môssbauer scattering is not a good method to
study relaxation, because of both the nine Liouville matrices which appear in the problem and the high dimen-
sionality of some of these matrices. -

As an example, if we assume that I = 2, Ig = 0, S = 2 (as in Yb1 70 Au, which does not mean that the
experiment is possible in this case) : 

We will however see that there is one situation,.where Môssbauer scattering might give information on relaxation
which cannot be obtained by other techniques. In order to find it let us look in more détail at the properties
of eq. (9).

3.2 PHYSICAL INTERPRETATION OF EQ. (9). - It is possible to show that the sum of the second and third
terms 12 and 13 of eq. (9) is equal to :

with

rand
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It is not difficult to check that 6;n is the initial

density matrix of the excited state associated with
the absorption of an incident photon. The interpre-
tation of eq. (10) is then clear : we create an initial

density matrix a! in in state I. During the nuclear
lifetime it evolves to u(I IF), and in terms of u’,(I IF)
the lineshape of the emitted radiation is given by the
same formula as for an emitter (eq. (6)).

This result looks perfectly reasonable if we think of
a scattering experiment using irradiation with a

white spectrum (F’ » r). In that case the first line
of eq. (9) is negligible and we recover the similarity
between emission and scattering which was empha-
sized in 4.2 of part I.

However in actual experiments F’ - r (which
means that the absorption of the incident photon is
not instantaneous) and we must take account of the
first term h of eq. (9), whose physical interpretation
is not so clear. Its only obvious property is that as a
function of Wk its integrated area is zero. First, in the
absence of relaxation it has two poles in the lower
complex half plane; when we close the contour in
the upper complex plane we get zero. Second, since
relaxation is a dissipative process the eigenvalues of the

non-hermitian hamiltonian 2013 i/h JCxo + S must haveh
a negative real part. Therefore in the presence of
relaxation all the poles remain in the lowest half

plane and the integral remains zero.
In view of these remarks it seems that there is only

one situation where Môssbauer scattering might give
some interesting information on relaxation. It is the
case S - r, where relaxation broadening is small so
that relaxation effects enter the problem mainly
through 03C3Iev(l/r) (eq. (10)). In these conditions, by
using selective excitation we may populate one parti-
cular excited substate and detect relaxation in state 1

by observation, in the scattered spectrum, of new
lines originating from other excited substates. This

technique should give us access to the range S - r
without any restriction on temperature, contrary
to the emitter case where the condition JCO/kB T k 1
had to the fulfilled. Let us examine this possibility
in more detail.

3. 3 SCATTERING IN THE PRESENCE OF SLOW RELAXA-
TION (S - F « Jeol/ï) (1). - Let us assume for

simplicity that the hyperfine levels f, g are non-

degenerate, with different hyperfine splittings in the
two Môssbauer nuclear states, and that the ground
state is a doublet gg’.
Let us irradiate at Wio = Q fSgl’ As it concerns

the contribution of the last two lines 12 and 13 of
eq. (9), this has the effect of selectively populating
level f5 :  fs 1 O":n 1 15 &#x3E; -# 0, all other matrix ele-
ments of ain being zero. Since S « X’lh, relaxation

(1) This situation has also been considered by Afanasev and
Gorobchenko [8].

in the excited state can be treated within the secular

approximation ; its follows that ( f5 1 03C3 1 f5 &#x3E; will

only be coupled to other populations :

The scattered spectrum will thus involve, in addition
to the emission lines originating from fs, new lines
originating from the other excited states f3 with
intensities proportional to (see eq. (10)) :

As shown by eq. (13) the quantities f3 ule ,,(l IF) 1 f3 &#x3E;
depend on the Liouville matrix (- F)I(- r + S).
If S « r redistribution of the populations in the
excited state cannot occur because the relaxation is too
slow. If S » r equipartition is completely achieved.
It is in the range S - r that the intensities of the extra
lines will be most sensitive to relaxation. On the other
hand since Xô lh » S, the broadening of the lines by
relaxation will be very small compared to their dis-
tance ; however, when S - r, r’ the absorbed inten-
sity and therefore the number of atoms excited to
state f5 will depend on S : it follows that information
on relaxation must be deduced from the relative
intensities of the lines of the scattered spectrum.
Up to now in this discussion we have ignored the

contribution of the first line Ii of eq. (9). In the pre-
sence of selective excitation at Wfsgt we must have in
the last Liouville matrix of this term : 92 = gi and

f7 = f5. On the other hand, by virtue of the secular
approximation the off-diagonal elements (Oggl), (O"glg)
relax independently, while there is a coupling between
the populations (O"gg), (O"glg’)’ Then the intermediate
Liouville matrix can only have the form :

(and similar expression width 9 4:± g’) ; or

(and g ~ g’). Finally since relaxation effects are small,
in the first Liouville matrix we must have f4 = f i,
94 = 98.
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Neglecting S in the first and third Liouville matrices, the first term I, of eq. (9) then takes one of the two
forms : 

or

Since X 0 x &#x3E; T, S’ these contributions will be

appreciable only if the imaginary parts of the deno-
minators of the first and second Liouville matrices
can be made to vanish simultaneously.

In the first case this implies :

and therefore :

which in the absence of degeneracy can be achieved
only if Il = f5 and g2 = gl’ Anyhow this contribu-
tion corresponds to quasi-elastic scattering.

In the second case we must have :

i.e. WI5 = (O fi and consequently Il = f5. This contri-
bution corresponds to inelastic scattering (Raman
effect).

Let us now recapitulate the contributions to the
scattered light, of the three terms of eq. (9). 
- For the first term Il (with zero integrated area) :

i.e. the frequency of the scattered light can differ
from that of the incident light only by the hyperfine
frequency of the ground state.
- For the second and third terms 12 and 13 :

If f3 = fs we have a contribution of the same type as
that of the first term. This is what occurs when there
is no relaxation in the excited state.

On the contrary when f3 ~ fs (and assuming a
different h.f.s. in the excited and ground states) we
have new lines in the scattered spectrum. The first
term h of eq. (9) does not contribute to these new
lines.

Consequently if we know the level scheme of the
Môssbauer states, information on relaxation can be
obtained by comparing the integrated area of the new
lines with the sum of the integrated areas of the lines
originating from the selectively populated state.

Remark : in this paragraph we have assumed that
under the effect of selective excitation only the dia-
gonal matrix element fs 1 u!. 1 f5 &#x3E; of the excited

density matrix was non-zero. In certain cases it could
happen that off-diagonal matrix elements

be excited. But they are decoupled from the popu-
lations by the secular approximation and their contri-
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bution to 12 and 13 would be negligible compared to
that of  f5 1 a!. I f5 i because the intermediate Liou-
ville matrix in 12 and 13 would be of order

We will now illustrate these considerations by a
simple example where the ground state has no hyper-
fine structure so that the first term Il of eq. (9) only
gives rise to elastic scattering.

3.4 SIMPLE NUMERICAL EXAMPLE. - Let us consider
a Môssbauer transition I = 2 (excited) -&#x3E; Ig = 0
(ground state) in the presence of hyperfine coupling
with an electronic spin S = 2 (as for Yb170 in gold).
The excited state gives rise to two hyperfine levels
F = 2 and F = 2, while the ground state becomes a
degenerate doublet G = S = 1/2. In the absence of
relaxation the absorption Môssbauer spectrum is

composed of two lines, A with frequency

and B with frequency COB = WF= 3/2 - WG’
We irradiate the atom with natural (unpolarized)

gamma radiation and observe the frequency spectrum
of the radiation scattered at right angle. The angular
selection rules in this case (L = 2, electric quadrupole
transition) are represented by eq. (69) of part I.

Since only P 11 (ki) and P-1-1(kj are non-zero,
the only elements of the density matrix of state 1

which can be excited have the form :

or in view of the selection rules for the TLM, the form
aFF’mm. As mentioned in the preceding paragraph the
off-diagonal terms F ~ F’ can be neglected and we
only have to consider the populations pm of F = 5/2
and pm of F = 1. On the other hand since 1. - 0,
it is possible to show that the radiative transition

amplitudes are simply given by :

Let us for example irradiate at WA == WS/2 - Wa.
We have for the populations the initial values p,

When we observe at n/2 and take account of eq. (69)
of 1 we have as a function of the final populations
plv(i/r) :
- a line at WA with integrated intensity propor-

tional to :

P512 + p-5/2 + P3/2 + p-3/2 + 2/5(pl/2 + P-112);
- a line at wB with integrated intensity propor-

tional to :

If these is no relaxation in the excited state

Then we have only one line at WA with intensity 48/25
and nothing at WB.
On the contrary if there is complete redistribution

before reemission [3] we will have one line A’ at WA
with intensity 288/250 and one line B’ at wB with

intensity 192/250. Relaxation has given rise to an

additional line in the spectrum.
More generally in the intermediate range S - r

the ratio of the integrated areas of B’ and A’ will

depend on S and, as already said, can be used to

determine the relaxation time between the two hyper-
fine levels.

4. Diagonal case. Comparison with Balko and Hoy
theory. - Let us finally consider the case of a comple-
tely anisotropic h.f.s. in both the excited and ground
nuclear states :

In this situation and if we take account of the fact
that Ha(k) only acts on nuclear variables, and relaxa-
tion only acts on electronic variables, eq. (9) greatly
simplifies. Let us set :

where m, y, s are eigenvalues respectively of Iz, Izg
and Sz.

If we assume that S 2 and that the relaxation
of S can be treated within the white spectrum approxi-
mation (kB T » X.), its relaxation properties are the
same in the absence or in the presence of an hyperfine
coupling. Therefore the relaxation matrix of S has
the form
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There is no coupling between diagonal and off

diagonal elements. Consequently if the density matrix
of S is initially diagonal it remains diagonal and we
can reduce the above relaxation matrix to its upper left

quarter (as already noted by Blume in another context).
This means that a quantity

must have the form

In what follows we shall therefore use the abbreviated
notation

Let us now go back to eq. (9). There is nothing new
with the interpretation of h. As concerns the second
and third terms 12 and 13 the intermediate Liouville
matrix will be appreciable only if the two nuclear states
on each side are the same (no contribution of Xô).

Then they can be interpreted as

where

If relaxation efiects S - l’ we may, as a first approximation neglect S in the first and third Liouville matrices
of /2 and /3. It follows that :

The second Liouville matrix in 12 and 13 is ( W = 2 Tl) :

Assume that the incident radiation populates selectively state ln 1 i  pin m1. - 1: pmm1 - 0. The final populations
Pev(l/r) are given by (- r) the first column of the matrix (26)

Inserting this into eq. (25) we find that the scattered spectrum contains

In the absence of relaxation ( W = 0) we only have
the emission lines from the initially excited level mlr .
If there is relaxation we have in addition emission
lines from ml,. Notice that in practice the incident
radiation populates simultaneously the degenerate
levels mlt and - ml, but the spectrum remains the
same. Notice also that eq. (28) would also be valid
for a spin S =1 2 in the case where the lowest electronic
state associated with this spin would be a doublet
1 Sz = ± 5’ ), the upper states Sz =1 S being empty.
We must now compare our results with those of

LE JOURNAL DE PHYSIQUE. - T. 37, N° 5, MAI 1976

Balko and Hoy [6]. Our expressions (27) for pe" are in
agreement with eq. (19) of [6] and our eq. (28) for the
lineshape is in agreement with eq. (14) of [6], if in A-1
(eq. (16) of [6]), we neglect broadening terms, as we
have done in the denominators of our own eq. (28).
Indeed, as already mentioned, because of the contri-
bution of the first term h of eq. (9), only relative inte-
grated areas have real significance and when the lines
are well resolved, their integrated areas are usually
not affected by relaxation broadening [3].
We may however wonder whether this simple
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model is relevant to the Morin transition in aFe203.
First, many authors admit that the gradual character
of the Morin transition is due not to relaxation effects,
but to a distribution of the transition temperatures
of different crystallites. Second, if relaxation effects

happened to exist, it would seem surprizing that
we would have slow critical relaxation over more
than 10 K. Third the existence of additional lines in

figure (18) of [6] is not absolutely evident : the expe-
rimental curves could be fitted differently. Finally
at the Morin transition the ferromagnetic spins rotate
by n/2 and this situation would be better represented
by a stochastic process in which the nuclear spin
would see its hamiltonian jump between the values

Since these two values do not commute one would
have to resort to Blume’s theory [7].

5. Summary. Comparison of the différent Môssbauer
techniques.

Jeo = hyperfine hamiltonian ;
r = natural linewidth of the excited Môssbauer

level (hF « Jeo for well resolved Môssbauer spectra) ;
S = relaxation supermatrix.

Information on relaxation available from the
different techniques is the following :

5.1 EMISSION (two Liouville matrices)

Ranges S - Jeo/tz(S - r if simultaneously Jeo &#x3E; kB T.

Possibility of observing excited electronic levels out of
thermal equilibrium if incomplete rearrangement
after a fi transition.

5.2 TRANSMISSION (one Liouville matrix)

Electronic level(s) in the excited Môssbauer state
is (are) the same as in the ground state

5.3 SCATTERING (nine Liouville matrices)

Ranges S N Ho/h but extremely complicated
S - r whatever 3CO/kB T (by using
selective excitation).

Electronic level(s) in the excited Môssbauer state
is (are) the same as in the ground state.

It appears that Môssbauer scattering is the only
technique available for studying the range S - r
when JCO/kB T « 1. However situations where relaxa-
tion is slow enough so that S - r at temperatures
kB T &#x3E; Jeo will probably not be very numerous.
On the .other hand, and where possible, comparison

between emission and transmission experiments would
be a good way to check the existence of incomplete
electronic rearrangement following fi transitions :
indeed in that case emission and transmission spectra
should be quite different.
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References

[1] HARTMANN-BOUTRON, F., J. Physique 37 (1976) 537.
[2] HARTMANN-BOUTRON, F., SPANJAARD, D., J. Physique 36

(1975) 307.
[3] HARTMANN-BOUTRON, F., Phys. Rev. B 10 (1974) 2113.
[4] GONZALEZ JIMENEZ, F., HARTMANN-BOUTRON, F., IMBERT, P.,

Phys. Rev. B 10 (1974) 2122.

[5] HIRST, L. L., J. Colloq. 35 (1974) C6-21.
[6] BALKO, B., HOY, G. R., Phys. Rev. B 10 (1974) 36.
[7] BLUME, M., Phys. Rev. 174 (1968) 351.
[8] AFANASEV, A. M., GOROBCHENKO, V. D., Zh. T.E.F. 67 (1974)

2246.


