

Spectres microondes, structure et constantes de force de la molécule CIF5

P. Goulet, R. Jurek, Jocelyn Chanussot

▶ To cite this version:

P. Goulet, R. Jurek, Jocelyn Chanussot. Spectres microondes, structure et constantes de force de la molécule CIF5. Journal de Physique, 1976, 37 (5), pp.495-502. 10.1051/jphys:01976003705049500 . jpa-00208444

HAL Id: jpa-00208444 https://hal.science/jpa-00208444

Submitted on 4 Feb 2008

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

SPECTRES MICROONDES, STRUCTURE ET CONSTANTES DE FORCE DE LA MOLÉCULE CIF₅

P. GOULET, R. JUREK et J. CHANUSSOT

Laboratoire de Spectroscopie Hertzienne (*), Faculté des Sciences MIPC 6, bd Gabriel, 21000 Dijon, France

(Reçu le 9 décembre 1975, révisé le 20 janvier 1976, accepté le 23 janvier 1976)

Résumé. — Les spectres rotationnels de ClF_5 sont étudiés jusqu'à 210 GHz. Une nouvelle interprétation des transitions conduit à une meilleure approche des paramètres moléculaires. La géométrie de la molécule est déduite et les constantes de force calculées.

Abstract. — Microwave spectra of ClF_5 are studied up to 210 GHz. A new interpretation of the absorption lines gives a better determination of the rotational parameters. The molecular structure and force constants are given.

1. Introduction. — Sur la base des résultats de la première étude microonde de ClF_5 [1], il n'est pas possible d'aboutir à une concordance acceptable entre la valeur calculée et la valeur mesurée du paramètre D_{JK} ; de plus, la comparaison des paramètres de distorsion centrifuge relatifs à ClF_5 et BrF_5 [2, 3] montre que si le paramètre D_J diminue bien quand la masse de la molécule augmente, il n'en est pas de même pour D_{JK} . Ceci nous a conduits à remettre en cause la valeur de D_{JK} et par là celle de eqQ. De nouvelles mesures ont donc été effectuées jusqu'à 210 GHz, l'identification reprise et les paramètres améliorés, ceci en vue de déterminer la géométrie et les constantes de force de ClF_5 .

2. Etude des spectres et paramètres obtenus. — Les spectres sont obtenus à l'aide d'un spectromètre conventionnel de type vidéo travaillant à -80 °C; les détails expérimentaux (en particulier le traitement des raies faibles par un moyenneur à échantillonnage) sont décrits par ailleurs [1]. D'une façon générale la largeur des raies observées est comprise entre 60 et 120 kHz (la largeur Doppler à 70 GHz est de 60 kHz; la précision d'un pointé de 10 kHz). Pour les deux molécules ³⁵ClF₅ et ³⁷ClF₅ les nouvelles transitions mesurées correspondent à $J = 28 \rightarrow 29, J = 29 \rightarrow 30$. Les paramètres moléculaires sont obtenus en utilisant une méthode de moindres carrés portant sur l'ensemble des 5 familles de transitions :

$$J = 9 \to 10$$
, $18 \to 19$, $19 \to 20$.
 $28 \to 29$, $29 \to 30$.

(*) Equipe de Recherche associée au C.N.R.S.

Soit au total un nombre de 150 points expérimentaux utilisés (respectivement 90 pour ³⁵Cl et 60 pour ³⁷Cl). Nous donnons dans les tableaux I à V les résultats obtenus pour ³⁵ClF₅ ainsi que la comparaison entre les fréquences mesurées et les fréquences calculées.

Les constantes rotationnelles sont données dans le tableau VI où la précision correspond à un intervalle de confiance à 99 %. On remarque que par rapport aux résultats donnés en [1] les paramètres moléculaires D_{JK} et eqQ ont varié; en particulier la valeur de D_{JK} a doublé; la nouvelle valeur correspond bien cette fois aux prévisions théoriques. Bien que la précision affichée pour les paramètres soit moins bonne, les nouvelles mesures conduites en haute fréquence ont permis de corriger les erreurs d'identification de l'étude précédente [1] (transition $9 \rightarrow 10$ pour les raies F = 17/2 et 19/2; transition $18 \rightarrow 19$ et $19 \rightarrow 20$ pour les valeurs de $K \ge 7$). De là nous proposons un système plus satisfaisant pour les constantes rotationnelles nécessaires à la détermination de la géométrie et des constantes de force.

3. Structure moléculaire et constantes de force. — L'étude des spectres d'absorption I.R. et Raman d'une molécule gazeuse de type XY_5 (symétrie $C_{4\nu}$) permet de déterminer la valeur numérique et la symétrie de ses 12 fréquences fondamentales de vibration [4]. Par ailleurs l'étude des spectres d'absorption hertziens pour l'état vibrationnel de base permet d'atteindre les constantes B_0 , $D_J D_{JK}$ et R_6 . Un développement théorique de l'hamiltonien jusqu'à l'ordre deux [5] explicite les paramètres rotationnels précédents en fonction des coefficients $a_{s\sigma}^{z\beta}$ de variation des moments et produits d'inertie par rapport aux

Tableau I

Transition $J = 9 \rightarrow 10 \ de^{35} \text{ClF}_5$

feale	Identifi	cation	$f_{\rm mes}$	$f_{\rm c} - f_{\rm m}$
(MHz)	K	2 F	(MHz)	(MHz)
 71 000 +		_	71 000 +	
0,129	9	15 }	0,222	- 0,093
0,628	8	15 }	0,691	- 0,063
1.069	7	15		
2,214	9	21 ∫	1,137	0,004
1,449	8	21	1 503	- 0.053
1,451	6	15)	1,000	0,000
1,657	7	21 }	1,585	- 0,072
1,774	5	15 (1,815	- 0,010
1,830	0	21)	·	
1,989	5	$\frac{21}{15}$		
2,038	4		2,083	- 0,030
2,074	2	$\frac{21}{21}$	-	
2,115	4	21		
2,185	2	15		
2,210	3	15		
2,245	5	21		
2,321	0	21		
2,335	0	19		
2.345	2-	19		
2.388	1	$19\rangle$	2,320	0,076
2,456	2-	17	,	,
2,478	1	15		
2,484	2+	21		
2,508	0	15		
2,508	0	17		
2,546	1	17		
2,595	2+	15 /		
2,755	2+	(19		
2,819	3	19	2 803	0.020
2,853	3	17 (2,805	0,020
2,866	2+	17)		
3,121	4	17	3,153	0.005
3,196	4	19]	2,420	0.025
3,465	5	17 }	3,430	0,035
3,681	5	19 }	3,667	0,014
3,887	6	17 }	3,875	0,012
4,273	6	19 }	4,290	- 0,017
4,385	7	17		
4,960	8	17 L	1 947	0.024
4,973	7	19 <u>{</u>	7,972	0,024
5,611	9	17	5 733	- 0.037
5,781	8	19 J	5,755	0,007
6,696	9	19 }	6,716	- 0,020
	Ecart m	oyen = -	- 0,012 MHz	
	Ecart ty	pe =	0,040 MHZ	

coordonnées normales $Q_{s\sigma}$; ceux-ci s'expriment en fonction des coefficients $l_{is\sigma}^{\alpha}$ qui relient les déplacements atomiques pondérés aux coordonnées normales [5]. Les calculs numériques correspondants nécessitent pour la molécule la connaissance de :

3.1 LA GÉOMÉTRIE (distances interatomiques et angles de valence).

3.2 L'EXPRESSION DES COORDONNÉES NORMALES EN FONCTION DES DÉPLACEMENTS ATOMIQUES SYMÉTRISÉS. — Ce deuxième point devrait être réalisé par une diagonalisation de l'hamiltonien. Dans le formalisme de Wilson [6] on a l'hamiltonien sous la forme $\mathcal{K} = GF$, matrice 12 × 12. Dans la base des coordonnées symétriques les matrices G et F sont diagonales par blocs suivant la décomposition

$$3 A_1 + 2 B_1 + B_2 + 3 E;$$

mais \mathcal{K} n'étant pas symétrique, il y a lieu de le symétriser en vue de sa diagonalisation : ceci sera réalisé à l'aide d'un changement de base tel que G se réduise à l'identité E soit H' = EF' = F'. Soit L une matrice de changement de base telle que

$$H' = L^{-1} \Re L = L^{-1} GFL = L^{-1} GL^{+-1} L^{+} FL$$

où L^+ est la matrice transposée de L. On doit alors satisfaire à :

$$E = L^{-1} G L^{+-1}$$
$$F' = L^{+} F L$$

On a ainsi symétrisé \mathcal{K} sans modifier ses valeurs propres λ :

$$\lambda E = \Lambda = M^{-1} H' M$$

soit en posant $L_0 = LM$, $L_0^{-1} \mathcal{K}L_0 = \Lambda$. L_0 est donc la matrice de passage des coordonnées symétriques internes aux coordonnées normales et se déduit de Lpar la rotation M. Le problème est donc de déterminer L_0 à partir de la connaissance de L; en première approximation nous prendrons $L_0 = L$ ce qui revient à travailler dans un système de coordonnées pseudonormales en précisant toutefois que les calculs restent rigoureux pour la symétrie B_2 pour laquelle $(L_0)_{B_2} \equiv (L)_{B_2}$.

Pour cette raison, le calcul de R_6 [5] qui ne dépend

			1141	13111011 9 - 10	, i) uc c	11 5			
$f_{ m calc}$ (MHz)	Identific 2 F	ation K	f _{mes} (MHz)	$f_{\rm c} - f_{\rm m}$ (MHz)	f _{calc} (MHz)	Identifi 2 F	cation	f _{mes} (MHz)	$f_{\rm c} - f_{\rm m}$ (MHz)
 134 800 + 88,058	39	_)	134 800 +		91,823 91,918	$\begin{array}{c} - \\ 33 \\ 39 \end{array}$	11		
88,098 88,100 88,140	$\begin{array}{c} 37 \\ 33 \\ 35 \end{array}$	2^{-}	88,103	- 0,004	91,829 91,876	$ \begin{array}{c} 35\\37 \end{array} $	9 ∫	91,702	0,010
89,392 89,392	39 37				92,277 92,398 92 389	33 (39 ∫ 35)	12 }	92,303	0,078
89,439 89,439	$33 \atop 35$	0			92,389 92,459 92 770	37	10)		
89,413 89,423 89,458	$\left. \begin{array}{c} 39\\37\\33 \end{array} \right\}$	1			92,920 93,009	39 } 35 {	13	92,841	0,110
89,468 89,580	35 J 39 J		89,561	0,056	93,103 93,302	37 { 33 }	14	93,419	- 0,026
89,616 89,668 89,704	$\begin{array}{c} 33 \\ 37 \\ 35 \end{array}$	3		.,	93,484 93,687 93,809	39 } 35 } 37 (ز 12	,	
89,726 89,754	$\left. \begin{array}{c} 39\\ 33\\ 27 \end{array} \right\}$	4			94,873 94,089	33 39 }	15		
89,883 89,911 89 914	$37 \\ 35 \\ 39 \\ 39 \\ 39 \\ 39 \\ 39 \\ 39 \\ 39$				94,425 94,575	35 37	13		
89,931 90,143	33 } 39 }	5			94,484 94,736 95 222	33 (39 ∫ 35)	16		
90,148 90,159	33 { 37 }	5	90,172	- 0,015	95,222 95,403 95,135	37 { 33 }	14		
90,176 90,404	35) 33)	7)			95,425 95,825	39 } 33 }	17		
90,415 90,496 90,501	39 } 37 } 35 {	6	90,340	0,116	96,156 96,077 96,293	39 } 35 } 37 {	15		
90,700 90,728	33 } 39 }	8 }	90,704	0,010	96,992 97,244	35 37 }	16		
90,884 90,895	35 37 }	7			97,966 98,256	35 37	17		
90,892 90,932 90,934	39 37 33	2+			98,998 99,330	35 (37 ∫	18	0.022 MHz	
90,974 91,035	35 33 33	9	91,252	- 0,110		Ecart	type =	0,066 MHz	
91,083 91,327 91 355	39	8							
91,410 91,479	33 39	10							
		•							

Tableau II

Transition $J = 18 \rightarrow 19 \ de^{35} \text{ClF}_5$

TABLEAU III

Transition $J = 19 \rightarrow 20 \ de^{35} \text{ClF}_5$

$f_{\rm calc}$	Identifi	cation	f_{mes}	$f_{\rm c} - f_{\rm m}$	f_{calc}	Identification	f_{mes}	$f_{\rm c} - f_{\rm m}$
(MHz)	2 F		(MHz)	(MHz)	(MHz)	2 F K	(MHz)	(MHz)
141 900 +			141 900 +		88,945	$\overline{37}$ $\overline{9}$		
84,891	41				88,980	39		
84,925	39	2-}	84,898	0,029	89,140	35 11	89 180	0 004
84,929 84,863	$33 \\ 37$				89,212	41)	03,100	0,004
86 453	41)	ر ۱			89,520	$\frac{37}{20}$ 10		
86,453	39			•	89,573	39 }	89,527	0,091
86,495	35	0			89,042	$\frac{35}{41}$ 12		,
86,495	37 J				90,156	27		
86,476	41				90.228	$\frac{37}{39}$ 11		
86,484	39	1			90,189	35	90,165	0,055
86 525	37				90,307	41 13		
86 658	41)				90,779	35		
86,692	35	~ >	86,733	- 0,044	90,923	41.		
86,734	39	3			90,851	37 1 12	90,847	0,028
86,767	37 J	1			90,946	$39 \int 12 \int$		
86,818	41				91,412	35		
86,845	35	4			91,584	$41 \begin{cases} 13 \end{cases}$	91 576	0.006
86,979	39	ŀ			91,608	37 13	51,570	0,000
87.023	41)				91,726	39		
87,041	35	5			92,090	$\frac{35}{41}$ 16		
87,233	39	.)			92,291	(41)	92,355	- 0,011
87,251	37 }	5	07 007	0.005	92,423	$\frac{37}{39}$ 14		
87,274	41 (~	87,287	- 0,027	02 811	35)		
87,282	35 ∫	٥			93.041	41 17		
87,566	35)	7)			93.302	37	93,065	0,092
87,570	41	í ļ	87.442	0 132	93,473	39 15		
87,576	39 (6		0,102	93,576	35		
87,384	37)	J			93,841	$41 \int 18$		
87,894	35 (8			94,240	35		
87.077	27	}	87,829	0,112	94,440	$41 \int 10 $	94,302	0,053
87,982	39	7			94,385	35 } 19]		
88 197	41)	Ń			94,685	41 } 19		
88,231	39				95,238	37	05 257	0.002
88,235	35	2*			95,470	39 ∫ 17 ∫	95,357	- 0,003
88,269	37		88 3/3	- 0.046	96,297	37 } 18 }	96,288	0,009
88,265	35	9	00,545	- 0,040	96,562	39 } 18 }	96,585	- 0,023
88,300	41				97,416	37 } 19 }	97,379	0.037
88,431	37 (8			97,716	39 } 19 }	97.812	- 0.096
00,430) (לכ	/ ר			~,,	<i>, , ,</i>	<i>,,,,,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0,000
88,681 88,733	35 (10 }	88,691	0,016		Ecart moyen $= 0$),020 MHz	
00,755	4 1)	J		-		Ecart type $= 0$,051 MHz	

$f_{\rm calc}$	Identifica	ation	$f_{\rm mes}$	$f_{\rm c} - f_{\rm m}$	$f_{ m calc}$	Identifica	tion	f_{mes}	$f_{\rm c} - f_{\rm m}$
(MHz)	2 F	K	(MHz)	(MHz)	(MHz)	2 F	K	(MHz)	(MHz)
205 800 +	<u> </u>		205 800 +		49,642 49.671	53 } 59 {	15 }	49,625	0,031
36,452 36,463	57)			50 261	55)	J		
36,482	55	2- }	36,450	0,017	50,289	57	15		
36,472	53	J			50,790	53			
41,292	59)	1			50,825	59			
41,292	57 (0			51,494	55 (16	51 626	0 195
41,312	55	0			51,529	57		51,050	_ 0,185
41,312	53)				52,012	53	17		
41,329	59				52,054	59 <u>}</u>	'' Į		
41,332	57 (1			52,807	55	17	52 794	0.034
41,332	53	- 1			52,849	57	· J		0,001
41.627	59 J				53,308	53	18		
41,652	57				53,357	59			
41,670	55	3	41,757	- 0,063	54,199	55	18 }	54.278	- 0.054
41,645	53)				54,248	57 5	J		
41,888	59				54,678	53)		
41,932	57 {	4			54,735	59	19 }	55,302	- 0,099
41,948	53				55 728	57 J	J		
41,904	50 x				56 122	52)			
42,223	57				56 187	59	20		
42,306	55	5			57,107	55) 55)	C		
42,237	53 J	1			57,222	57 (20 }	57,262	- 0,007
42,632	ן 59	١			57,288	57)		
42,645	53	6			57,040	50	21		
42,731	57 (° /			50 952	55))		
42,744	55)	Ş	42,795	0.143	58,855	57 (21 }	58,767	0,123
43,116	$\frac{59}{52}$,	-,	50,227	57)	J		
43,120	57	7			59,232	59	22		
43.261	55)			60 563	55))		
43 675	59	,			60,503	57 (22		
43,681	53				60,898	53	}	60,674	0,100
43,851	57 (8			60,991	59	23		
43,857	55)	Į	44 006	0.087	62,353	55)	í		
44,308	59		44,000	0,087	62,446	57	23	(a a i a)	
44,311	53 (9			62,638	53)	~ }	62,219	0,325
44,531	55)			62,741	59 ∫	24		
45,014	53	\ [']			64,222	55)	م أ		
45,016	59	10			64,326	57 ∫	24	64 207	0.094
45,289	55				64,452	53	25	04,307	0,084
45,291	57)	Ş	45,637	- 0.080	64,566	59 ∫	J	,	
45,792	53		2	,	66,171	55 (25		
43,797	55	11			66,285	57	{	66,198	0.117
46,131	57				66,341	59 (26		
46 430	59	Ì			00,403	55)	ł		
46,441	57	a+			68,200 68,225	55 (26		
46,449	53	2.	16 558	0.045	68 202	57)	}	68,290	0,027
46,460	55		40,558	- 0,045	68,303 68,439	55 (59 (27		
46,643	53	12			70,209	55)	{		
46,654	59	/			70,308	57	27		
47,039	55 J	12			70 339	53)	}	70,385	0,010
47,050	57	~~ {	47.358		70,487	59 (28		
47,569	53	13			72 496	55]	{		
47,585	59 j	J			72,643	57	28 }	72,645	- 0,075
48,034	55	13			,	,)		
40,000	57) 52)	1				Ecart	moyer	h = 28 kHz	
48,591	59	14 >	48,767	0,187		Ecart	ıype	= 110 kHz	
49,108	55								
49,130	57 (14							
	,	'							

TABLEAU IV Transition $J = 28 \rightarrow 29 \ de^{35} \text{ClF}_5$

f _{calc} (MHz)	Identification $2 F K $	f _{mes} (MHz)	$f_{\rm c} - f_{\rm m}$ (MHz)	f _{calc} (MHz)	Identification 2F K	f _{mes} (MHz)	$f_{\rm c} - f_{\rm m}$ (MHz)
212 900 +		212 900 +		 /1 011	$\frac{1}{57}$		_
28,491	61	212 900 1		41,929	57 14		
28,501	$59 \left\{ 2^{-} \right\}$	28.547	- 0.042	42,540	55	42,377	0,151
28,509 28,519	55	20,017	0,042	42,564 43 ,099	$\begin{pmatrix} 61 \\ 57 \end{pmatrix}$ 15		
33,859	61			43,123	59) /		
33,859	59			43,734	55 } 16 }	43 702	0.047
33,878 33,878	57			43,763	$61 \int 10 \int$	45,702	0,047
33,898	61			44,370 44,399	$57 \\ 59 \\ 16 \\ 16 \\ 59 \\ 59 \\ 59 \\ 59 \\ 59 \\ 50 \\ 50 \\ 50$	44,506	- 0,122
33,900	59			45,004	55		
33,910	55			45,040	$61 \int 17 f$	45,130	0,070
34,207	61			45,722	$57 \\ 50 \\ 17 $		
34,224	55 3	34,263	0,012	45,758	55)	45,941	0,116
34,230	57			46,394	61 18		
34,478	61			47,157	57 18		
34,494 34 518	$55 \\ 59 \\ 4$			47,199	59 } (47,389	0,100
34,534	57			47,825	61 19		
34,826	61			48,673	57		
34,840 34,888	59 5			48,722	59 1 19		
34,902	57)			49,278 49.334	$55 \\ 61 \\ 20$		
35,252	61			50,272	57	50.050	
35,341	59 6			50,328	59 j 20 j	50,379	- 0,079
35,353	57	35 552	0 009	50,856	55		
35,755 35,764	61	55,552	0,009	51,920	57 21		-
35,877	59 7			52,016	59	51,807	0,000
35,886	57)			52,512 52,584	$55 \\ 61 \\ 22 \\ 22$		
36,335 36 342	61			53 714	57))		
36,494	59 8			53,786	59 22	54 041	0.024
36,501	57	36,647	0.109	54,245	$55 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ $	54,041	- 0,024
36,993 36,996	61 55	,	.,	55 550	57)		
37,194	59 9			55,699	57 23		
37,198	57)			56,054	55		
37,728	55			56,143	61 5 24		
37,996	59 10			57,485 57 574	$57 \left\{ 24 \right\}$	-	
37,996	57)	38,239	0,036	57,941	55	57,735	0,025
38,530	61			58,039	$61 \begin{cases} 25 \end{cases}$		
38,837	57			59,493	$59 \left\{ 25 \right\}$		
39.422	55			59,904	55	59,715	0,035
39,430	61			60,012	61 26		
39,780 39 788	57			61,584	$57 \\ 50 \\ 26 \\ 26 \\ 30 \\ 30 \\ 30 \\ 30 \\ 30 \\ 30 \\ 30 \\ 3$		
39,537	61		0.000	61,691 61,945	59 }	61,925	- 0,105
39,547	59 2^+	39,740	0,000	62,062	61 27		
39,555 39,565	55			63,756	57 27		
40,384	55			63,873	59 j 2' (63,912	0,051
40,397	61 5			64,062 64,160	$\begin{array}{c c} 35\\61 \end{array} \left\{ \begin{array}{c} 28 \end{array} \right]$		
40,804 40,817	$57 \\ 59 \\ 13 $			66,010	57		
41,424	55	41,197	- 0,075	66,138	$59 \left\{ \begin{array}{c} 20 \\ 5 \end{array} \right\}$	66,329	- 0.128
41,442	$61 \int 14 \int$			00,257 66,395	$\begin{array}{c} 55\\ 61 \end{array}$ 29		.,
	Ecart moyen =	0.5 kHz		68,346	57	10 / 12	0.105
	Ecart type =	87 kHz		68,484	59 ∫ ²⁹ ∫	68,612	- 0,197

TABLEAU V Transition $J = 29 \rightarrow 30 \ de^{35}$ ClF,

	TA	BLEAU VI			(
Constantes rotationnelles									
	³⁵ ClF ₅	\pm à 99 %	³⁷ ClF ₅	± à 99 %	e				
$B_0 (MHz)$ $D_j (Hz)$ $D_{JK} (Hz)$ $eQq (MHz)$ $B_j (Hz)$	3 550,273 764 - 664 44,67	$\pm 0,006$ ± 6 ± 5 $\pm 2,50$	3 545,888 755 - 586 35,40						

que des coordonnées de symétrie B₁ et B₂ [7] est quasi exact ; par contre les études de $D_J(A_1, B_1 \text{ et } B_2)$ et $D_{JK}(A_1, B_1, B_2$ et E) serviront à préciser *a posteriori*, à partir des éléments de *L*, les éléments de L_0 par application de la matrice M [8].

4. Résultats. — La méthode de Costain [9] (approximation de structure r_s et θ_s en lieu et place de r_0

TABLEAU VII

Matrice G (× 1,66.10⁻⁴ kg⁻¹)

4,523 B₂

4,892	0,240	- 2,174	
0,240	3,204	- 0,303	A_1
- 2,174	- 0,303	4,225	-

3,170 0

0 1,269 B₁

6,598	- 2,023	- 2,888	
- 2,023	5,001	1,822	Ε
- 2,888	1,822	4,706	

TABLEAU VIII

Coefficients $l_{is\sigma}^{\gamma}$

i	sσ α	<i>Q</i> ₁	Q2	Q3	Q4	Q5	Q ₆	Q ₇₁	Q ₇₂	Q ₈₁	Q ₈₂	Q ₉₁	Q ₉₂
Cl	x	0	0	0	0	0	0	— 0,589 0	- 0,589 0	0,047 4	0,047 4	0,072 8	0,072 8
	y	0	0	0	0	0	0	— 0,589 0	0,589 0	0,047 4	- 0,047 4	0,072 8	- 0,072 8
	z	0,813 6	0	- 0,262 5	0	0	0	0	0	0	0	0	0
\mathbf{F}_1	x	0,023 7	0,494 0	0,073 5	0,498 8	0,034 9	0	0,189 4	0,189 4	- 0,257 0	- 0,257 0	0,269 7	0,269 7
	y	0	0	0	0	0	- 0,500 0	0,125 1	- 0,125 1	- 0,032 0	0,032 0	- 0,397 5	0,397 5
	z	- 0,152 9	- 0,034 5	0,281 5	- 0,034 9	0,498 8	0	— 0,102 7	- 0,102 7	- 0,223 4	- 0,223 4	- 0,065 4	- 0,065 4
F ₂	x	0	0	0	0	0	- 0,500 0	0,125 1	0,125 1	- 0,032 0	- 0,032 0	- 0,397 5	- 0,397 5
	y	0,023 7	0,494 0	0,073 5	- 0,498 8	- 0,034 9	0	0,189 4	- 0,189 4	- 0,257 0	0,257 0	0,268 7	- 0,269 7
	z	- 0,152 9	- 0,034 5	0,281 5	0,034 9	- 0,498 8	0	— 0,102 7	0,102 7	- 0,223 4	0,223 4	- 0,065 4	0,065 4
F ₃	x	- 0,023 7	- 0,494 0	- 0,073 5	- 0,498 8	- 0,034 9	0	0,189 4	0,189 4	- 0,257 0	- 0,257 0	0,269 7	0,269 7
	y	0	0	0	0	0	0,500 0	0,125 1	- 0,125 1	- 0,032 0	0,032 0	- 0,397 5	0,397 5
	z	- 0,152 9	- 0,034 5	0,281 5	- 0,034 9	0,498 8	0	0,102 7	0,102 7	0,223 4	0,223 4	0,065 4	0,065 4
F ₄	x	0	0	0	0	0	0,500 0	0,125 1	0,125 1	- 0,032 0	- 0,032 0	- 0,397 5	- 0,397 5
	y	- 0,023 7	- 0,494 0	- 0,073 5	0,498 8	0,034 9	0	0,189 4	- 0,189 4	- 0,257 0	0,257 0	0,269 7	- 0,269 7
	z	- 0,152 9	- 0,034 5	0,281 5	0,034 9	- 0,498 8	0	0,102 7	- 0,102 7	0,223 4	- 0,223 4	0,065 4	- 0,065 4
F ₅	x	0	0	0	0	0	0	0,170 1	0,170 1	0,513 6	0,513 6	0,156 8	0,156 8
	y	0	0	0	0	0	0	0,170 1	- 0,170 1	0,513 6	- 0,513 6	0,156 8	- 0,156 8
	z	0.492 1	0,138 2	0,769 8	0	0	0	0	0	0	0	0	0

TABLEAU IX Coefficients $a_{s\sigma}^{\alpha\beta}$

 \times 4,074 \times $10^{-34}~(kg$ \times m^2 \times $s^{-1})^{1/2}$

	$s\sigma$											_	-
		Q_1	Q_2	Q_3	Q_4	Q_5	Q_6	Q_{71}	Q_{81}	Q_{91}	Q_{72}	Q_{82}	Q_{92}
αβ													
	_ `	—				_	_						
	a^{xx}	1,042	1,622	1,494	- 1,867	- 0,131	0	0	0	0	0	0	0
	a^{yy}	1,042	1,622	1,494	1,867	0,131	0	0	0	0	0	0	0
	a ^{zz}	0,178	3,699	0,550	0	0	0	0	0	0	0	0	0
	a^{xy}	0	0	0	0	0	1,872	0	0	0	0	0	0
	a^{yz}	0	0	0	0	0	0	0,384	0,836	0,245	- 0,384	- 0,836	- 0,24 5
	a^{zx}	0	0	0	0	0	0	0,384	0,836	0,245	0,384	0,836	0,24 5

Nº 5

et θ_0) permet de déterminer la position de l'atome de chlore sur l'axe de la molécule. Utilisant alors θ comme paramètre [10] le formalisme de Nielsen permet de calculer la valeur de R_6 ; la valeur de θ retenue pour ClF₅ est celle pour laquelle $R_{6calc} = R_{6mes}$ aux incertitudes expérimentales près. Ceci permet de proposer

$$\theta = 86^{\circ} \pm 0.5^{\circ}$$

$$R_{ax} = 1.58 \pm 0.05 \text{ Å}$$

$$R_{eq} = 1.67 \pm 0.05 \text{ Å}$$

$$C = \frac{h}{8 \Pi^2 I_z} = 2400 \pm 20 \text{ MHz}.$$

Partant de ce résultat on procède de proche en proche (étude de D_J puis de D_{JK}) pour déterminer éventuellement les éléments de la matrice M; on

TABLEAU X

Constantes de force de ClF₅ (*coordonnées symétriques internes*)

 $F_{ij} \times 10^5$ Présent ∂F Réf. [4] Réf. [11] (dyne/cm) $\overline{\partial \theta}$ travail *F*₁₁ 0,05 3,09 3,52 3,33 F_{12} 0,02 0.01 0,7 0.45 F_{13} 0,52 0,02 0,43 F_{22} 3.25 0 3,24 2.86 F_{23} 0,07 0,005 0,06 F_{33} F_{44} F_{45} F_{55} 3,30 0,1 3,45 3,60 2,57 2,61 0 2,67 0 0 3,45 3,96 3.35 0.2 F₆₆ 1,10 0,02 1,16 1,25 F₇₇ 1,73 3,22 0.02 2,24 F_{78} 0,07 0,03 0,55 0,26 F_{79} 0,01 0,21 F₈₈ 1,95 1,86 0,04 1,44 F₈₉ 0,12 0,01 1,43 1,12 0.79 0,01 F99

constate ici que si la précision recherchée dans les calculs théoriques est limitée à 5 %, il est inutile de considérer l'effet de cette matrice, ce qui justifie a posteriori le fait de prendre $L \equiv L_0(M = E)$: le système de coordonnées symétriques choisi est donc très voisin du système des coordonnées normales. On peut alors donner les éléments de la matrice G (Tableau VII), les coefficients $l_{is\sigma}^{\alpha}$ (Tableau VIII) les coefficients $a_{s\sigma}^{\alpha\beta}$ (Tableau IX) ainsi que les éléments de la matrice F (Tableau X). Finalement dans le tableau XI nous comparons notre détermination des constantes de force pour ClF₅ à celles publiées par ailleurs [4, 11, 12].

TABLEAU XI

Constantes de forces de ClF₅ (*coordonnées internes*)

$f \times 10^5$	Présent	∂f	D 46 [10]	D & F [4]
(dyne/cm)	travail	$\overline{\partial \theta}$	Kel. [12]	Kel. [4]
			—	
$f_{\mathbf{R}}$.	3,09	0,05	3,16	3,01
$f_{\rm r}$	2,33	0,01	2,46	2,57
$f_{\rm rr}$	0,16	0	0,17	0,17
f'_{rr}	0,60	0,01	0,46	0,33
f_{R}	2,60	0,1	3,09	3,11
Í _{re}	- 0,01	0,03	0,13	
f'an	0,73	0,06	0,54	1,29
f.	1,00	0,04	1,17	1,06
f _{aa}	- 0,26	0,02		
f'_{aa}	- 0,43	0,03	- 0,02	
f _B .	0,01	0,01	,	0,25
$f_{\rm B_{\pi}}(*)$	0.03	,		
f _B	0,26	0.01	0,29	
f_e	0.05	0.02	,	
f'_{-a}	0.02	0.02		
f''_{ρ}	- 0.02	0.02		
$\int f(\mathbf{*})$	- 0.09	0,02	- 0.01	
f'(*)	0,09		0.01	
f(*)	0,05		5,01	
$\int \alpha \beta () f' (*)$	0,15			
Jαβ ()	0,07			

(*) Les valeurs obtenues par le calcul ne sont pas significatives.

Bibliographie

- [1] JUREK, R., SUZEAU, P., CHANUSSOT, J., CHAMPION, J. P., J. Physique 35 (1974) 533.
- [2] BRADLEY, R. H., BRIER, P. N., WHITTLE, M. J., J. Mol. Spectros. 44 (1972) 536.
- [3] SUZEAU, P., JUREK, R., CHANUSSOT, J., C. R. Hebd. Séan. Acad. Sci. 276-777 (1973).
- [4] BEGUN, G. M., FLETCHER, U. H., SMITH, D. F., J. Chem. Phys. 42 (1965) 2236.
- [5] NIELSEN, H. H., Rev. Mod. Phys. 23 (1951) 90.
- [6] WILSON, E. B., DECIUS, J. C., CROSS, P. C., Molecular vibrations (Mc Graw Hill) 1955.
- [7] HENRY, L., AMAT, G., Cah. Phys. 118 (1960) 230.
- [8] KIRCHHOFF, W. H., J. Mol. Spectros. 41 (1972) 333.
- [9] COSTAIN, C. C., J. Chem. Phys. 29 (1958) 864.
- [10] LEGON, A. C., J. Chem. Soc. Faraday Trans 2 69 (1973) 29.
- [11] RAMASWAMY, K., MUTHUSUBRAMANIAN, P., J. Mol. Struct. 7 (1971) 45.
- [12] CURTIS, E. C., Spectrochim. Acta 27A (1971) 1989.