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SPECTRAL NARROWING OF SELECTIVE REFLECTION

M. F. H. SCHUURMANS

Philips Research Laboratories, Eindhoven, The Netherlands

(Reçu le 18 décembre 1975, accepté le 16 janvier 1976)

Résumé. 2014 Une théorie est développée pour le rétrécissement spectral de la réflection sélective
près d’une ligne de résonance d’une vapeur atomique. Le rétrécissement est attribué au compor-
tement transitoire des atomes qui subissent des collisions avec les parois. On calcule la réflectivité
d’une interface entre du verre et une vapeur pour une distribution symétrique des vitesses atomiques
dans les deux cas où les collisions entre les atomes et les parois sont diffuses ou spéculaires. Les résul-
tats de la théorie sont comparés avec des résultats expérimentaux récents.

Abstract. 2014 A theory for the spectral narrowing of selective reflection near a resonance line of an
atomic vapor is developed. The narrowing is ascribed to transient polarization behaviour of vapor
atoms associated with wall collisions. For normally incident light the reflectivity of a glass-vapor
interface is calculated both for diffuse and for specular wall collisions and for a symmetric distribution
of atomic velocities. The theoretical results are compared with recent experimental results.
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1. Introduction. - Selective reflection of light from
an atomic vapor near one of its resonance lines was
first observed by Wood [1] in 1909. The phenomenon
is usually analyzed in terms of the electromagnetic
theory of reflection of light at the boundary of a
homogeneous medium, assuming a local connection
between the electric field and the induced polarization
in that medium. In this theoretical analysis, hence-
forth to be referred to as the conventional dispersion
theory [2], the electric field in the medium can be

described by a complex refractive index. In 1954,
experiments of Cojan [3] on the selective reflection
from a glass-mercury vapor interface raised some

doubts as to the validity of such an analysis when the
sum of the natural line width AvN and the collisional
line width Avc is smaller than the Doppler width
AVD [4]. Cojan found evidence for spectral narrowing
of selective reflection spectra relative to the Doppler
width. Conventional dispersion theory [2] predicts a
spectral width of the order of the Doppler width.
Recently, spectral narrowing of selective reflection

from a glass-sodium vapor interface was clearly
demonstrated and measured as a function of the
sodium density by Woerdman [5]. It was sug-

gested [3, 5] that the narrowing may be ascribed to
transient polarization behaviour of vapor atoms

associated with wall collisions. Such a transient
behaviour implies a nonlocal connection between the
electric field and the induced polarization in the vapor
and is therefore beyond the scope of the conventional
dispersion theory.

It is the purpose of this paper to propose a theory
for the selective reflection of light from a glass-vapor
interface, accounting explicitly for the transient polari-
zation effects associated with collisions of atoms at the
interface. The optical electromagnetic field will be

normally incident on the interface and nearly resonant
with one of the resonance lines of the vapor. Cojan [3]
already made a start to develop a theory of dispersion
in which wall collisions are included. However, his
theoretical work is limited to the case of specular wall
collisions, i.e. collisions in which the induced pola-
rization and the absolute velocity of an atom are
conserved. In the temperature range where the

spectral narrowing of the selective reflection occurs,
wall collisions are most probably of the diffuse type,
i.e. the induced polarization of an atom is lost upon a
wall collision. Cojan [3] also assumed that the velocities
of the vapor atoms are distributed Lorentzian instead
of Maxwellian. In this paper integral representations
are derived for the reflectivity of a glass-vapor interface
both for diffuse and for specular wall collisions, and
for a symmetric velocity distribution function of the
vapor atoms. These representations are worked out in
detail, partly analytically, partly numerically, for
both a Lorentzian and a Maxwellian velocity distri-
bution function. The theory is illustrated for the case
of the sodium D2-resonance line and reference is
made to recent experimental results [5, 6].
The organization of this paper is as follows. In

section 2, the theoretical model is outlined which
describes the selective reflection from a glass-vapor
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interface near a resonance line of the vapor. It is
shown that for

the wave propagation of the electric field in the vapor
cannot be exponential, i.e. selective reflection cannot
be described in terms of a complex refractive index.
The reflectivity of the glass-vapor interface must
then be calculated in terms of the surface admittance

M, defined as the ratio of the magnetic and electric
field strengths at the interface. For a vanishing vapor
density p, the reflectivity is proportional to the real
part of the surface admittance. In section 3, the
surface admittance is calculated by means of pertur-
bation theory as p ~ 0 for both specular and diffuse
wall collisions. For T  1, the resulting selective
reflection spectra are narrowed relative to the Doppler
width and the physical nature of that narrowing is

briefly discussed. In section 4, exact integral repre-
sentations for the surface admittance and for the
electric field in the vapor are derived for the case of

specular collisions by standard Fourier-integral tech-
niques. The integral representation for the surface
admittance is worked out analytically for the case of a
Lorentzian velocity distribution function and is

compared with the asymptotic results for p - 0
obtained in section 3. Furthermore, it is shown in
section 4 and Appendix A that the electric field at large
distances from the glass-vapor interface decreases
more slowly than exponentially. Wiener-Hopf tech-
niques [7] are used to derive exact integral represen-
tations for the electric field in the vapor and the surface
admittance in the case that we are dealing with diffuse
wall collisions. The mathematical analysis is given in
Appendix B and ’the results are summarized in sec-
tion 5. The integral representation obtained in that
manner for the surface admittance is evaluated

analytically for a Lorentzian velocity distribution
function and numerically for a Maxwellian velocity
distribution function. A comparison with the asympto-
tic results for p - 0 in section 3 is made at the end of
section 5. Finally, in section 6, the theory is applied
to the sodium D2-resonance line.

2. Theoretical model. - Consider a system consist-
ing of glass on one side of an interface and vapor on
the other side. The interface is in the y-z plane and the
positive x-axis is directed towards the interior
of the vapor. In the vapor, the electric light field

E(x) exp(- iwt) is taken in the y-direction and the
magnetic field H(x) exp( - iwt) in the z-direction. The
velocity component of a vapor atom in the x-direction
is indicated by u and will be positive for atoms moving
towards the interior of the vapor.

We restrict ourselves to small field intensities. Then
the polarization p. induced by the electric field in a

fixed two-level atom is in the y-direction and satis-
fies [2]

where cvo = 2 nvo, vo is the transition frequency, y a
damping constant, f the oscillator strength, e the
electron charge, m its mass and x the position of the
atom. As is well known [2], (2.1) is derived both from
classical and from quantum mechanical considera-
tions. The damping y is assumed to account both for
the radiation damping yN = 7r AvN and for the colli-
sional damping yc = n Avc, i.e. y = YN + 7c’ In the

rotating wave approximation (1 W - Wo 1 « mo) (2. 1)
reduces to

If an atom has a velocity u then (2.2) still holds but
d/dt should be considered as a total derivative, i.e.

We shall indicate the induced polarization of such
an atom by p.(x, t; u), where x is the position of the
atom at the time t. If

then pa(x ; u) satisfies

where Acv = wo - go. Note that Aw is negative at the
high frequency side of Wo. The general solution ouf(2.3)
can be written in the fonn :

where po(u) and xo(u) are to be determined by appro-
priate boundary conditions. Consider first atoms that
move towards the interface, i.e. u  0. Then the

assumption that E(x) and Pa(x ; u) vanish for x - oo
immediately yields :
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If a fraction 1 (0  ~  1) of the atoms collides

specularly with the interface and a fraction 1 - il
diffusely, we find

Having thus determined the induced polarization of
the atoms of the vapor, the macroscopic polarization
of the vapor can be determined from the relation

where v(u) is the velocity distribution function of
the vapor atoms. Probably the most realistic assump-
tion is that V(u) is a Maxwellian distribution function

where uth = (2 kB T/mA)1/2 is the mean thermal

velocity of the vapor atoms and mA and T stand for the
atomic mass and the absolute temperature of the

vapor, respectively. The Doppler width

where k = wlc. In order to carry out detailed analy-
tical calculations we shall also use the Lorentzian

velocity distribution function

where -U is chosen such that the full widths at half
maximum of VM(u) and VL(u) are the same, i.e.
il = Uth Jill2. We should note that although the total
integrated probability for both VM(u) and VL(u)
equals one, VM(u) and VL(u) differ considerably in
shape. In fact we have

whereas VL(u) &#x3E; vM(u) for 1 u 1 &#x3E; 1.55 M.
For a given macroscopic polarization P(x), the

electric field E(x) is determined by Maxwell’s equation

Finally the boundary conditions for the electric field
must be derived. Let the electric field strengths of the

incident and the reflected electromagnetic waves in
the glass be given by

and

respectively. Here, ngl is the refractive index of the

glass. Continuity of the electric and magnetic field
strengths across the glass-vapor interface yields the
conditions

where the prime denotes differentiation with respect
to x. For a given Ein, (2 . 5)-(2 . 7), (2 .10) and (2 .11 )
determine the electric field in the vapor. Introducing
R = ErlEin, (2.11) can be written in the form

where the surface admittance M is given by

From (2.12) it is seen that the surface admittance can
be considered to be an effective refractive index. What
is measured in selective reflection experiments is the
reflectivity

Therefore in order to calculate the reflectivity we only
need to know the values of the electric field and its

gradient at the glass-vapor interface, and the value of
the refractive index of the glass.
We shall now assume that the electric field in the

vapor can be described by a complex index of refrac-
tion N(co), i.e.

and discuss the difficulties that may arise from such an

assumption. The complex quantity N(cv) can be
written in the form n(w) + iX(w) with real n and x.
The nonnegative quantity x is usually called the
attenuation index. In terms of n and x the absorption
length is given by labs = (2 nxk)-l [8]. According
to (2.5) and (2.15), the induced polarization of an
atom that is moving towards the interface with velocity
u corresponds to

where the polarizability per atom
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The adaptation of the atom’s polarization to the

spatial variation of the electric field is expressed solely
by the dependence of the polarizability per atom on
the atom’s velocity. If an atom has collided diffusely at
the interface and moves towards the interior of the

vapor with velocity u, one infers from (2.6) and (2.15)
that its induced polarization is given by

The second term in the curly brackets of this relation
corresponds to a damped, free (not drivén by the
electric field) oscillation of the dispersion electron. It
describes the transient adaptation of the atom’s

polarization to the electric field. The essential length
involved in the adaptation is the memory length
1.(u) = u/y. A somewhat more detailed discussion of
the adaptation will be given in section 3. It will be
clear that the transient contribution to (2.18) cer-

tainly cannot be neglected if kux &#x3E; y, i.e. if

Consider for a moment only the first term in the curly
brackets of (2.18). The work performed by the electric
field on an atomic oscillator moving with velocity u is
then proportional to co lm 03B1(w ; u) 1 E(x) 12, and an
atom absorbs energy from the light field if

However, for atoms with velocities u satisfying
kux &#x3E; y, the imaginary part of 03B1(w; u) is negative
and therefore these atoms drive the electric field
instead of being driven by that field. To express it

differently, such atoms acquire induced polarizations
which are more determined by the electric field they
have felt in the past than by the present (weaker)
field. Indeed the condition kux &#x3E; y can also be written
as

and 2 n(w) labs(w) = (kX(W))-1 is the lie decay length
of the electric field in the vapor. In the case that

specular wall collisions are also involved, a similar
discussion applies. In conclusion, the above consi-
derations show that the electric field in the vapor
cannot be purely exponential. To calculate the

reflectivity of the glass-vapor interface we have to
solve the eqs. (2.5)-(2.7), (2.10) and (2.11) exactly.
However, it will tum out that for T &#x3E; 1 and also in
the far wings of the resonance line, the reflectivity
can be calculated assuming an electric field of the

form (2.15) and omitting the transient contribution

to (2. 18). In this case one finds from Maxwell’s

eq. (2.10) that N satisfies

This is the well-known implicit equation for the

complex refractive index as derived by Voigt [9]. To
first order in the density we find

which is the conventional expression for the complex
refractive index, cf. Bom [2]. For further reference it is
useful to write this expression in the form

for the Maxwellian velocity distribution (2.8) and

for the Lorentzian velocity distribution (2.9). Here
we have introduced

and Z(Ç) is the plasma dispersion function as defined
by Fried and Conte [10]. From (2.21) it is seen that for
r » 1, and also in the case |1 Li 1 &#x3E; 1, the attenuation
index x indeed has such a small value that condi-
tion (2.19) is only satisfied for extremely large atomic
velocities. The quantity K will be called the optical
density of the vapor. It is a measure for the number
of moving atoms which by interference build up the
coherent electric field in the vapor. We will assume

throughout this paper K « 1. Then we have
n = 1 + 0(K) and although the number of atoms
in a cubic wavelength may still be large, the negligence
of the Lorentz-Lorenz correction [11] in the previous
considerations is justified. To first order in K the

absorption length is given by labg = (2 kX) - 1, where
x = lm N satisfies (2.21).

3. Perturbation theory for vanishing vapor densities.
- In this section the surface admittance M is calcu-
lated by means of a perturbation expansion -of the
electric field in the optical density K of the vapor both
for diffuse and specular wall collisions and for a

symmetric velocity distribution function of the vapor
atoms. In general, r will also depend on K. If no
buffer gas is present and the collisions of the vapor
atoms are resonance collisions, then according to
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Weisskopf [12], Avc/AvD is proportional to K. A

perturbation expansion with respect to K must then in
general also be a perturbation expansion with respect
to r. However, in this section the discussion will be
limited to values of K small enough to justify neglect-
ing the dependence of r on K, i.e. it will be assumed
that K « r. For resonance collisions of vapor atoms
and in the absence of a buffer gas this limitation

implies that natural line broadening is dominant in
the vapor. Then we have r z AVN/AVDI which is
much smaller than one. Only in the presence of a
buffer gas can the limitation K « r be satisfied for r
larger than one. The inequality K « r implies that the
mean memory length or mean free path ’.(Ulh) is
much smaller than the absorption length at resonance
labs(wo)’ From the discussion in the previous section
on memory effects one infers that this is precisely the
regime of densities where the conventional dispersion
theory can be a good approximation. However, it
will tum out to be so only for F » 1.
We shall start the calculations from a slightly

modified version of Maxwell’s eq. (2.10) :

The quantity e is a positive infinitely small real number
which acts as a convergence factor. The right hand
side of (3.1) is proportional to the optical density K
and will be treated as the perturbation. The unper-
turbed electric field in the vapor is given by

where eo is a constant. This field corresponds to an
electromagnetic wave in vacuum propagating towards
positive x-values. From (2.5)-(2.7) the polarization
p o (x) induced in the vapor by that wave can be
calculated. Using (3. 1) the first order correction to the
electric field is given by

where Po(x) = Po(x) for x &#x3E; 0 and Po(x) for x  0
is as yet undetermined. Combining (3.2) and (3.3),
the electric field can also be written in the form

where

The quantity éo is uniquely determined by the boun-
dary conditions (2.11). However, eo and Po(x) for
x  0 may be chosen arbitrarily as long as they
satisfy (3.5). For the calculation of the surface
admittance to first order in K such considerations are
not needed. From (3.2), (3.3) and (2.13) one readily
finds

M = 1 - 4 nik t dxPo(x) exp[(i - c) kx] , (3.6)
0 0

which is independent of eo (Po oc eo) and Po(x).
In the following we put eo = 1. We have derived now
a simple formula which relates the surface admittance
M to the polarization Po(x) induced in the vapor by a
plane electromagnetic wave which propagates into the
vapor and satisfies Maxwell’s equations in vacuum.
From (2. 5) and (2.6) we find the polarization of an
atom with velocity u induced by Eo(x) to be given by

Eq. (3.7) expresses the coherent response of an atom
moving towards the glass-vapor interface to the
electric field Eo(x). According to (3.8) an atom which
has just collided at the interface has an induced

polarization

The atom now feels an electric field with a Doppler
shift different from that before the collision. Therefore,
even four 1 = 1, immediately after the collision the
induced polarization no longer corresponds coherent-
ly to the electric field and in moving away from the
interface it will exhibit transient polarization beha-’
viour (eq. (3.8)) until the atom’s polarization has re-
established a relation with the new field similar to the
one that existed between the polarization and the
electric field before the collision at the interface

(eq. (3 .7)). Indeed, for x » lm(u), we have

Let us now discuss the various contributions to the
surface admittance. The coherent part of the pola-
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rization as described by (3.7) and (3.10) results,
using (2.7) and (3 .6), in a contribution

Here the dimensionless velocity distribution function

The expression (3.11) for Meoh is equal to the conven-
tional expression for the complex refractive index of
the vapor (2.21). Therefore, in a sense all deviations
from the conventional dispersion theory are entirely
due to the above discussed transient polarization
behaviour of vapor atoms. According to (2.7), (3.6)
and (3.8) that behaviour results in a contribution to
the surface admittance

The first term in the curly brackets corresponds to the
destruction of the polarization pa,o(x = 0+ ; u &#x3E; 0)
that is left after a specular (partly if q  1) collision
of an atom with velocity u. The second term in thèse
brackets corresponds to the construction of a pola-
rization which is coherent to the new field. The total
surface admittance M equals the sum of Mcoh and
Mtrans.

Before evaluating M for a Maxwellian or a Lorent-
zian velocity distribution function a somewhat more
general discussion of the results obtained so far will be
presented. We can write the expressions (3.11) and
(3.12) for Meoh and Mtrans in the form of convolution
integrals. Introducing the dispersion function

we find

expressing the fact that in the conventional dispersion
theory collisions of atoms and motions of atoms are
treated as statistically independent processes. Using
partial integration one obtains from (3.12)

where

Thus M - 1 is a convolution of the dispersion
function D(y) and a function Vo(y) which has a
break at y = 0 and vanishes for y &#x3E; 0. This is quite a
remarkable property as it immediately implies that
M - 1 contains a contribution with a spectral width
smaller than the Doppler width if r  1 [5]. Moreover,
it is seen that the amplitude of that spectrally narrow
contribution is about twice as large for the case of
specular wall collisions as it is for the case of diffuse
wall collisions. We note that the contribution to the
surface admittance from atoms moving towards
the interface can be written in a form similar to (3.14) :

Here Vo(y) = Vo(y) for y  0 and Vo(y) = 0 for
y &#x3E; 0. However, this certainly does not imply that the
value of the surface admittance stems primarily from
atoms moving towards the interface. For diffuse wall

A

collisions we have Vo(y) = 2 Vo(y) and therefore
atoms moving either towards or from the interface
contribute equally to the surface admittance.

This section will be concluded with a further evalua-
tion of the surface admittance M = Meoh + Mtrans
for a Maxwellian and a Lorentzian velocity distri-
bution function, respectively. For the Maxwellian

velocity distribution (2.8) we find

where (0 = if - J. The coherent part of M can rea-
dily be expressed in terms of the plasma dispersion
function Z«(o), cf. (2.22). The integral corresponding
to the first term in the square brackets of (3.17) can be
expressed in terms of the exponential integral [13]

The integral corresponding to the second term in the
square brackets of (3.17) can be calculated by using

partial integration, and the easily verified equality

In conclusion, from perturbation theory to first order
in tlie optical density K we deduce that for the case of
specular and diffuse wall collisions (0  1  1) and
for a Maxwellian distribution of the velocities of the
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vapor atoms, the surface admittance M is given by
the relation

The first term on the right hand side corresponds to
the conventional dispersion theory result (2.22).
From the well-known [10, 13] asymptotic expansions
of Z«(o) and E1(- (2) for (0 ~ 0 and (03BE0 ---&#x3E; oo, we

obtain

and

where yE = 0.577 21... is Euler’s constant and In (z) is
defined for 1 erg (z) 1  n and In 1 = 0. From (2.14)
by expansion with respect to the optical density K we
find to first order in K that the reflectivity satisfies the
relation

where the reflectivity Ro of the glass is given by

From (3.21) and (3.23) one infers that for r  1 the

reflectivity contains a contribution with a spectral
width smaller than the Doppler width. This contribu-
tion is logarithmic in nature, is centered at resonance,
and, as mentioned before, it is about twice as large
for the case of specular wall collisions as it is for the
case of diffuse wall collisions. Noting that

for 03BE0 ~ oo, it is seen from (3.22) that in the far wings
of the resonance line (j 4 1 » 1) and also for r » 1 the
surface admittance and the reflectivity are well
described by conventional dispersion theory. For the

LE JOt R,AL DE PHYSIQUE. T. 37, N° 5, MAI 1976

Lorentzian velocity distribution (2. 9) a rather labo-
rious calculation shows that

where the first term on the right hand side corresponds
to the conventional dispersion theory result (2.23).
For 1 = 1, i.e. for specular wall collisions, (3.25) is
precisely the expression Cojan [3] obtained as the
final result of his calculations. It will now be clear that
this result is not exact, but a rather special perturba-
tion theory result. In the next section exact calculations
of the surface admittance are performed for the case of
specular wall collisions. It then turns out that in

general Cojan’s result, (3.25) with 1 = 1, is well
suited for a comparison with experimentally deter-
mined reflectivities even if F essentially depends on K.
Finally, it should be noted that for L1 = 0 the relative
reflectivity (R - Ro)/Ro calculated with the Max-
wellian velocity distribution function is about a factor
of Jn ln 2 larger than the one calculated from the
Lorentzian velocity distribution function. This is

compatible with the ratios of VM(u) and VL(u) at zero
velocity as discussed in the previous section. Eqs. (3.22)
and (3.25) show that in the far wings of the resonance
line and for F » 1 the reflectivities calculated with
the different velocity distributions differ largely in
their behaviour as functions of L1 and r.

4. Exact expressions for the case of specular wall
collisions. - To obtain exact expressions for the
electric field in the vapor and the surface admittance
in the case that we are dealing with specular wall
collisions only it is convenient to put formally

and to introduce the dimensionless coordinate X = kx.
Then eqs. (2.5)-(2.7) and (2. 10) combine to

where

Primes on E now denote differentiations with respect
to X. Eq. (4. 1) is solved under the assumption that
E(X) is continuous for all X and absolutely integrable
on (- co, oo). It follows from (4. 1) and (4.2) that
E’(X) and E"(X) are also absolutely integrable on
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(- oo, oo), that E"(X) is continuous for all X and
that E(X) is continuous except at X = 0. We intro-
duce the Fourier transforms , 

From (4.2) we have

If E’(X) tends to a for X --&#x3E; + 0, we find by integrating
by parts twice the relation

Thus Fourier transformation of (4. 1) results in

The Fourier inversion formula yields

The surface impedance M -1 is related to the electric
field at X = 0 by the relation

The Fourier transform A(p) of the kemel of the
integral in (4. 1) is discontinuous across the line

rp(l) + àp(2) = 0, except at p = 0. Here, p(l) and
p(2) denote the real part and the imaginary part of p,
respectively. The line of discontinuity is a straight
line in the complex p-plane which passes through
p = 0 and makes an angle cp = tan - 1 ( - T/d ) with
the positive real p-axis. According to whether

rp(l) + ~p(2) is positive or negative we denote

Â ( p) by Â+(P) or Â-(p), respectively. Across the line
of discontinuity, a jump

occurs in Âtp). On the real p-axis, however, Â(p) is
continuous. The zeros of the denominator of the

integrand in (4.7) satisfy the relation

Voigt [9] obtained the same implicit relation (2.20)
for the complex refractive index N. As A(p) is an even

function of p the solutions to (4. 10) occur in pairs
± pi, ± P2, .... At least two solutions exist. To first
order in the optical density K they correspond to

This equation is the equivalent of (2.21). For the
Lorentzian velocity distribution function VL(u) it is
shown later on in this section that pi and - pi are the

only solutions to (4.10) when K « 1. All the available
evidence supports the same conclusion for the Max-
wellian velocity distribution VM(u). In the following,
it will be assumed that (4. 0) has only two solutions,
pl and -pl. The latter solution is not of interest to us
as it corresponds to an electric field propagating in the
vapor towards the glass-vapor interface. For X &#x3E; 0,
closure of the integral in (4. 7) in the upper half plane
(UHP) of the complex p-plane, thereby avoiding
crossing the line of discontinuity for p ~ 0, shows
the electric field E to be the sum of a contribution

due to the pole of the integrand at p = pl and a
contribution

due to the discontinuity of Â(p) in the complexp-plane.
The straight integration path C runs from p = 0 to
p = oo exp(icp). In the conventional dispersion theory
the electric field in the vapor is equal to

The contribution El is proportional to Eeonv but not
equal to it. The electric field in the vapor is not des-
cribed by a monochromatic wave in the theory
presented in this paper but rather by a wave packet
with a continuous spectrum. The variation of Â(p)
with p shows up in the purely exponential contribution
Ei(X). Later on in this section it is shown that E2(X) is
not an exponential contribution to E(X). We shall
refer to E2 as the surface excitation. We now first
indicate briefly how the perturbation theory result
M = Meoh + Mtrans may be rederived from (4.7)
and (4.8). Here Mcoh and Mtrans satisfy (3.11) and
(3.12), respectively, and tl = 1. By introducing a
positive infinitely small real number e, rewriting
- p2 + 1 + Â(p) in the form
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and expanding the latter expression with respect to
the term in the square brackets to first order in K,
one obtains for the surface admittance M the following
expression :

The integral with respect to p can be evaluated by
closure in the UHP and LHP (lower half plane) of the
complex p-plane for y  0 and y &#x3E; 0, respectively.
In the limit e ~ 0, one obtains from (4.14) the equation

and it can easily be shown that the right hand side of
this equation equals the above mentioned perturbation
theory result of section 3.
Next the surface admittance M will be evaluated in

detail from (4.8), (4.12) and (4.13) for the Lorentzian
velocity distribution function VL(u). Numerical calcu-
lations are needed for the Maxwellian velocity distri-
bution function VM(u). Such calculations will be

reported in the next section using the exact expression
for the surface admittance when the wall collisions
of the vapor atoms are diffuse instead of specular. This
case is the more interesting one for at moderate

temperatures wall collisions of atoms are most

probably of the diffuse type. If V(u) = VL(u), then
Â+(p) and Â-(p) satisfy the relations

The zeros of the equations

will be denoted by ± pl, ± P2 and ± P3. To first
order in the optical density K we have

It is easily verified that only pl satisfies eq. (4.10)
as alreâdy stated. As none of the zeros ±pi, ± p2
and ± p3 is situated in the area in the UHP of the

complex p-plane in between the integration path C

and the positive imaginary p-axis, one immediately
deduces from (4.13) that

It is now straightforward to obtain the following exact
expression

To first order in the optical density K, expression
(4.19) boils down to

This result deviates from the perturbation theory
expression (3.25) with 1 = 1. For r « 1, assum-

ing (3.23) to hold, the position of the maximum of
the logarithmic contribution to the reflectivity is
shifted from d = 0 in (3 .25) to 4 z - 2 K in (4. 20).
As the spectral width of the logarithmic contribution
is of the order of r, the range of validity of (3.25)
with n = 1 is determined by the condition K « r,
which is precisely the basic assumption of the pertur-
bation theory as developed in the previous section.
The range of validity of the perturbation theory
result (3.25) with 1 = 1 can be extended to all values
of K « 1 and r « 1 by replacing d in the logarithmic
contribution to (3.25) by d + 2 K(1 + d 2) - 1. There-
fore, as already noted, Cojan’s [3] expression for the
surface admittance which is the same as (3.25) with
il = 1, is well suited to make a comparison of theore-
tical and experimental results for the reftectivity if

only relative and not absolute frequencies are compar-
ed. For F » 1, the surface admittance M as described
by (4.20) reduces to the conventional dispersion
theory result (2.23), where M should be identified
with N.
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This section is concluded with a discussion of the
behaviour of the electric field in the vapor at large
distances from the interface. For X ~ oo, the surface
excitation E2(X) as given by (4.13) is mainly deter-
mined by values of p close to zero. As

on the integration path C we have

Define t = [ p [ /[ ir - 4 [ and

We shall approximate g(t) by g(O). The error

g(t) - g(O) = t2 S(t) and S(t) is a bounded function
on 0  t  oo. The maximum value of S(t) on that
interval of t-values is denoted by So. From (4.9) and
(4.13) we obtain now

where

and

For the Lorentzian velocity distribution VL(u) it
follows by partial integration from (4.21) and (4.22)
that

This result has been derived previously by Cojan [3].
For the Maxwellian velocity distribution function

VM(u) the calculation of the asymptotic behaviour of
E2(X) as X ~ oo is much more involved. Using the
saddle point method [14] it is shown in Appendix A
that

The asymptotic behaviour of the surface excitation at
large distances from the glass-vapor interface thus
depends essentially on the type of velocity distribution
function involved. In particular it depends on the
behaviour of the velocity distribution function at

large velocities. Mathematically, this is clear from

(4.21) as mainly small values of t contribute to the
integral representation of E2(X). Physically, it is also
quite understandable. The surface excitation E2(X)
corresponds to the previously discussed transient

polarization behaviour of atoms running towards
the interior of the vapor. Therefore, only fast atoms
contribute to E2(X) at large distances from the inter-
face and as X ---&#x3E; oo the contribution E2(X) to the
electric field E(X) in the vapor will be of smaller

magnitude for the Maxwellian velocity distribution
function than for the Lorentzian velocity distribution
function. A comparison of the magnitudes of E1(X)
and E2(X) shows that in general I E2(X) I outgrows
1 E1(X) 1 only at distances from the interface much
larger than the absorption length labs(wo). In conclu-
sion, the theory presented in this section leads to
substantial deviations from the conventional results
for the reflectivity but has no practical consequences
for measurements of the absorption length.

5. Exact expressions for the case of diffuse wall
collisions. - For diffuse wall collisions of vapor
atoms, according to (2. 5)-(2. 7) and (2.10) the electric
field E(X) in the vapor satisfies the relation

where A(X) is given by (4.2). We want to solve this
differential-integral equation by means of a Wiener-
Hopf technique [7]. For that purpose the Fourier
transform Â(p) must be regular in a strip 1 p(2) 1  q.
As we have seen in the previous section Â(p) does not
satisfy such a requirement. However, at this stage it
should be realized that the velocity of light c is the
largest possible velocity. If the velocity distribution
function V(u) vanishes for 1 u 1 &#x3E; c then the line of

discontinuity breaks up into two parts with a finite
separation in the complex p-plane and Â(p) is regular
in the strip 1 p(2) 1  qo, where qo = UFIC = y/ce.
Such a result is also obvious from the asymptotic
behaviour of the modified kernel

which is given by

The derivation of (5.3) is straightforward once the
change of integration variable z = cl(ùy) has been
performed in (5.2). With the modified kernel (5.2)
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Wiener-Hopf techniques can be applied to (5. 1).
The limit c ~ oo is taken afterwards. As the calcu-
lations are rather intricate they are presented in

Appendix B. Only the final result for the surface
admittance is quoted here :

We first show that the perturbation theory result
M = Mcoh + Mtrans can be rederived from (5.4).
Here Meoh and Mtrans satisfy (3.11) and (3.12), respec-
tively, and q = 0. Introducing a positive infinitely
small real number e, we write

The first term on the right hand side of this equation
yields a contribution to (5.4) which equals 1 - i.

Expansion of the second term on the right hand side
of (5. 5) to first order in K then yields

Further evaluation of this expression runs similar
to the evaluation of (4. 14). In the limit e ~ 0, the
final result is given by

which reproduces the perturbation theory result of
section 3 four 1 = 0.

Next, the surface admittance will be further eva-
luated from (5.4) for the Lorentzian velocity dis-
tribution function YL(u). For that distribution

function, M can be written in the form

where pl, P2 and P3 are the zeros of

To first order in the optical density these zeros are
given by (4.17). A straightforward calculation of the
integral in (5.8) results in

Expansion of this expression to first order in K yields

where p3 is given by (4.17).
Assuming that the reflectivity is given by relation

(3.23), implying it to be proportional to Re M, we
discuss the difference between the reflectivities RE
and Rp calculated according to (5.10) and the pertur-
bation theory expression (3.25) with il = 0, respec-
tively. For F » 1, the difference is negligible. For
 r « 1, the main difference shows up in the value of
the dimensionless frequency do where the reflectivity
is maximum. From ’(3.25) with il = 0 one obtains
do ~ 0, whereas from (5.10) the value 40 z - K is
obtained. Note that for the case of specular wall
collisions one obtains 40 z - 2 K from (4.20).
The maximum values of RE and Rp, as well as their
values for 1 Li 1 » 1, do not differ significantly. There-
fore, the conclusion is that for diffuse wall collisions
and a Lorentzian velocity distribution function the
reflectivity Rp, calculated from (3.23) and (3.25)
with q = 0, for all K « 1 and r « 1 is useful for

making comparisons between theoretical and experi-
mental results as long as a comparison of absolute
frequencies is left out of consideration. For specular
wall collisions a similar conclusion was drawn in the

previous section.
In an atomic vapor at moderate temperatures it is

most probable that the atomic velocities are distri-
buted Maxwellian and that the wall collisions of the

vapor atoms are of the diffuse type. Especially for this
situation one would like to know the behaviour of the
exact expression (5.4) for the surface admittance as a
function of K, r and 4. In particular, the question
arises as to whether the conclusion drawn earlier for
the Lorentzian distribution of the atomic velocities,
namely that perturbation theory in a sense can be
useful for making comparisons between theoretical
and experimental results for all K « 1 and F « 1,
also holds for a Maxwellian distribution and diffuse
wall collisions. We again assume that the reflectivity R
is given by (3.23), i.e. R depends on Re M only.
Let A 1 = Re Â and A2 = Im Â (A2 &#x3E; 0) and let po
satisfy pô - 1 - A1(po) = 0. The numerator
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of the argument of the logarithm in (5.4) can be
written in the form

where

we find

Note that the integrand is discontinuous at p = po.
To first order in the optical density,

where pi is given by (4.11). Therefore the first term on
the right hand side of (5.11) corresponds to the

expression one obtains for the real part of the surface
admittance from conventional dispersion theory,
cf. (2.21). For the Maxwellian velocity distribution
function VM(u) we have

where Z(o is the plasma dispersion function as intro-
duced in section 2. The exact reflectivity RE was
calculated numerically from (3.23), (5 .11) and (5.12).
From (3.20) with il = 0 and (3 . 23), the perturbation
theory result for the reflectivity RP was also calculated
numerically. A typical result of these calculations is
shown in figure 1, where the reflectivities RE and Rp
are plotted as functions of the detuning Av = v - vo
for r = 0.154, K = 0.063 and AvD = 1 952 MHz.
The absolute reflectivity scale was obtained assuming
a refractive index of the glass of 1.627 7. For the values
of F and K chosen in figure 1, mean free path and
absorption length at the center of the resonance line
are about equal and perturbation theory in general
is a poor approximation to calculate the reflectivity.
Indeed figure 1 shows that RE and Rp, have quite dif-
ferent values for d ~ 0. However, the values of RE
and Rp can be brought into close agreement if the
center of the spectrum associated with the reflectivity
Rp is shifted over about 60 MHz towards higher

FIG. 1. - Reflectivity R of a glass-vapor interface versus

Av = v - vo as calculated from the exact theory (RE) and the low
density perturbation theory (Rp) for the case of diffuse wall collisions
and a Maxwellian distribution of atomic velocities. The natural
width OvN, the collisional width Avc, the Doppler width AVDI the
optical density K and the refractive index of the glass ngl have been
taken equal to 10 MHz, 290.6 MHz, 1 952 MHz, 0.063 and 1.627 7,
respectively. The low density formula (3.23) was used to calculate

the rencctivity.

frequencies. For 1 Li 1 &#x3E; I, RE and Rp differ only
slightly. Similar results have been obtained for other
values of r « 1 and K « 1. In conclusion one can

say that the difference between the perturbation
theory results of section 3 for il = 0 and the exact
results of this section is only marginal. For all K « 1
and r « 1 the perturbation theory results are quite
satisfactory for making comparisons between theore-
tical and experimental results if comparisons of
absolute frequencies are left out of consideration.
In the illustrations of the theory that follow we restrict
ourselves to the perturbation theory results of sec-
tion 3.

6. Application to the sodium D2-resonance line. -
In this section the results obtained are illustrated
for the sodium D2-resonance line. This line corres-
ponds to a 3 2S 1/2 - 3 2P3/2 transition with a wave-
length of 5 889.95 À, an oscillator strength f of 0.655
(± 3 %) [15] and a natural line width of 10 MHz [8,15].
Watanabe [16] has calculated the collisional broaden-
ing Avc for the Dj- and D2-lines of sodium, using
absorption coefficient data obtained in the far wings
of the lines and vapor pressure data as measured by
Thiele [17]. He found for the D2-line that

where p is given in cm-3 [18]. Using more recent vapor
pressure data [19] figure 2 is obtained for the sodium
density as a function of the condensed sodium tempe-
rature. From a re-examination of the data in table 1
of Watanabe’s paper using figure 2 one finds for the
D2-line

Carrington et al. [20] have numerically calculated Avc
for a transition from a j = 2 ground state to a j = 2
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FIG. 2. - Sodium vapor density versus condensed sodium tempe-
rature (see ref. [19]).

excited state using the impact approximation and
ascribing the width to resonance collisions. Their
result is in good agreement with (6. 1). The Doppler
width can be calculated from the relation

where T is the absolute temperature of the vapor.
From (2.24) one can verify that the optical density K
is given by

where p and AvD are given in cm-3 and MHz, respec-
tively.
The energy scheme of the sodium D2-resonance

line is given in figure 3 [21]. The hyperfine structure
of the 3 2p 3/2 state will be neglected in the following.
The occupation numbers of the F = 1 and F = 2
ground states are 8 and 1, respectively. Thus, the
surface admittance MD2 corresponding to the D2-
line is given by the relation

where

and

For the conventional dispersion theory, M(4 ; K, F)
is the complex index of refraction as given by (2.22)
and (2.23). For the present theory, M(L1; K, F)
is the surface admittance as given by (3.20) and (3.25).
As is obvious from figure 3, the transitions F = 2 ~ 3
and F = 1 --&#x3E; 1, 2 are the strongest ones and therefore
Vs will be chosen somewhat smaller than the ground
state splitting 1 772 MHz, namely 1 720 MHz. The
reflectivity can now be calculated either from the

complete Fresnel formula (2.14) or from its low den-
sity version (3.23). The only selective reflection

experiments on sodium vapor published so far are
those of Woerdman [5]. In these experiments the
reflection cell is made of gehlenite glass which has a
refractive index of 1.627 7 at 300 K. This value will be
used for ngl. 

FIG. 3. - Hyperfine structure of the sodium D2-resonance line.
The ratio of the line strengths is indicated.

In figures 4 and 5 the reflectivity calculated using
(6.1)-(6.4) and (3.23) is plotted as a function of
Av = v - v(3 2S 1/2, F = 2 --&#x3E; 3 2P3/2) for the con-
densed sodium temperatures 610 K and 659 K. In the
spectra calculated from the conventional dispersion
theory, denoted by NC, the hyperfine splitting of
the 3 2S1/2 ground state shows up only as a small
kink near the center of the spectra. Using the theory
given in this paper, including either diffuse wall
collisions (DC) or specular wall collisions (SC), a
separation into two peaks occurs. The spectra calcu-
lated using a Maxwellian or a Lorentzian velocity
distribution differ mainly in amplitude (see also
section 3). For low enough densities the low frequency
peak will be the highest in amplitude according
to (6.4). This is the case in the 610 K spectrum, but not
in the 659 K spectrum. For only specular wall colli-
sions (SC) the peaks are higher in amplitude than for
only diffuse wall collisions (DC). The reflectivity
between the peaks is larger than Ro ( ~ 5.7 %) in the
DC spectra and smaller than Ro in the SC spectra.
We mention that the spectra plotted in figures 4
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FIG. 4. - Reflectivity of a gehlenite glass-sodium vapor interface
near the D2-line as calculated for a condensed sodium temperature
of 610 K from the low density perturbation results of the conven-
tional theory NC (no wall collisions), the theory for diffuse wall
collisions, DC, and the theory for specular wall collisions, SC.
The detuning Ov = v - v(3 2S 1/2, F = 2 ~ 3 2P3/2). The spectra
in the upper half of the figure were calculated from a Maxwellian
velocity distribution function, whereas for the calculation of the
ones in the lower half of the figure a Lorentzian velocity distribution
function was used. All spectra were calculated from the low density

formula (3.23) for the reflectivity.

FIG. 5. - Reflectivity of a gehlenite glass-sodium vapor interface
near the D2-line as calculated for a condensed sodium temperature
of 659 K from the low density perturbation results of the conven-
tional theory, NC (no wall collisions), the theory for diffuse wall
collisions, DC, and the theory for specular wall collisions, SC.
The detuning Av = v - v(3 2S1/2, F = 2 ~ 3 2P3/2). The spectra
in the upper half of the figure were calculated from a Maxwellian
velocity distribution function, whereas for the calculation of the
ones in the lower half of the figure a Lorentzian velocity distribution
function was used. All spectra were calculated from the low density

formula (3.23) for the reflectivity.

and 5 do not essentially change if the complete Fresnel
formula (2.14) is used. 
We shall now indicate some means to test the validity

of the present theory. Experimentally one can deter-
mine the overall amplitude

and the full width at half maximum ~v(F) of the peaks
in R - Ro corresponding to the F = 1 and F = 2

components of the 3 2S1/2 ground state. For given
values of T and K the quantities A, Av(F = 1)/AvD
and Av(F = 2)/dvD were calculated numerically for
the case of diffuse wall collisions. The overall ampli-
tude A was also calculated from the conventional

dispersion theory. A Maxwellian velocity distribution
was assumed in these calculations. From a comparison
of the spectra calculated from the complete Fresnel
formula and from its small K version (3.23) it turns
out that the reduced amplitude A/K and the width
Av(F = 2)/AvD as calculated from (2.14) are inde-

pendent of K to within a few percents for K  0.2.
From best fits to the numerical results of the calcu-
lations one obtains for K  0.2 the relations

The deviations from the exact numerical results are
at the most 5 % for (6.6) and (6.7) and 10 % for (6. 8).
According to the conventional dispersion theory A/K
varies only slightly as a function of r while in the
theory presented in this paper for diffuse wall colli-
sions A/K varies by a factor of about two going from
r = 0.3 to r = 0.01. Eliminating r from (6.6) and
(6.8) a relation can be obtained between A/K and
Ov(F = 2)/,AVD. Since Avec and therefore T is poorly
known, this relation may be most useful in order to
test the theory. The value of T for which the two peaks
are of equal height turns out to be about 0.06. As it is
essential for the present theory that, at least for K « T,
the peak maxima occur at the transition frequencies

and

a frequency calibration could provide another test

of the theory.
A first investigation of spectral narrowing in the

selective reflection from sodium vapor has been made

by Woerdman [5]. A comparison of the experimentally
obtained spectra with the theoretical ones obtained
from (2.14) and (6.1)-(6.4), assuming diffuse wall
collisions and a Maxwellian distribution of the atomic
velocities, shows that there is a good qualitative
agreement as regards the shape of the spectra. The
experimentally determined amplitude A, however,
is smaller by a factor of about two as compared to the
amplitude predicted by theory, while the experimental
widths of the peaks are larger than the calculated
values. In the theoretical spectra equal peak heights
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occur at r = 0.06 corresponding to a condensed
sodium temperature of about 620 K. However,
experimentally it is found that for T = 619 K the

high frequency peak maximum is still larger than
the low frequency one. These differences between
the experimental and theoretical results cannot be

explained by assuming a value of 11 Vc larger than the
one obtained from (6.1). Recently, Burgmans and
Woerdman [6] have continued the experimental
work on selective reflection from sodium vapor with

special emphasis on a quantitative determination of
the spectra. A preliminary result of their work is that
the amplitudes of the spectra are found to be larger by a
factor of about two than those given in figure 2 of
reference 5. Experimental and theoretical amplitudes
are now no longer inconsistent.

Note added in proof - In a pressure regime where
selective reflection is negligible Dodsworth et al. [22]
have studied wall collisions of atoms in connection
with the self-broadening of Hanle signals in backs-
cattered light.

Acknowledgments. - It is a pleasure to thank
Pr. D. Polder and Dr. J. P. Woerdman for stimulating
and helpful discussions.

Appendix A. - Asymptotic expressions for

Re a - ce will be derived for the integrals

and

To calculate the asymptotics of h, we transform to the
integration variable s = In t to get

and then follow Laplace’s method [14]. The position so
of the saddle point of h(s) satisfies the relation

and in the vicinity of so,

where,

and

Une finally obtains

l’he integral 12 can be treated in a similar way if we
transform to the integration variable s = t2 : 

The position of the saddle point so = (2/a)2/3 and

where

and

Appendix B. - Eq. (5.1) will be solved under the
assumption that E(X) is continuous for X &#x3E; 0 and
bounded for X &#x3E; 0. It follows from (5.1) that E’(X)
and E"(X) have the same properties. Where necessary
in the following calculations, A(X) is the modified
kernel Ac(,V) as given by (5.2). We extend (5.1) to

where E(X) = 0 for X  0, D(X) = 0 for X &#x3E; 0
and D(X) is defined by the right hand side of (B. .1)
for X  0. From the asymptotic behaviour (5.3)
or A(X) one deduces D(X) = 0(exp[qo X ]) as X
tends to - oo. Here qo = y/cv. The Fourier transform
of a function f(X) is defined by

By theorems III and V of Paley and Wiener [23],
Ê and Ê" are regular for ¡l2)  0, D is regular for
p(2) &#x3E; - qo and Â is regular for 1 p(2) 1  qo. Moreo-

ver, Ê and Ê" are bounded for p(2)  po  0, D is
bounded for p(2) &#x3E;, po &#x3E; - qo and Â is bounded for
1 p(2) 1  po  qo. Successive integration by parts
shows that
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where

Hence we find

Fourier transformation of (B. .1) yields, using (B. 3),
the equation

The zeros of - p2 + 1 + Â(p) have been extensively
discussed in section 5. It is always possible to find
a strip ! 1 p(2) 1  ql  qo where - p2 + 1 + Â(p) has
no zeros. Define a function

It is regular and free from zeros in the strip 1 p(2) 1  ql
and

in each interior strip 1 p(2) 1  q2  qo. Using Cau-
chy’s integral theorem one can now prove (Titch-
marsh [24], p. 339) that

where ql  q3  qo, but q3 - ql is so small that i(p)
has no zero in ql  1 p(2) 1  q3. Now i+(p) is regular
and free from zeros in p (2)  ql, T-(p) is regular
and free from zeros in p (2) &#x3E; - q, and in their

respective half-planes of regularity 1 T,(p) 1 and

1 T-(p) lie between positive bounds. The functions

and

satisfy

Using this relation we can write (B. 5) in the form

The left hand side of this equality is regular for

p(2) &#x3E; - q1, the right hand side for p(2)  0. Thus

(B. .11) defines an entire function. As ipÊ(p) = P and
(ip)-l f/J+(p) = 1 in the limit |p(1)|1 -&#x3E; oo, we find

and the electric field E(X) is given by

It can be shown that (B.13) indeed represents a

unique solution of (5.1) using methods similar to

those used for the Wiener-Hopf équation [6,.23].
The value of the surface admittance M = al(ifl) is

obtained as follows. From (B. 4) and (B. 12) it is

seen that

According to (B. 8) an asymptotic expansion of r + (p)
for p(l) ~ oo results in

From this relation and tP + (p) = (ip + 1) T + (p) one
finally obtains
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