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REPTATION OF STARS

P. G. DE GENNES

Collège de France, 75231 Paris Cedex 05, France

(Reçu le 4 juillet 1975, accepté le 30 juillet 1975)

Résumé. 2014 On discute le mouvement brownien d’un polymère flexible en forme d’étoile, placé
dans un réseau fixe (gel). On prédit : 1° un temps de renouvellement de la conformation globale Tr
qui croit exponentiellement avec la masse M - donc beaucoup plus long que pour une chaine linéaire,
2° une relaxation logarithmique des tensions mécaniques.
Nous ne savons pas, à l’heure actuelle, si ces propriétés doivent se retrouver pour des étoiles en

phase fondue.

Abstract. 2014 We consider the stochastic motions of a star-shaped flexible polymer trapped inside
a fixed network. We predict : 1° a renewal time Tr for the star conformations which increases expo-
nentially with the molecular mass M, and 2° a logarithmic relaxation of stress.
We do not know whether these properties still hold for a homogeneous melt of stars, or not.
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1. Introduction. - The mechanical behaviour of
dilute flexible chains trapped inside a polymer network
has been studied by Ferry and coworkers [1, 2]. The
data suggest that the renewal time for the conforma-
tions of the mobile chains increases with their mole-
cular mass M like a certain power M", with x values
ranging between 3 and 3.5. A comparatively simple
model, based on the reptation concept [3], predict-
ed x = 3.

In the present note, we extend the discussion of
references [3] to the case of branched molecules trap-
ped in a network. We restrict our attention to the
simple case of a star with N monomers and f prongs
(each of them carrying Nlf monomers) converging
to one center C. There exists an extensive literature
on the synthesis and on the physical properties of
these stars [4, 5]. We shall consider here the reptation
properties of an ideal star, assuming that :

i) the length of the branches is very long when
compared to the mesh of the surrounding network

ii) the central module C is point like, and

iii) that excluded volume effects within the star

are negligible.

Even after these simplifications, we are left with
a rather complex stochastic problem : the following
discussion is very qualitative, but it does show some
remarkable features which are probably model-

independent.
2. Queriching of reptation. - Consider for instance

the star with three branches ( f = 3) shown in figure 1.

The three ends are the points El, E2, E3. If we had
only a linear chain (E2 CE3) it would move by snake-
like motions inside a certain tube defined by the

surrounding gel ; but the extra branch (CE,) blocks
this reptation very strongly. Let us assume that,
with an external force, we have pulled the chain

(E2 CE3) to the right on figure 1, the center moving
from Co to C. The distance CoC corresponds to a
certain multiple p of the mesh size. This process
reduced the entropy of the chain (CE,) by an amount
p In z where z is the number of gates surrounding
one unit cell in the network (’ ). As soon as p exceeds
a few units this entropy defect is very large, and
there is a huge elastic force tending to bring the
center back to its original position.

Let us fix p at a value tor which the entropy is not
too large (e.g. p = 1) and maintain the center of
the star at point C by some external means. How long
will it take for the chain (CE,) to retum to equili-
brium ? This requires that the original conformation
(CE1O) be transformed onto a completely different
conformation (CE’1) such as the one shown on

figure 1.
If (CE,) was not attached to anything, this renewal

would require a time of order (N/f )3 according to
reference [3]. But here, one end (C) is fixed : the only
way to construct CE’ from CE, is to have El come
back to C, following exactly the original tube which
surrounded (CE,). After El has retraced its steps to
C, it will be able to start generating a new tube (CE’).

(1) We use units where Boltzmann’s constant is equal to unity.
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FIG. 1. - A star in a gel. The units of the network are represented
here as a regular array of obstacles (white dots) which cannot be
crossed. a) The main chain of the star (E2 E3) has been pulled to the
right, the attachment point moving from Co to C. b), c) In order
to create a completely new conformation, the lateral chain (CE1)
must first fold on itself. d) After reaching C, the point El may

start again and set up the new conformation.

It is only after completion of such a process that the
entropy defect of the chain (CE,) will be wiped out.
The probability of El retracing its steps correctly

to the center (as shown on Fig. 1) is very small.
In order to discuss this probability, we describe the
chain CE1 by a random walk of S steps on a periodic
lattice (Fig. 2). Each lattice site corresponds to a unit
cell of the network, and has z neighbours. (The simplest
idealisation would correspond to a cubic lattice,
with z = 6.) The number S is proportionnal to the
number of monomers (N/f ) on the chain CE 1

where q depends on the relative size of monomer
units and network unit cells (and f = 3 for the above
example).

FIG. 2. - Lattice model for the folded conformations of the lateral
chain : a) acceptable (tree like) ; b) unacceptable : in this confor-
mation the chain has gone around certain segments of the network

(point N on the figure), and if we pull on both chain ends we cannot
get the chains out of the network ; c) recurrence equation for the
number of trees with S segments : a circle marked S represents

the sum of all trees with S segments.

The total number of paths with S steps starting
from one given point C on the lattice is zS’. We want
to count the fraction P of these paths for which

i) the end point is at the origin (2), and
ii) the path is topologically equivalent to zero -

i.e. it has the tree structure shown on figure 2b.

The quantity P is calculated in the appendix, and
has the form

where A and Â are only weakly dependent on S.

Taking z = 6 the factor a is equal to 0.72.
We may assume that the average relaxation rate

1/0 for the chain CE, from an initial state CE,o
to a final state CE’ (as shown on figure 1) is essentially
proportionnal to P(S)

where el and 0are weak (3) (non exponential) functions
of S, and-rx = qa.

(’) For simplicity we assume S even.
(3) Reptation arguments suggest 1/0, - S3.
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Knowing the relaxation rate (3) we can now retum
to the complete problem of star motion, considering
the star as a chain (E2 CE3) hindered by a lateral
group (CE,). Central to the reptation model is the
motion of the mobility of a chain inside its own
tube J.1t. For a chain without lateral groups, Jlt is

inversely proportionnal to chain length (3). Here,
however, the tube mobility will be limited by the
lateral groups, and proportionnal to their jump
frequency 1 /0.
Thus we expect

where all non exponential factors (depending on N
and f) have been included in ,û.

All the dynamical constants characteristic of long
time behaviour for the star can be derived from the
tube mobility as in reference [3] : they will all show
the same exponential factor. For instance, the renewal
time for the conformations of the whole star will be
of the form

and the self diffusion constant will be proportionnal
to e-àN/f. Thus we conclude that reptation is essen-
tially quenched for a star trapped in a network.

3. Mechanical relaxation. - The relaxation time Tr
is exponentially large, and may be difficult to detect
directly. The behaviour at frequencies somewhat

higher that 1 is also non-trivial and it is important tog 
T r 

p

realize that although complete renewal of the star

conformation is extremely slow, partial renewal is

possible in finite times.
Let us consider a conceptual experiment where

the system is at rest from t = - oc to t = 0, and
then a constant strain e is imposed to the network
for all later times. The stars trapped in the network
are at first very distorted but they tend to relax
towards a less distorted equilibrium state. After a
time t a number 1 of monomers, near each extremity
of the star, have relaxed by a process analog to the
one illustrated in figure 1 : the length of the portion
concemed is’ now 1 rather than N/f. The relation
between 1 and t is the analog of eq. (3) relating N/f
and 0 : we may write :

Here 6 is an average reptation time for a chain of
length 1 (but the 1 dependence of 0 is negligible since
it comes inside a logarithm). It is natural to assume
that the mechanical stress u(t) at time t will have
a component proportionnal to l(t)

It would be interesting to search for this logarithmic
relaxation stress in suitable systems.

In a gel without stress, if there are dangling chains
(attached to the network by one end only) and if
these chains are longer than the mesh size, they
would also give rise to a logarithmic law of this
type [6]. However, most gelation processes should
not give rise to very long dangling chains : observa-
tions on gels with stars incorporated would probably
be more clear cut.

4. Comparison with polymer melts. - The rheologi-
cal properties of branched polymer melts have been
measured in a certain number of cases [7-14], [5].
Restricting our attention to the limit of high molecular
masses M (strongly entangled systems) and to the
linear viscosity 1, we find that il is usually increased
by branching at fixed M. A recent study [14] suggests
that for branched polyisoprene fi 1’-1 exp(M x const.)
while for linear molecules 1 is of the usual form

il - Ma. It is tempting to interpret this in the following
terms : the viscosity 1 is the product of a relaxation
time s by an elastic modulus E ; the latter (describing
the rubber like behaviour of the system at frequencies
w » 1/1:) is controlled by the density of entanglement
points, and is expected to be nearly independent of M
for high M. If the Maxwell relaxation time s for the
molten system was similar in behaviour to the rene-
wal time Tr of the reptation problem, we would
indeed be led to an exponential viscosity

However, we wish to point out that this extrapolation
is highly non trivial. Indeed, we shall now describe
one possible model for molten stars, which leads to
a very different behaviour, namely

In a liquid phase, any polymer molecule (linear or
branched) can still be pictured as trapped in a certain
tube, defined by the surrounding chains [15]. The
tube concept has been extensively used (for unbranched
molecules) by Edwards and coworkers [16] and by
Doi [17]. In simple terms we may say that the renewal
of conformations for one molecule takes place through
two distinct channels :

a) reptation inside a tube which may fluctuate in
position, but which maintains the same entanglements
constraints all the time ;

b) tube reorganisation : this corresponds to the
loss of one entanglement constraint, and is shown
on figure 3 : when one end of chain T’ gets in the
immediate vicinity of chain r, the relative positions
of T and r’ may change qualitatively in a very short
time.
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FIG. 3. - The concept of tube reorganisation : a) the chain l’
(black) is surrounded by other chains (white) and thus trapped
in a certain tube ; b) one of the surrounding chains T’ may have its
end point close to 7" ; c) then it is possible for r’ to go from below r
to above r : the tube has changed its topological significance.

The model postulates that the contributions of a)
and b) to the relaxation rate are roughly additive

The essential assumption is now the following, : to
describe process b), we picture the tube itself as one
Rouse chain [18] (branched or linear, depending on
the case at hand) with one modification only : the
microscopic jump frequency W (the high frequency
limit of the Rouse spectrum) is reduced, since only
a fraction 0 of the tube sites are near the end of
a neighbouring chain r’, and thus susceptible of
being reorganised

where 0 is the relative concentration of monomers
located at terminal sites : for stars with f prongs,

From the equations of the Rouse model we then
expect a renewal rate

The constant in eq. (11) depends on the detailed

geometry (chain [18] or f pronged star [19]) but the
general structure is always the same. Consider first

the case of a chain. Then ;, a and 1/tb are comparable,Ta Tb
and the reptation laws are not qualitatively modified
by tube reorganisation : this conclusion agrees with
references [16-17]. On the other hand, for stars,
eq. (5) predicts that l/7a is exponentially small. In
this model the behaviour of molten stars is thus
dominated by tube reorganisation : we expect
il - T, - N3 and a self diffusion coefficient of the
form

where Do is a microscopic constant. (We do not
know of any measurements of D.)

5. Conclusions. - 5.1 Star reptation may appear
at first sight as a highly specialised problem. However,
our discussion, in spite of its qualitative nature,
does give some possibly useful pictures for the motions
of branched polymers. The creep properties expected
for long dangling chains in a gel are interesting ; they
may also play a role in the long-time effects often
observed in polymer adsorption on solid surfaces.

5.2 It is not clear whether reptation processes
remain dominant in concentrated solutions of branch-
ed polymers (where other types of molecular rearran-
gement also come into play), or not. The recent data
on polyisoprenes [14] suggest that they do. Earlier
data on polystyrene [11], as well as the theoretical
model of section 4, tend to favor the opposite conclu-
sion. A much more detailed analysis, similar in spirit
to reference [16], will be required to elucidate this point

Acknowledgments. - The author has greatly bene-
fited from a correspondence with Dr. W. W. Graessley,
both on entanglement processes, and on the data
of reference [14].

APPENDIX A

Calculation of the number of trees. - We want to
calculate the number Q(S) of random walks with S
steps (S even) starting from the origin and returning
to the origin, with the tree-like structure shown on
figure 2a. A recurrence equation for Q(S) can be
constructed as shown on figure 2c : We separate
first the case where only two lines go to the origin,
then the case of 4 lines, etc., obtaining
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where the sums E extend over afl values leaving
p

positive arguments for the Q functions. Eq. (A.l)
can be solved in detail through Laplace transforms.
Here we shall simply consider the limit of large S,
and look for solutions of the form

Inserting this in eq. (A .1) and dividing both sides
by Q(S) we obtain

The solution is

A = (z/ln 2)1/2 .
The relative number of trees is thus

1 1 -.-

as announced in eq. (2).
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