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Résumé. 2014 Un film nématique planaire présente une transition de Freedericksz dans un champ
magnétique perpendiculaire à l’orientation non perturbée. Cette transition se produit à Hc1 (distorsion
en éventail) en champ perpendiculaire aux plaques et à Hc2 (torsion) en champ parallèle. Si le champ
magnétique est appliqué à un angle oblique par rapport aux couches tout en restant perpendiculaire
au directeur le seuil variera continuement entre Hc1 et Hc2. Nous calculons la distorsion au-dessus
du seuil et comparons nos résultats à des expériences sur MBBA.

Abstract. 2014 A planar nematic layer will show a Freedericksz transition in a magnetic field per-
pendicular to the unperturbed alignment. This transition occurs at H = Hc1 (splay) in a perpendi-
cular field and at H = Hc2 (twist) in a field parallel to the layer. If the magnetic field is applied at
an oblique angle with respect to the layer, but perpendicular to the direction of alignment, the thresh-
old field can be varied continuously between Hc1 and Hc2. We calculate the deformation pattern
above the threshold and compare our results with experiments on MBBA.
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1. Introduction. - A nematic layer thickness orient-
ed uniformly parallel to the limiting plates (director n
along y) will undergo a Freedericksz transition in a
magnetic field H applied perpendicular to the align-
ment (Fig. la) [1]. This results from a balance between
the stabilizing elastic contribution and the destabi-
lizing magnetic one (the susceptibility is anisotropic
xa = x Il - Xl. &#x3E; 0 where I I and 1 refer to the direction
of n with respect to H). If H is perpendicular to the
layers (along z), the initial distorsion above the critical
threshold 7fc is a pure splay and involves only a tilt
of the director characterized by the polar angle with
the horizontal cp(z). The critical field determined by
the splay elastic constant ki i is

If H is parallel to the slab (along x), the deformation
is a pure twist (elastic constant, k22) given by the
polar angle w(z) in the xy plane. The critical field
is HC2 = (nlL) (k22 /Xa)1/2.
Here we study the more general case where H is

still perpendicular to the initial unperturbed direction
of alignment, but at an oblique angle 0 with z. The

FIG. 1. - a) Geometry. The molecular orientation (H) induced
at the boundaries is distorted in the bulk (polar angles (p, w). It
takes place in a plane at an angle y with z. H is perpendicular to y.
b) Polar diagram of the Hc(6) variation in the xz plane containing H.

second order phase transition taking place at the
critical field is associated with the initial symmetry
of n with respect to H and, followingly, with the
symmetric structure of the free energy with respect
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to the angular variables : G( qJ) = G( - qJ) (1. 1)
in the pure splay case, G(w) = G( - w) (1.2) in the
pure twist one.

In the general case discussed here, we will show
that, for small distorsions, the director remains

parallel to a plane through the y axis and at an angle y,
a function of 0 and of the elastic constants only, with
the horizontal. Under these conditions, it is possible
to describe completely the distortions by the angle
y§(z) between n and y. It is clear that G(§) = G(- §).
Thus, the existence of a second order transition
with a critical field Hc(O) follows from this symmetry.
This would not be the case if H was not located in
the xz plane. The case where H is in the yz plane has
been studied [2, 3] and no transition with threshold
is obtained.
The variation of the critical field Hc((}), plotted on

a polar diagram (Fig. 1 b), is an ellipse with semi
axis Hc1 (along z, 0 = 0) and HC2 (along x, 0 = n/2).
Experimental data points obtained on MBBA, a
room temperature nematic used in this study, are also
given.

In the following (section 2) we discuss’a calculation
of the threshold Hc(0) and of the distortion for all
values of fields (9) above threshold. The results
extend thùse of a simple Landau like model valid
for small distortions (appendix A). The results are
used in section 3 for a comparison with experiments on
nematic films, using the variation of the birefrin-

gence b (connected to (p) and the rotation of the

conoscopic image e. A relation between the rotation a
and the angles ç(z) and cv(z) is derived in appendix B.

2. Theory. - To calculate the deformation pattern
above threshold we minimize G, the free energy per
unit area of our sample. Let us denote the director
by a unit vector n(z). The free energy per unit area
is given by [1, 4]

The director can be expressed in terms of the angle
of tilt (p(z) and of twist w(z) (see Fig. la)

For the free energy G we obtain the expression

Minimizing the free energy, we obtain two non-

linear dif’erential equations of second order for the

functions cp(z) and w(z). We write these equations in a
dimensionless form, introducing ç = z/L and the
ratios of the elastic constants

These three parameters are not independent and

To obtain the threshold field Hc((}) we expand these
two equations for small deformations, i.e. qJ and
w « 7C/2.

For small deformations we can show that the director n

stays in a plane through the y-axis. Let this plane
form an angle y with the z-axis and let y§(j) be the
angle of rotation of n in this plane (see Fig. la). This
gives us an additional relationship for cp(ç) and w(ç)

Inserting into eq. (2. 7), (2.8) gives

With the boundary conditions y§(0) = 0 and

dtf /dç = 0 at ç = 0.5, we get the threshold field

This is indeed an ellipse with semi-axes Hc1 and
HC2 = HCl/J1+P. Writing the function y§(j) as

we can use (2.9) to obtain a Landau expansion of
the free energy G in terms of the order parameter t/J m.
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In this way one can derive the threshold field (2.12)
as well as the deformation pattern for H near H,,(O).
The details are given in appendix A.
To solve the Euler-Lagrange eq. (2.5), (2.6)

numerically, we write them as four equations of first
order introducing two functions u(Q and v(ç). We
then get

FIG. 2. - Calculated variation of the maximum tilt angle lfJm as a
function of the reduced field H/Hc1 where HCI = He (0 = 0).
Parameters K = 0.2, fi = 0.86, v = 0.29 obtained from experiments
are used. In the figures 2, 3, 6, 7 the curves labelled 1, 2, 3, 4, 5, 6

correspond to 0 = 0°, 21.95°, 30°, 53.5°, 60.25°, 900.

FIG. 3. - Calculated variation of the maximum twist angle wm
versus H/HCt’

The first two equations define the functions v(ç)
and u(ç). Eq. (2.13), (2.16) can be solved by the
Runge-Kutta method with the initial condition cp = 0,
w = 0, u = uo, v = vo at ç = 0. The unknown

parameters uo and vo are determined by the condition
dqJ/dç = 0 and dw/dç = 0 at ç = 0.5.

Figures (2 and 3) show the results of such calcula-
tions. The maximum angle of tilt cpm and the maximum
angle of rotation Wm are given as functions of H/Hcl 1
for various values of 0. The values used for K = 0.2

and f3 = 0.86 are those of MBBA as determined from
experimental data presented below.

3. Experiments. - We have used high purity
MBBA (methoxy pn benzilidene butyl anilin) which
is nematic between 16° and 47 °C. The experiments
reported here were done at 25 ± 1 aC. The planar
alignment was obtained by first evaporating under
oblique incidence a thin SiO film in the inner sides
of the glass limiting plates [5]. The oblique field is

produced by a pair of Helmholtz coils giving the
horizontal component of H, Hh and a solenoid of
vertical axis giving the vertical one Hv (Fig. 5). The

FIG. 4. - Variation of the critical field HiO) in units giving a linear
law as obtained from eq. (2.12). The limiting values are HCI’ (0 = 0)

and HC2’ (0 = n/2).

angle 0 is given by tg 0 = HHIH,. The distortion is
followed by evaluating the changes of the characte-
ristic conoscopic image from the double set of hyper-
bolas, centered at the vertical V of the laser beam,
obtained in zero field :

The tilt angle (p(z) is measured by counting the total
number of fringes, ô, passing through point V as the
field is increased from 0 to H. 

Â is the wavelength of light, L the sample thickness.
The parameter giving the anisotropy of the refrac-
tive indices v = (ne/no)2 - 1. ne and no are the extra-
ordinary and ordinary index. For MBBA at 25°,
v = 0.29 [6].
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The angle of twist w(z) is connected to the angle e
of rotation of the conoscopic image at point V. The
result of the calculation given in appendix B shows
that e depends also on the splay plus bend distortion

The brackets mean an average over the cell
thickness. The expression reduces to that calculated
by de Gennes [7] in the case of pure twist.

Note : The determination of the critical field H,, and of the small
distortion close to H,, involve long time constants [8]. Typically
for L = 200 u and HIH,, = 1.1, the exponential relaxation time
constant is of the order of 500 s. Long enough times were used in
order to get the static data points.

3. 1 CRITICAL FIELDS. - The experimental results
are given for two samples L = 200, 250 Il in figure (4)
in reduced units [Hc2((} = O)IH,,(0)] versus sin’ 0.
A linear variation, corresponding to the ellipse of
figure ( 1 b), is obtained in agreement with formu-
la (2.12) which writes :

From the best linear fit of the slope we get
HCl/Hc2 = 1.36, kl1/k22 = 1.86 and fl = 0.86. The
ratios agree well with published values [4].

FIG. 5. - Experimental set up. Horizontal and vertical coils give
the oblique field H perpendicular to the unperturbed molecular
alignment along y. The projection in the upper plane of the cono-
scopic image from a monochromatic light converging on the

sample allows the determination of both the integrated twist and
birefringence.

3.2 DISTORTION. - Figures (6 and 7) give the expe-
rimental variation of ô and a with H for different

angles 0. The corresponding theoretical curves (solid
lines) were obtained as follows : the parameter fl
is taken from the critical field variation. The para-
meter x is obtained by a least square fit of the pure
splay curve (0 = 0°). For the values of the parame-
ters p, K, v, the differential equations (2.7, 2.8)
were solved and ô and e were calculated by numerical
integration of (3. l, 3.2). The agreement of ô is good.
The large spread of experimental data for the rota-
tion E comes from the visual estimate of this angle.
The distorted conoscopic image is rather complex
and does not have a symmetry axis (see Appendix B).
This limits the accuracy on the evaluation of a at

point V.

FIG. 6. - Experimental and calculated curves of the birefringence
à for a L = 200 p thick sample. The normalized units are such that
the results are independent of L. The parameters used in the calcu-
lations were obtained from the value of the ratio HcJHc2 and the
best fit of the pure splay curve (1). The curves correspond to dif-

ferent 0 values (see caption of Fig. 2).

FIG. 7. - Experimental and calculated curves for the rotation of
the conoscopic image e and for different 0 values.

The initial slope of the field variation of ô (Fig. 6)
agrees with the direct calculation using the Landau
expression. The asymptotic high field value can be
obtained directly by expressing that the director is

parallel to H across the sample.
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In conclusion, in this oblique field study we have
extended the range of the Freedericksz problem and
have shown that the second order transition is retained
although two variables appear in the description.
Furthermore we can get the three Frank elastic
constants ki i, k22, k33 in a single experiment.

APPENDIX A. - Let us assume that for small
deformations the director n remains in a plane through
the y-axis. This plane is at an angle y with respect to
the z-axis. Let y§(z) be the angle of rotation of n in
this plane. In terms of y and qf(z), the director is

For small distorsions t/J(z) = t/Jm sin nz/L and one
gets a Landau like expansion

For a given value of y one gets the critical field

and for

In order to minimize G with respect to y, we set

DGIby = 0 which leads to 

For the shift of birefringence one gets :

The angle of rotation e of the conoscopic image can
be obtained in a similar way.

APPENDIX B. - We apply the adiabatic approxi-
mation valid when the distortion takes place over a
large distance in front of the wavelength and expresses
the ordinary (o) and extraordinary (e) waves as

In a layer dz we use the local axis , il perpendicular
to z such that the director is in the 11Z plane

The surface of indices of the uniaxial material is

composed of a sphere of radius no and of an ellipsoid
of revolution around n, of length axis no and n e. We
calculate the coordinates of a point of this surface,
in the local reference frame. We write :

with

and consider only first order contribution in u (  n/ 10).
For the ordinary ray, we get :

and

For the extraordinary ray, we have :

For the layer dz, the phase shift is

with

We come back now to the reference axis x, y and we
integrate over the thickness of the liquid crystal film

where
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The first term gives the number of fringes

The terms linear in k give the displacement of the
center of the conoscopic image.
To evaluate the rotation e of the conoscopic image

we consider new cartesian axis X, Y

such that the crossed contribution kx ky cancels.
This gives

or

Note that if we consider the perpendicular to the

tangent of the curve passing through the origin
(kx = kY = 0) it is given by

This determination e’ reduces to e to the limit of a

planar or homeotropic sample, but is différent in

general. Numerical estimates of e’ following the
method used in the article for e, lead to values typi-
cally larger by 25 % than e. This ambiguity implies
difficult measurements and explains the rather poor
quantitative agreement on figure (7). Note that there
is no such difficulty in the measurement of the bire-
fringence.
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