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Résumé. 2014 On développe une théorie donnant le temps de relaxation de rotation de macro-
molécules ayant la forme de barreaux rigides en solutions concentrées. Le résultat est

03C4r ~ c2 L9(03B12014 cL2 d)-2 (ln (L/d))-1 ,
où c est la concentration des barreaux, L la longueur d’un barreau, d son diamètre et 03B1 un certain
facteur numérique. Ce temps de relaxation a des rapports avec la viscosité statique et il se trouve en
bon accord avec les observations expérimentales.

Abstract. 2014 A theory is developed on the rotational relaxation time 03C4r of rigid rod-like molecules
in concentrated solutions. The result is 03C4r oc c2 L9(03B1 - cL2 d)-2 (In (L/d))-1 , where c is the concen-
tration of rods, L and d are the rod length and diameter respectively and 03B1 is a certain numerical
factor. This relaxation time is related to the static viscosity and is found to be in good agreement with
the experimental observations.
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1. Introduction. - Rotational Brownian motion
of a rigid macromolecule immersed in a solvent fluid
has been widely investigated [1]. For a rod-like

macromolecule, the Brownian motion is completely
characterized by one parameter Dr, the component
of the rotatory diffusion tensor perpendicular to

the rod axis, and the rotational relaxation time is
about 1/Dr. In case of the dilute solution, D, is deter-
mined by the hydrodynamic friction exerted by the
solvent fluid and is given by [2, 6]

where L and d are the rod length and rod diameter
respectively, fis is the solvent viscosity and kT is the
Boltzmann constant multiplied by temperature.

If the concentration c of rods is increased, the rods
begin to collide with each other. The critical concen-
tration ci above which the collision effect dominates
the molecular motion is about 1/L3. If we further
increase the concentration, the system exhibits a

isotropic-nematic phase transition at c2 ~ 1 /dL2
and the orientation of rods alligns in some direc-
tion [3, 4]. Between these two concentrations ci
and c2, the system is still isotropic, but the rotational
Brownian motion of each rod is strongly restricted by
the steric repulsion of other rods. As a consequence,
a very long relaxation time will be observed for the
molecular reorientation in this system.
The problem considered here is to investigate the

L or c dependence of the rotatory diffusion coefficient
Dr for the moderately concentrated solution of hard
rod molecules. The system may be exemplified by
a solution of tabacco mosaic virus or other synthetic
polymers in helical state. Although the actual inter-
molecular potential between these molecules will
be very complicated, we consider no potential other
than the steric repulsive potential of rods. More

specifically, we take into account the intermolecular
potential through the fact that the rods cannot pass
through each other. If the rod is sufficiently long,
this effect will be much more important than any
other detail of the collisional force. Thus we can
idealize the system as hard thin rod system. Even
if the thickness of the rod is very small, the inhibition
of the rods to pass over each other affects seriously the
rotational Brownian motion.
The above characteristic feature of the problem is

similar to the entanglement effect in a system of
linear flexible chain molecules. In that case, the

topological restriction of chains plays the dominant
role. Actually, our basic idea is derived from the

theory of de Gennes [5], who predicted that the rota-
tional relaxation time of the flexible chain (or the
correlation time of the end-to-end vector) increases
from Tr oc M2 (M denoting the molecular weight)
to Lr oc M3 if the topological restriction is imposed.
The essential point of his theory is the idea of the
tube restriction : he assumed that each chain is
confined in some hypothetical tube-like region owing
to the topological restriction imposed by other chains.
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We shall make use of a similar model. However,
the subsequent construction of the theory is quite
different from de Gennes’, reflecting the difference
in the molecular shape. We shall show that the change
in the molecular weight dependence of the relaxation
time r, is much more drastic in the rod system than
in the flexible chain system. The dependence changes
from ir oc M3/ln M to ir oc M9/ln M. This drastic
change comes from the rigid nature of the rod.
The theory developed in the subsequent section

is very crude, so that we do not discuss the detail in
the numerical factors. Nevertheless, we believe it

correctly describes the c or L dependence of ir.

2. Rotational relaxation time. - Let us first consi-
der the thin rod system. We focus our attention on the
Brownian motion of a certain rod and call this the
test rod. Since the rod is thin, it can diffuse freely in
the direction of the rod axis, whereas its rotational
motion is severely restricted by other rods. To repre-
sent this restriction, we consider a sphere of radius
L/2 centered on the middlepoint of the test rod, and
project all the other rods intersecting the sphere on
the surface of this sphere (see Fig. la). Figure 1 b
illustrates the view from the direction of the axis
of the test rod. The shaded area denotes the base of
the pyramidal region in which the test rod is confined.

FiG. 1. - Illustration of the concentrated solution of rod-like
molecules. (a) : The test rod (bold line) is confined in some poly-
gonal pyramid due to the steric repulsion of other rods AB and

CD... (b) : A view from the axis of the test rod.

Now suppose that at some instance, the rod end P
is inside some region S on the surface. The shape and
size of the region S fluctuate with time due to the
Brownian motion of other rods and the test rod
itself. For simplicity we proceed with our discussion
by temporarily assuming that the position of the
test rod is fixed. Since other rods e.g., AB or CD
themselves are confined in their respective tube-like
regions, their displacement perpendicular to their
rod axes will be very small. Therefore we may assume
that the change in S occurs only when some of the
rods constituting the boundary of S disappear by
translational diffusion along their rod axes (e.g.,
AB moves to A’B’). Therefore the persistence time

ii of the region S, during which the orientation of
the test rod is confined in the initial polygonal pyramid,
may be estimated by the time in which a single rod
diffuses a distance L/2 along its rod axis, i.e. ;

where Dto is the translational diffusion constant of
rod. Note that this equation is merely a consequence
of dimensional analysis. Hence one can see that

eq. (2) is not essentially changed even if the motion
of the test rod is taken into account. Since the rod
is thin, Dto may be equated to that in free space.
Following Riseman and Kirkwood [6],

It may be remembered that Dto is about equal to
Dr0 L 2.

In the region S, the orientation of the test rod is
uniformly distributed. In fact, if a is the characteristic
dimension of S, i.e., a = JS, the time necessary
for the test rod to attain equilibrium in S is about

(alL)2lDro = (a1L)2 i 1, which is much shorter than
ri if the condition a « L is satisfied. This condition
has been implicitly assumed and we will see in later
that this condition is actually satisfied in our pertinent
concentration region c « 1 /L 3. Therefore if the

boundary of S, e. g., AB is released, the rod end P
jumps to a new region almost instantaneously with
some probability. Hence the Brownian motion of P
is roughly to be visualized as follows : In a time
interval ii, P is confined in a region S ; after il,
P jumps to a new region and stays there for rl, and
again jumps after Tl, ... The overall rotation of the
rod is attained by the repetition of these jump steps.
The angle of each jump is about a/L. Hence the
rotatory diffusion coefficient is obtained as

The characteristic length a is estimated as follows.
We consider two equivalent coaxial cones with their
axes along the test rod, their top being located at the
midpoint of the test rod (see Fig. 2). Let r be the

Fm. 2. - Two coaxial cones considered to estimate a.
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radius of the base circle of the cones. If we fix the

configuration of all the rods and increase r from zero
to larger, the cones will make contact with some
other rods at some radius rc. We estimate a as the

average of rc over all the configurations of rods.
If the configurations of the rods are independent

of each other, (this assumption may be justified
in our case of thin rod system), the average r c &#x3E;
can be calculated exactly. Let P(r) be the probability
that the two cones with the radius r of the base circle
do not contact with the randomly placed thin rods.
This probability is easily calculated by use of the
general formula discussed previously [5]. Following
that,

where A is the sum of the surface areas of the two
cones, i.e., A = xLr (Strictly speaking, eq. (5) holds
only for convex region, but in the present case of
a « L, the error is found to be negligible). The
probability Q(r) dr of finding rc between r and r + dr
is equal to P(r) - P(r + dr) = - dP/dr dr. There-
fore

From eq. (3), (4) and (7), we finally have

The rotational relaxation time ’tr is thus obtained as

Eq. (6) indicates that the previous condition a « L
is equivalent to c « 1 /L 3 .
One should note that the molecular weight depen-

dence of "Cr is very strong. This may be compared to
that of the flexible chain i.e., ir oc M3. The difference
comes from the following fact. In case of the flexible
chain, the chain end can go into any new tube irrespec-
tively of the configuration of the remaining part of
the chain. Hence the memory of the initial orientation
of the chain vanishes if the chain goes from one tube
to another, and the rotational relaxation time can
be estimated by rl, which is called disengagement
time by de Gennes [5, 8]. By contrast, in the rod
system, the direction of the new tube which the test
rod enters is severely restricted owing to the rigidity
of rod. In the time interval r 1, the rod can go into

the new tube, but it can only rotate by an angle a/L.
Hence the rotational relaxation time of rod is much

larger than the disengagemènt time i 1.
In the above discussion, we have assumed that

the rod is thin i.e., L » d. Now we should like to
discuss briefly how the above theory should be modi-
fied if the rod has finite thickness.

We first note that the thickness of the rod becomes

important when a becomes of the same order as d.
From eq. (6), this corresponds to the concentration
c ~ 1 /dL 2, which is of the same order as the critical
concentration c* at the phase transition. Hence as a
matter of fact, the theory near c* will require a
sophisticated treatment taking into account many
body effects. Therefore the following simple treatment
should be understood as a tentative one.
We expect that the expression for ri will not suffer

any essential change near c* because the system
preserves its fluidity in the liquid crystal phase.
However if the rod has finite thickness, the characte-
ristic length of the individual jump must be corrected
to a r,, ,&#x3E;-dor a-alcL’-d, where a is
some numerical factor. We cannot predict the actual
value of a but suppose that a will be slightly larger
than the factor a* determining the critical concentra-
tion c* = a*/dL 2. Hence as the first approximation
we may rewrite eq. (8) as

or by use of c* and a* :

This equation indicates that near the critical concen-
tration c*, r, becomes very large owing to the factor
(a/a* - clc*)-’. We shall show in the next section
that this correction explains the experiments not

only qualitatively but also quantitatively.

3. Comparaison with experiment of the viscosity
measurement. - The rotational relaxation time of
rod-like macromolecules can be observed most directly
by dielectric measurements or by relaxation of
dichroism. Unfortunately, at present we have no
available data from these experiments to be compared
with the present theory. Though rather indirect,
viscoelastic measurements can also offer information
about the rotational relaxation time. However, the
comparison needs some theoretical considerations.
This is done in this section. The method is an exten-
sion of a theory developed for flexible chain systems [9].
Our starting point is the correlation function

formula for the dynamic viscosity 11(W) of solutions
in which the time scale of the solute molecule is
much longer than that of the solvent molecule [10]

Here V is the volume of the system and ( J(t) J(O) &#x3E;
denotes the time correlation of the reduced momentum
flux. The reduced momentum flux J is obtained by
averaging the original momentum flux J over the
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rapidly varying dynamical variables q with the slowly
varying variables Q fixed, i.e.,

where Peq(q, Q) is the equilibrium distribution func-
tion, ma, Poa (a = x, y) are the mass and ce component
of the momentum of ath particle and rom, Faba denote
the-a component of the relative position vector

between a and b and the force interacting between
them respectively.

In the present case, the slowly varying variables
are the position of the centers of mass of rods,
Rl, R2, ..., Rn and the orientations Ul, u2, ..., Un (n
being the number of rods in V and ua being a unit
vector parallel to the ath rod). For these slowly vary-
ing variables, the reduced momentum flux can be

immediately calculated in the way discussed pre-
viously [10]. The resulting J consists of two parts :

Here Ja is the momentum flux associated with a single’
rod,

and Job represents the momentum flux arising from
the intermolecular forces,

In eq. (16), Rai is the position vector of the ith segmen-
tal unit of rod (the rod being assumed to consist
of N segmental unit), and Faibj is the force interacting
between the segmental units (ai) and (bj).

Here it may be remarked that at present, there is
some controversy on the formal expression of the
reduced momentum flux J. Yamakawa, Tanaka
and Stockmayer [10] have proposed another expres-
sion for J. However as far as the present problem is
concerned, the two formalisms yield the same result.
The expression (15) coincides with that derived by
Chikahisa and Stockmayer [12] and recovers the
classical results of Kirkwood and Auer [2] for the
viscosity of the dilute solution of rod-like macro-
molecule.

Let us proceed to our case of concentrated solutions.
It is important to note that Jab vanishes unless the
two rods a and b are in contact. Hence the correlation
time of Jab is as much as rl and is much shorter than
that of Ja, which is of order Lr. Since j(co) is primarily
determined by the long time behavior of

we may neglect

for a # a’ because of the same reason. Therefore we
have

Substituting this into eq. (12), we finally have

where the steady flow viscosity il, is given by

In terms of the weight concentration p, which is

proportional to cL and the molecular weight M,
eq. (19) is rewritten as

Recently, steady flow viscosity has been measured
by Papkov et al. [13] in detail for poly (para benzamide)
(referred to as PBA) solutions. They have observed
that for a given M, ’10 increases rapidly with the
increase of p and takes its maximum at the critical
concentration p* of the phase transition, and that
this maximum viscosity ’1max is proportional to M3.2.
This observation ’agrees with the present theory. In
fact by noting p* M = constant, which is predicted
by the theory of Onsager and Flory and is in fact
observed in their PBA solution, we have

FIG. 3. - The steady flow viscosity of the PBA solutions.
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Hence il... is about proportional to M 3. Furthermore,
their viscosity measurement indicates that below p*,
r¡O/r¡max lies on a universal curve independent of M
if no/nmax is plotted against the reduced concentration
p/p*. This finding is also explained by the present
theory. From eq. (20) and (21), we obtain

In figure 3, the theoretical curve (solid line) is compared
with the experimental results. The parameter a./a.*
is taken as 2.0, but the theoretical curve is rather
insensitive to the choice of this value. The agreement
is fairly good.

4. Discussion. - We have shown that in concen-
trated solution of rod-like macromolecules, the rota-
tional relaxation time becomes very large depending
on the molecular weight and concentration (eq. (10)).
Since the rotational relaxation time is proportional
to the static viscosity, this means a drastic increase
of the viscosity qo. The strong molecular weight
dependence of qo is perhaps related to the difficulty
of the preparation of the liquid crystal phase of long
peptide molecules. In fact eq. (20) predicts that
if we suddenly increase the concentration above

(a/a*) p*, the system loses its fluidity and exhibits
a glass transition. To verify the present theory ih
more detail, a systematic measurement of the rota-
tional relaxation time seems to be warranted.
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