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Résumé. 2014 La description thermohydrodynamique d’une fine couche horizontale de fluide

quelconque, chauffée par le bas (problème de Rayleigh-Bénard) est effectuée ici par une méthode
perturbative à deux paramètres. Au premier ordre de perturbation on obtient les équations dites
de Boussinesq-Oberbeck, en accord avec des résultats antérieurs de Mihaljan [Astrophys. J., 136
(1962) 1126]. Les difficultés inhérentes à la méthode d’obtention des termes d’ordre supérieur sont
ici (contrairement à la théorie de Mihaljan) exclues du développement. Ceci est rendu possible par
un choix convenable d’un champ adiabatique hydrostatique de référence et de deux paramètres
ayant le même ordre de grandeur. Dans une limite bien précise la théorie présentée ici recouvre
d’anciens résultats obtenus par Malkus pour des couches de gaz dilué.

Abstract. 2014 A two-parameter perturbation scheme for the thermohydrodynamic description
of a horizontal layer of a single component arbitrary fluid heated from below (Rayleigh-Bénard
problem) is presented here. The first approximation leads to the Boussinesq-Oberbeck equations.
This agrees with previous results obtained by Mihaljan [Astrophys. J. 136 (1962) 1126]. Contrary
to Mihaljan’s theory however, the series expansion given here is free from inherent difficulties in

obtaining higher order approximations viz. non-Boussinesq effects. This is done by choosing a suitable
adiabatic hydrostatic reference field and two parameters of the same order of magnitude. In a well
defined limit the theory presented here recovers earlier results obtained by Malkus (as yet unpublished)
for dilute ideal gas layers.
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1. Introduction. - The stability analysis of a thin
horizontal fluid layer heated from below (Rayleigh-
Bénard problem) is generally carried out within the
so-called Boussinesq [1] (1903) or Oberbeck [2] (1888)
approximation (see for details Chandrasekhar [3]
chapter 2, and for remarks of historical interest,
Joseph [4]). This approximation contains a number
of approximations of varying importance. For instance
viscous dissipation or compressibility effects are

disregarded, as well as temperature variations of such

(*) Permanent address : Departamento de Fisica-C-3, Univer-
sidad Autonoma de Madrid, Canto Blanco (Madrid) Spain.

parameters as viscosity, thermal conductivity or

thermal expansion coefficient. However viscous dissi-
pation, may be important on occasions. For if the
body force is large or if the length scale of the problem
is large, viscous heating plays a drastic role. Such

might be the case for convection in the earth’s mantle.
On the other hand if compressibility effects are of

importance they are comparable in magnitude to

viscous heating effects when the Gruneisen’s constant
is of order unity. This happens to be the common
situation with standard liquids and gases. There is yet
another important feature of non Boussinesq effects
of a different nature. A drastic qualitative différence
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occurs in the convective cell structure of fluids with,
a strong temperature dependence of the viscosity
(see for details Hoard et al. [5]) (1).
Thus one is faced with the problem of assessing the

role of the Boussinesq-Oberbeck approximation within
the general thermohydrodynamic despription of the
fluid layer. Mihaljan [6] was the first author to start
looking at a rigorous approach to the problem.
Partially at least, he succeeded. He was able to define
a two-parameter perturbative scheme for a rather
general description of the thermohydrodynarnics of
fluid layers. Let L and 9 be respective}y the vertical
depth of a horizontal fluid layer an4 the transverse
temperature difference. He carried a rewlar change of
variables to two new parameters, say e1 and qà both
smaller than unity (they are defined in section 2

below). The layer is assumed of small aspect ratio viz.
horizontally of infinite extent. The Boussinesq equa-
tions are obtained at the ë? e’ approximation viz.

the first-order series expansion terms. Yet Mihaljan’s
scheme was ill defined. For el and e2J".tum out to be
parameters with greatly different values for â standard
experimental situation of Rayleigh-Bénard C9nvection.
It is found than for standard fluid layers and thermal
constraints el and 92 can be of respective order
81 - l0-4, e2 ~ lo- il (see section 2 fQr.. more
details). Thus one wonders about the meaning to
ascribe to Mihaljan’s second-order approximations.
This should be given by the 8( 8g and gt 8j terÀii» Yet
2 0 0 1 03B521 03B502 » E1 el 2- _. 

"

The difficulty was discussed and solved by
Malkus [7]. However Malkus’s analysis is rçstriçted to
dilute ideal gas layers. As neither t4 restricted
Malkus analysis nor its generalization has appeared
in the literature we set ourselves te preiblem of
assessing Boussinesq approximation on a tirer
footing. Thus in section 2 we give a sc,,1iemàtjc and
critical account of Mihaljan’s [6] work. Section 3
is devoted to the discussion of the usefu.lÍ1ess of

defining a adiabatic hydrostatic reference fîcld ’(*.b.f).
A brief account of the Malkus analyse f6r a tinte
ideal gas layer is given in section 4. In section 5 a
straightforward generalization of Mîhaljan’s° theory
is presented although it still leads to an ill defined
perturbative scheme. A general perturbative scheme,
well defined at all orders, is presented in seçtion 6.
However no explicit consideration is given here to

any nôn Boussinesq contributions. They will be the
subject of a separate paper.

2. Critique of Mihaljan’s analysis (1962). - The
most rigorous exposition, available up to now in the
literature, of the general thermohydrodynamic des-
criptipn pifa horizontal thin fluid layer leading to the
Boussinesq approximation (see références [1, 2, 3
and 8]) is that of Mihaljan [6]. A straightforward
generalization however will be provided in section 5.
For the sake of completeness and for unity of expo-
sition in this paper at present we need, a review,
albeit &#x26;C1¥11Íatic, of Mihaljan’s work. This will aid us
in the Wfiçrstanding of some inherent difficulties in
Mihaljan’% §cheme when trying to account for non-
Boussinesq effects.

Let us consider a horizontal, single component
isotropic fiuid layer of depth Land infinite horizontal
extent. Mihaljan starts with the following assumptions :

i) The dçnsity of the fluid is a function of tempe-
rature l"/Í}one; and a, the volumetrid° expansion
coefficient ’j considered constant. Thus we have an
equation pf statc

p = Po[1 - c«T - Top . (2.1)
Here p is density. To is some reference temperature to
which a 4cnsity po corresponds. Eq. (2.1) precludes
any pressure dependence. We shall find this restriction
unnecessary in order to obtain the Boussinesq approxi-
mation, ’(sep section 5 below).

ii) The éwific heat at constant volume, the thermal
conductivity K and the shear and bulk viscosities,
denoted respectively by J11 and J.l2 are functions of

température only. Thus we have the equilibrium
relations 

and

Here U denotes the internal energy, cp the specific
heat at citant pressure and P is the scalar thermo-
dyna11}ÎC pressure. We shall denote in the following
0 e T - To. It may be useful to take To as the

température at the bottom of the layer but this need
not necessarily be so.
With the restrictions imposed above the hydrody-

namic equations read as follows :

e) A non linear steady temperature profile at rest amounts to the case of a temperature dependent conductivity.
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Here a subscript denotes a cartesian compohent, subscript 3 represents the vertical direction. bij is Kronecker’s
delta and Einstein’s summation conventMl on repeated indicé is ùkdi For convenience we have introduced
the quantity 7r , 

1

where Z is the numerical value of the vertical coordinate.

Eq. (2 .1 ) and the use of parameter 6 allows us to rewrite the differential system in the following way

The following functions have being defined

We shall now define scaling units : for both specific
heats : Co == cv(To). For both viscosities /10 ae’ pi(To) ;
for thermal conductivity : Ko = K(To). Thug-One can
express the material parameters in dimensionless
form. We shall take them primed below. Notice that
03BC1 &#x3E; p2 and one has 03BC’2 --_ (03BC2/03BC0)  1, 03BC’1 = 1.
The scaling unit for temperature is 8 * fo - Ti
where Tl is the temperatures at the top boundary.
Height (the only length here consideted) is §éàled by
the cent gap L. Velocities are scaled by V = Koi L
where a reference thermometric conductivity viz.
thermal diffusivity, is defined by xo _-- Ko/Po co. For
the pressure we take Po - po V2 and time is scaled
according to to = LI V. Density is measured in units of
po. Just to fix ideas for a L = 1 cm water layer and
0 = 1 with To around 300 K one has 10-4;
Ko 10’ uo ~ 10-2; co - 101 ; K ’ Á" 1 0-2 .
V - 10- 2 ; Po - 10-4 ; Vo == (po/po) £- 10-2 }.
Notice that a reference kinematic viscosity vo has also
been introduced. 

’

It is important to observe that two scalings are
superposed in the pressure term. One comes from the
upper bound of the hydrostatic pressure variation
along the vertical, this scaling being given by
Po = po gL. The other scaling comes from Bemoulli’s
theorem. It gives a maximum variation of pressure of
ordre ] p/v2max where vmax is the upper bound for the
velocity field. Clearly both scales are of quite different
order of magnitude. For water in the case referred to
above one has po V2 ~ 10-4 whereas po gL ~ 103.
We will see later that upon evaluating the pressure
gradient the hydrostatic part can be dropped.

If we now incorporate the scaling quantités and

look upon the primed (dimensionless) fields only,
the orienal eq. J2 . 8) to (2.10) become :

We have also introduced the following definitions :

Thus we have eight parameters

6 is a reference Prandtl number and R --_ agOL 3/xo vo
is the Rayleigh number. We have defined four pimo-
nomials and by Buckingham’s pi-theorem we only
have four independent quantities. These can be taken
E1, E2, G and a. For the water layer referred to above
one has the following estimates

for a Rayleigh number of value R - 103.
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A perturbative scheme can be defined now. The
obvious parameters to substitute for L and 0, are ai
and e2. The transformation { L, 0 1 --+ { 81, E2 } is
allowed as the Jacobian is non-vanishing. These are
the parameters used by Mihaljan (1962) (2).
For easy of reference we shall, in expanding, take

the following convention for a function 4&#x3E;(el, 82),
and write

For a function P(P’, B’) we shall write

and so on.
Once all functions and parameters are formally

expanded one collects the zeroth-ziroth order contri-
bution, called here the first non trivial approximation.
One gets

We have used the definition

Notice that in the equations above the bulk viscosity
does not show up. Thus in the first order approxima-
tion velocities are considered much smaller that the

speed of sound in the fluid. Notice also that

The eq. (2.19) to (2.22) are not yet the Boussinesq
equations as coninionly used in the ’iiterature. The

parameters a, cv, K and /l1 are not strict constants. To
actually get the standard Boussinesq approximation
one must impose Cy = co, K == Ko, /l1 == po. Thus

Milhaljan’s scheme is not strictly consistent even at
the level of Boussinesq approximation. This apparent
gap in the logical framework of Mihaljan’s analysis
is overcome in section 6 below.

(2) Here and later on one of the parameters will basically be 0,
the temperature difference across the fluid layer. Thus one wonders
about the relevance d: discussing turbulent behaviour for high
enough Rayleigh number in a given fluid layer within the Boussinesq
approximation.

It is of interest to note that the equations used by
Palm [9] and Segel and Stuart [10] can be obtained
from eq. (2.19) to (2.22) here. It suffices to return to a
description in terms of the dimensional fields and to
incorporate a functional form pi = J-lo(1 + y8) where
y is a parameter defined by these authors. Thus these
authors’ equations that were assumed to describe
some non-Boussinesq effects arise in fact from

Mihaljan’s zeroth-zeroth order approximation.
It is clear that when carrying on Mihaljan’s per-

turbative scheme to higher order approximations, no
pressure dependence can be taken into account and
yet this is not a negligible contribution as we show
now. For, assuming an equation of state like

one has for a standard fluid for a range of values given
above

whereas for a pressure drop of 10- 3 C.G.S. units and
X - 10-11, X AP - 10-8. Such pressure dependent
terms can in fact be disregarded at the first approxima-
tion. Yet for higher order corrections it may not be so
anymore.

Lastly, one remarks on Mihaljan’s unfortunate
selection ofparameters. For if e1 &#x3E; 1, 82 » 1 one has
however E1 &#x3E; 92. Already a second order approxi-
mation does not appear very meaningful. This shows
an inherent difficulty of Mihaljan’s scheme to describe
quasi-Boussinesq layers.

3. Utility of a référence adiabatic hydrostatic field.
- Let us introduce the following a.h.f., Pa, Ta, Pa
through the differential equations (3)

Pa = Pa (Z), p. = z(7,, Jazz Ka = Z(7,, Pi) and

Ta = Ta(z). We have also assumed the fluid layer
to be at rest. Define now a perturbation upon the
a.h.f. The perturbations will be denoted with tilded
quantities. One has :

Assuming now for convenience in our reasonning,

(3) In this section the third cartesian coordinate X3 will be
sometimes denoted by z.
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Ka = Ko held constant, and pa = Po[1 - a(Ta - To)]
we get from (3.1) and (3.2)

Solutions of (3. .1 b) and (3. 2b) are

(fl appears as an arbitrary parameter)

and

We consider now the hydrodynamic eq. (2.4), (2. 5)
and the energy equation

Notice that eq. (2.6b) here differs from Mihaljan’s
eq. (2.6) in that we have not incorporated any change
of internal energy due to volumetric variations and K
is not Ko. Using eq. (2.4) (2.5) and (2. 6b) we have for
the perturbed fields (3. 3) and (3.4)

We shall now make use of the same scaling para-
meters introduced in the preceding section and give
to fl the value 8/L, constant. The two parameters el
and 92 are also considered and a perturbative scheme
developed for eq. (3.7) to (3.9). Up to the first non
trivial approximation one gets

In eq. (3 .11) we have introduced for Fi’ the expression
given in (2.22).

In retrospect eq. (3 .10) to (3 .12) are in fact

Mihaljan’s first order eq. (2.19) to (2.21). Yet a few
remarks are of pertinent interest. In comparing with
Mihaljan’s approximation (1962) and here eqs. (2.19)
to (2.21)) we notice that dropping the hydrostatic
pressure gradient when computing pressure variations
amounts to dropping the two scales referred to earlier.
Thus all terms become of the same order of magnitude.
On the other hand dropping the steady heat flux Ko fl
in the energy equation leaves the internal energy

changes due to heat transfer only. Furthermore the

contribution P a v. is eliminated from eq. 3.120 
ax, , . 

q ( )

by using eq. (3.10). Also eq. (3.10) to (3.12) indeed
refer to perturbations upon a given a.h.f. solution
of the hydrodynamic equations. All terms in these
equations are numerically alike. This is not so in

Mihaljan’s equations.
Also in order to understand now the utility of

Mihaljan’s scheme we proceed as follows. Let the
a.h.f. be given by eq. (3.5) and (3.6). A straight-
forward perturbative analysis will now be given. Let
tilded quantities again denote perturbation upon the
a.h.f. of reference. A direct procedure is to proceed
like Chandrasekhar (1961) (Chap. 2). Thus one again,
gets up to first order in the tilded quantities, the first
eq. (3.10), but for the Navier-Stokes equation one
now gets

where F* represents the part of F that comes from

expanding p(T, P) in the perturbations T and P.
For the energy equation one gets

One notices that with such a straightforward method
we drop the convective terms from eq. (3 .11 b) and
(3.12b). This is to be expected as for the example
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given in section 2 above, one has the following esti-
mates

However these convective terms remain in Mihaljan’s
first order approximation. On the other hand f3V3
appears in eq. (2.12b). Thus this latter method

developed here is not consistent with dimensional
analysis of the problem. Nor is it consistent with
an actual numerical estimate of the contributions.
From this point of view Mihaljan’s analysis when
adequately supplemented with a reference a.h.f. is a
more suitable approach. The inherent difficulties
referred to above still remain though. For this reason
we now tum our attention to an analysis developed by
Malkus [7].

4. Analysis of a scheme proposed by Malkus (1964).
- In this section we discuss the approach developed
by Malkus [7] for a dilute ideal gas layer. We shall
again get the Boussinesq equations. But we shall
also gain insight into the procedure to be followed in a
general description given in section 6.
The starting pqint is again the set of hydrodynamic

eq. (2.4) to (2.6) but based on the following equations
of state

(M : molecular weight,
Ro : gases universal constant)

Malkus proceeds to define a reference a.h.f. through
the differential equations

This amounts to a local adiabatic condition imposed
upon the equation of state. From eq. (4.3) and (4.4)
one gets the relations 

’

The following relation holds

One now assumes that the unknown fields are local

perturbed fields upon the a.h.f. of reference. Thus we

consider again eq. (3.3) and (3.4) together with the
corresponding equation for p. Upon substitution of
the perturbed quantities into eq. (2.4) to (2 , 6) one
gets a differential system for the tilded quantities in
terms of the a.h.f. variables. One then introduces

scaling units as done in section 2. The length are
scaled with L ; velocities with an upper bound for

buoyant vertical velocity V = (gL AI/T^)1/2; time
with L/ V and viscosity with po = u(To). Needless to
say the only viscosity here considered is the shear

viscosity !
As done before we denote the new dimensionless

quantities with primes. With the a.h.f. the vertical

temperature difference across the layer of height
z’ = 1, is

Eq. (4. 8) defines fi. The value AT. is independent of the
actual temperature difference 9 between boundaries.
In fact this temperature difference can be thought of as
a perturbation upon the a.h. temperature ; one has

Already the a.h. fields can be recast into primed
quantities by using the monomial il defined above.
One has

where a second monomial has been introduced

S = R/cp. 
Po V2 ;Pressure can be scaled with po V2 ; temperature

with To e (where 8 * ATITO) and density with po e.
The reason for these last three scales is to have all
dimensionless numbers bounded by unity.
Thus we have nine parameters

and in the context here according to Buckingham’s
pi-theorem we are allowed to have five independent
pi-monomials. Introduced already are il, s and e.

Two more are straightforwardly obtained. They are

For later convenience one also defines
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In terms of these parameters and the dimensionless fields the hydrodynamic eq. (2 . 4) to (2 . 6) now become

Now Malkus uses e and il as the two perturbative
parameters. Thus up to the first non trivial approxi-
mation one gets

These are indeed the Boussinesq equations (see
ref. [3] Chap. 2).
Now a few comments are pertinent here to diffe-

rentiate Malkus’s approach from that of Mihaljan.
Firstly we notice that for standard fluids say air,

both parameters q and a are of nearly the same order
of magnitude. This fact, together with the fact that all
primed quantities are bounded by unity, justifies
consideration of higher order corrections. In this,
Malkus’s choice is fortunate.

Secondly from Malkus’s scheme we get a deeper
analysis of the Boussinesq approximation, restricted
however to dilute ideal gases only. We see that drop-
ping higher order terms we get equations for the
perturbations to the a.h.f. alone. The solutions of
these new equations added to the reference a.h.f.

correspond to solutions of the Boussinesq approxi-
mation. This is just the scheme that we have generalized
in section 6 below.
However we may note that the field defined by

eq. (4. 3) and (4. 4) above is not the best picture for.the
physical description of a thin gas layer at rest under
the adverse thermal constraint. Shortly we will intro-

duce a different and more suitable a.h.f. Yet, however
different the two a.h.f. may be both will lead to same
first non trivial approximations. From the discussion
that follows will also emerge the justification of

selecting an arbitrary, perhaps unphysical, a.h.f. to

generate these same equations together with relevant
higher order corrections in a self-consistent scheme.
To fix ideas let us think in terms of a helium gas

layer. This is indeed taken as an ideal gas under
normal conditions. We introduce the most general
a.h.f. through eq. (3.1) (3.2) and (4. 1) and let

For a hard-sphere gas a = 0.5. From eq. (3. 1) and
(3.2) we get

Notice that (20132013)  0. We shall dénoteNotice dz o 0  O. We shall dénote

Now solutions (4.24) and (4.25) are incompatible
with the system (4.3) (4.4) and (4.5). On the other
hand comparing solutions (4.5) and (4.6) with solu-
tions (4.24) and (4.25) shows that their second order
terms are différent. Thus in the first order approxi-
mation the perturbative scheme generated from (4.24)

(4) Using Malkus’s parameters applied to the field (4.24) and (4.25) one gets at the first order approximation

where a new monomial has been used ( =- gM/R Uo.
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and (4.25) with (2.4) to (2.6) will be different from the
similar approximation that arises from (4.20) (4.21)
and (4.22) (4). Let us prove that they do in fact corres-
pond to the same order of approximation.

Let us start by defining two different a.h.f. denoted
by subscripts i = 1,2 ; Tai, Pai and Paie Let T, P and p
now be quantities satisfying the general hydrodynamic
eq. (2.4) to (2.6). For sake of simplicity we shall
concentrate our discussion on the temperature field
only. Let tilded quantities be perturbations upon the
a.h.f. of reference. We have the following identities

Here To is some arbitrary reference temperature held
fixed. Let us now expand Tl and 12 in two parameters q
and e, assuming both to be of same order of magnitude.
We get

Thus up to the first non trivial order of approximation
one has :

together with

Thus both (4.32) and (4.33) differ in first order terms
in il or e only. In order to get the Boussinesq approxi-
mation one neglects higher order terms therefore one
concludes that no matter what a.h.f. is actually used,
the first non trivial approximation gives the same
answer.

5. A first and straightforward generalization of

Mihaljan’s scheme and its inhérent difficulties. -

In this section we clarify the role played by the a priori
restrictions imposed by Mihaljan upon the equations
of state and material parameters. Such restrictions are
in fact unnecessary and even more destroyed the

self-consistency of Mihaljan’s scheme even at the
level of the Boussinesq approximation. In the approach

to be given now some of these restrictions are natural
consequences of a well defined general perturbative
scheme. We will however stay as close as we can to

Mihaljan’s line of reasoning.
Once more the starting equations are the general

hydrodynamic equations to be taken now in the
form (2.4) (2 . 5) and for the heat equation

No restrictions are imposed upon the temperature
and/or pressure dependence of the material parame-
ters. Reference values are Po, the pressure at the
bottom of the fluid layer, and some temperature
value To, assuming for convenience an hypothetical
isothermal hydrostatic field (i.h.f.) throughout the

layer. Then we will refer the actual fluid temperature
and pressure fields through the layer to this i.h.f. as

Thus 7T and 8 are perturbations upon the i.h.f. Units
of scale are :

We shall refer lengths to L and take as unit of tem-
perature 0 = T2 - Tl, the temperature difference
across the layer. Velocities are measured with V- Ko/ L,
pressure 

/ with 7to == Po K2IL 2 and times with

L 2/xo - L/ V. Here again xo - k.1p, co and

denote respectively thermal diffusivity and kinematic
viscosity.
Thus we have ten parameters

Buckingham’s pi-theorem predicts then six inde-

pendent pi-monomials and four basic quantities.
We take

As in other occasions above R is Rayleigh dimension-
less temperature difference. Again denoting the dimen-
sionless fields with primed quantities the general
hydrodynamic equations become :
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where

To fix ideas relevant values of the parameters are
given in table 1 :

TABLE I

Water layer under standard adverse thermal gradient.
When unspecified the values of parameters are given
in C.G.S. units.

Notice that E1, 82 « 1 and now e1 ~ e2, in contrast
to the situation discussed earlier in this paper. The
Jacobian of the transformation { L, 0 1 --+ { F-1, 92 }
is not vanishing. We thus choose el and 82 as pertur-
bative parameters for the expansion. Notice also that
derivatives of p’ are of first order in both el and 82.
Again as developed before we obtain at the first non

trivial approximation (viz. e? 8% terms) the Boussinesq-
like equations, that we shall not write anymore (see
section 2 above).
A few important remarks are pertinent. Firstly the

term containing the bulk viscosity does not show up
at the level of the first approximation. Thus there is
no need of any a priori elimination of this parameter.
This implies that the a priori assumption of quasi-
incompressibility is not needed.

Secondly the scheme is valid irrespectively of
whether the fluid be a liquid (incompressible) or a gas
(ideal or not). In the limit of a dilute ideal gas one
indeed recovers Malkus’s results given in section 4
above.

Thirdly, as the equations obtained here are similar
to those given in section 2 above we still have found
the Boussinesq-like approximation but not strictly
the Boussinesq equations (see ref. [3] or [8]). The
material parameters must arbitrarily be set constant.
Thus we need a condition ranging outside the pro-
posed perturbative framework. Even though our

approach does generalize Mihaljan’s perturbative
scheme and overcomes one of the inherent difficulties
that arises from the choice of the expansion parameters
we still have difficulties in properly accounting for
the Boussinesq approximation. For this very reason

we tum our attention to a generalization of the a.h.f.
concept introduced in earlier sections.

6. An appropriate a.h.£, the Boussinesq approxi-
mation and a general perturbative analysis. - Let
{ Ta, Pa, p. 1 define a suitable a.h.f. satisfying the
differential system

Here it is assumed that at z = 0 one has Ta = To,
à = Po, Pa = Po. The subscript on the remaining
quantities denote reference values taken at the To,
Po thermodynamic state. 

,

Solutions of (6 .1 ) to (6.3) are

where p denotes an unspecified but constant adverse
thermal gradient. The easiest specification will be to
choose p corresponding to the Rayleigh number for
the onset of convective instability. But this need not
necessarily be so.

Let us now define the following dimensionless
monomials
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Thus eq. (6.4) to (6.6) for the primed fields become
in dimensionless form

Here as usual z’ = zip and

Now for the general fluid dynamics we write the
equations in terms of perturbed fields (3.3) (3.4)
upon the reference a.h.f.

Let us now define new dimensionless quantities

where At denotes the différence in 1 between higher
and lower parts in the fluid layer. Eq. (6.19) also
defines 0153. One now writes 

-

and as usuai the primed quantity is dimensionless.

Again velocity is scaled with

Eq. (6.21) provides an estimated value of the velocity

field for a maximum buoyancy effect taken at the
upper boundary. Pressure is scaled with

An estimate of p can also be given. Let AP denote
density contrast between higher and lower parts in
the fluid layer. Then Ap/po is of order r¡ 1. Thus

Now

A Taylor series expansion gives

and

Notice that under standard conditions both Cl and 62
are much smaller than unity. For instance for the
water layer of Table 1 Ci - 10-2 and C2 - 10-5.
Thus one is led to the following scale

With this unit one estimates V and po Y2. One has

and

As in previous occasions LI V, Ko, co, ao and xo define
the remaining scaling factors. Thus we have twelve
parameters

Buckingham’s pi-theorem leaves eight pi-monomials
only. As yet we have defined { 111’ 112, C1, 62, 4&#x3E;, cv }.
We will also have u (Prandtl number) and R (Rayleigh
number). With the use of these parameters and the
scaling units one has the following set of differential
equations
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In eq. (6.17b) and (6.18b) we have used vo = po/po, Ko = kolpo co, R = gL3 el n1/Ko vo and u = volko.
A general and well defined two-parameter expansion is obtained in terms of Il and n2. For the water layer

of Table I above estimated values are il, - Il 2 -10-3 . Again the Jacobian of the transformation (L, fi) ---&#x3E; (n1,, n2)
does not vanish. Thus up to the first non trivial approximation one has in dimensionless form :

Eq. (6.28) to (6.30) define the correct non linear
Boussinesq approximation. Compare for instance the
results of Mihaljan [6]. His eq. (4.6) corresponds
term by term to our eq. (6.29) here. Each separate
term does not however give the same physics in both
papers. There is also an obvious différence between
our eq. (6.30) and Mihaljan’s eq. (4.6). The difference
comes from our original definition of the reference
a.h.f. The comparison with Chandrasekhar’s [3]
eq. (56), p. 19 is however almost straightforward. For
if one linearizes out eq. (6. 30) then goes back to the
original fields and drops all pressure dependence in
the equation of state, and also makes the transforma-
tion from the variables here to those of Chandrasekhar
one gets his eq. (56), p. 19. It is thus clear that the only
differences are matters of convention, approximation,
and indeed of the physical meaning ascribed to the
unperturbed reference fields.
The eq. (6.28) to (6.30) have been obtained as a

first order perturbation upon the reference a.h.f.
defined by eq. (6.4) to (6.6). Since the material

parameters and the equations of state are almost

unrestricted in our description the results obtained
in this section constitute a non trivial generalization
of Mihaljan’s results [6] although at first sight it is

purely formal. In our opinion it helps to understand
the Boussinesq-Oberbeck approximation on a deeper
basis. Our results also provide a natural generalization
of results already obtained for dilute gases by
Malkus [7]. It should finally be mentioned that an
intuitive derivation of Boussinesq equations, though
not a valid method to generate higher order correc-
tions, has been given by Spiegel and Veronis [11].
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