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THEORY OF ONE- AND TWO-DIMENSIONAL MAGNETS WITH AN EASY
MAGNETIZATION PLANE

II. THE PLANAR, CLASSICAL, TWO-DIMENSIONAL MAGNET

J. VILLAIN

Laboratoire de Diffraction Neutronique du Département de Recherche Fondamentale,
Centre d’Etudes Nucléaires de Grenoble BP 85 Centre de Tri, 38041 Grenoble Cedex, France

(Reçu le 12 décembre 1974, révisé le 3 février 1975, accepté le 6 février 1975)

Résumé. 2014 On donne une nouvelle méthode d’étude des systèmes planaires magnétiques à 2 dimen-
sions : le Hamiltonien est remplacé par une approximation qui, contrairement aux approximations
antérieures, préserve la symétrie correcte du problème. On confirme l’existence d’une transition à Tc
et on donne une évaluation quantitative de Tc et de la fonction de corrélation de paire au-dessous de
Tc. Les résultats sont en accord à basse température avec ceux de l’approximation de Hartree. On
prévoit une transition à une température KB Tc = 1,7 Js2, en bon accord avec les prédictions des
développements en séries à haute température, alors que les exposants critiques sont ceux prévus par
Kosterlitz, notamment 03B3 = ~.

Abstract. 2014 A new approach to the 2-D classical planar magnet is proposed. The Hamiltonian is
replaced by an approximate one, which, in contrast with previous approximations, preserves the
correct symmetry of the problem; the existence of a phase transition without long range order at some
temperature Tc is confirmed; quantitative evaluations of the spin pair correlation function below Tc,
and of the transition temperature Tc are given; the results are in good agreement at low T with the
self consistent harmonic approximation (S.C.H.A.). A transition is predicted at a temperature
KB Tc = 1.7 Js2, in very good agreement with predictions based on series expansions, whereas the
critical exponents are those predicted by Kosterlitz, in particular 03B3 = ~.
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1. Introduction. - It is commonly admitted that
two-dimensional (2-D) magnets without lattice ani-

sotropy undergo a transition without long range
order (L.R.O.) [1, 2] at a finite temperature Tc, and
that L.R.O. appears below Tc in the presence of the
slightest anisotropy or of the slightest three-dimen-
sional (3-D) interactions [3, 4, 5]. In practice, both
anisotropy and 3-D interactions are present, so that
what is experimentally seen [6, 7] is a critical tempe-
rature Tc (with L.R.O.) which has the same order of
magnitude as the in-plane coupling constant J and
is independent of the 3-D interaction J’ « J, and
of the anisotropy; this is somewhat unexpected,
since L.R.O. should dissapear at any finite tempera-
ture T when J’ and the anisotropy vanish [8], so that
one might expect Tc to vanish with J’ and the

anisotropy.
Berezinskii and Blank [5] have been able to show

that it is actually not so : in the Heisenberg, 2-D modela
L.R.O. persists up to a finite temperature, even for
vanishingly small J‘ or anisotropy. In our point of
view, this is the only non-heuristic theory of the
2-D Heisenberg model, although Greens Function

decoupling approximations [2, 3, 4] are apparently
in good agreement with experiment. In particular,
no reliable description of the transition in the iso-

tropic case exists ; the very existence of the transition
has even been questioned [9].
The situation is better in the case of planar, classical

systems, in which the spin is a 2-D classical vector [10,
1 l, 12, 13, 14] ; such a model is a poor approximation
of any existing material, but it can be expected to
have a behaviour quite similar to the Heisenberg
model. Most of existing theories [10, 11, 12, 13, 14]
are low temperature approximations, and the problem
is to extend them to higher temperatures. A fruitful
method for this purpose has been developed by
Kosterlitz and Thouless [15, 16], who have argued
that a 2-D planar classical magnet is equivalent to
à 2-D classical electrolyte. By means of this trick, they
have been able to give a qualitative description of the
region below Tc, and Kosterlitz [16] was able to give
the values of the critical exponents - which are quite
unusual, since a = - oo and y = + oo.

, 
A weakness of the Kosterlitz-Thouless model [15]

is that the equivalence between the 2-D planar magnet
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and the 2-D electrolyte lies on intuitive and qualita-
tive, rather than quantitative bases ; this equivalence,
rather clear at low T, is not at all obvious in the
critical region.

In contrast with the Kosterlitz-Thouless approach,
qualitatively correct but quantitatively incorrect,
another method, the self-consistent harmonic approxi-
mation (S.C.H.A.) of Pokrovskii and Uimin [17] is

quantitatively correct at low T (as will be shown in
this paper), but requires better justification, because
it replaces the original potential by a potential of a
different symmetry, so that it is not obvious that the

qualitative features of the model are preserved;
moreover, S.C.H.A. is the first step of a perturbation
expansion, whose convergence is questionable [14]
because fourth order terms in the potential are

negative.
The approach proposed in the present paper unifies

the methods of Kosterlitz and Thouless, and of
Pokrovskii and Uimin, and provides them with
better bases. In addition, further improvement of
the method can be envisaged.
The approximation proposed in the present paper

replaces the magnetic Hamiltonian by an approximate
one, which has the complete symmetry of the original
Hamiltonian, and which naturally splits into 2 parts :
i) a harmonic Hamiltonian, Jeh, with a T-dependent
stiffness constant, which exhibits no phase transition,
but accounts for the properties of the system up to
0.9 Tc; the stiffness constant can be expanded in

powers of T, and the first 2 terms have the same value
as in S.C.H.A. ii) a Hamiltonian Jev which describes
a 2-D electrolyte, with a T-dependent Coulomb
interaction. The equivalence with the 2-D electrolyte
is quantitative at all temperatures.
For more generality, an in-plane anisotropy is

inserted in the general formalism, but only the pro-
perties of the isotropic planar magnet will be described
in this paper; the effect of an in-plane anisotropy
will be treated in a subsequent paper.
The approach proposed in this paper cannot be

easily generalized to 2-D quantum magnets, but it
can be applied to quantum linear chains, which will
be the object of a subsequent article.
The present paper is the continuation of a previous

one, mentioned as reference [14].

2. The model. - The model, as defined by other
authors [10, 11, 12, 15] is described by a continuous,
classical field Qi defined at the sites i of a 2-D or
3-D lattice and representing the polar angle of a
2-D unit vector. The energy has the form : 

’

where Vij is a short range interaction ; more precisely,
nearest neighbour interactions will be assumed in

the greatest part of this work. Usually, one takes :

where Jij and D are constants and m is a given integer.
m = 1 corresponds to a magnetic field, m = 2, m = 4
and m = 6 define an m-fold anisotropy ; other values
of m are in principle non-physical.

Instead of (2.2) and (2.3), the following forms of
Vij and U will be assumed :

where n and v are integers ; if (2.4) and (2. 5) are used
to approximate (2.2) and (2.3), the constants depend
on the temperature T and are of importance for the
calculation of the specific heat but not for the corre-
lation functions. In the calculation of the partition
function, correlation functions, etc., Vij and U appear
through the Gibbs distribution, and therefore through
the expressions :

The factor 2 in (2.6) accounts for double summation
over each pair.

It results that the correlation functions which can
be calculated from (2.4) and (2.5) are exactly those
which might be calculated from the following effec-
tive Hamiltonian :

where the nij ’s satisfy : nij = - nji .
The system is now described by the continuous

field Qi plus the discrete fields nij and vi. The advantage
of this description is that (2. 8) is a quadratic form,
although non-trivial because of the discrete fields.

nij and vi have no obvious physical meaning.
Real systems are often well described by (2.2)

and (2.3), so that expressions (2.4) and (2.5) must
be considered as approximate forms in which the

parameters Aij and B must be defined as functions
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of Jij and K. This definition can be provided by the
prescription that the right hand sides of (2.6) and
(2.7) have the correct first 2 Fourier components,
i.e., the first 2 Fourier components must be the same
as those of the left hand sides after insertion of (2.2)
and (2.3). With such a prescription, the fit is eery
good at low and high temperature, and satisfactory
at intermediate T, as shown by figure 1, which

compares (2.2) and (2.4) near Tc.

FIG. 1. - The true Boltzmann factor (full line) exp - 2 fi V,
where V is given by (2.2) and the approximate Boltzmann factor

resulting from (2.4) (dotted line).

The calculation is given in the appendix. One finds

i) In the high temperature limit :

ii) In the low temperature region :

Figure 2 gives A/J as a function of T/J from 0 to the
transition temperature, about nJ/KB [15].

FIG. 2. - Reduced, renormalized stiffness constant A/J as a

function of temperature between 0 and Tc.

If all nij’s are supposed to vanish, and if the first
order term in (2.11) is neglected, the Wegner-Bere-
zinskii [10, 11] approximation is recovered at low T.
We are not yet is a position to take full advantage

of the quadratic character of (2.8), because in the
expression of the average value of any quantity A :

appears an integration over gi from - n - to + n

since :

It is clearly more convenient to use an integration
over lpi from - oo to + oo ; this can be achieved by
the use of the following identity :

where both sides are operators acting on any periodic
function of ç at their right, with period 2 n. Eq. (2.15)
can be easily derived from eq. (2.12). Inserting (2.15)
and (2.8) into (2.12), it is seen that the average values
can be calculated from the Hamiltonian :

using the rules (2.12), ( 11.14) and :

instead of (2.13).
(2.16) involves a double summation on each pair

(i, j) with nij = - nji. The limit e - 0 has to be taken.

MORE SOPHISTICATED APPROXIMATIONS. - It is pos-
sible to have correct first 3 Fourier components, if

(2.4) is replaced by the following, more sophisticated
expression :

where a is a T-dependent parameter, and S’ is a

spin 1. The reader will easily invent more compli-
cated, forms yielding more Fourier components ;
the approximation (2.18) will be discussed in Chap-
ter 6.
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3. Transformation of the effective hamiltonian in the
case of first neighbour interactions. - Assuming a
(2-D) rectangular or (3-D) orthorhombic lattice with
first neighbour interactions, we shall now transform
the effective Hamiltonian (2.8). As it is quadratic,
a Fourier transformation is relevant :

N is the number of sites, Ri is the vector of the coordi-
nates of the site i and ni = nij for any bond ij directed
along Oa (a = x, y, z). ni = 0 otherwise.
The non-vanishing possible values of Aij are called

Ax, Ay, Az. The effective Hamiltonian (2.16) can be
written as :

where

where ax’ ay, a.z are the vectors defining the unit cell.
The summation in (3.2) and in the following is

over the Brillouin zone. (3.2) can be cast into the
following form :

with

where :

and

or :

The variables Oi are continuous and can take all
values from - oo to + oo, so that the harmonic

, 
Hamiltonian Jeh is trivial and contains no phase
transitions. It is decoupled from 3ev and Jea.

4. Vortices. 2013 4.1 INTRODUCTION OF THE VORTEX
VARIABLES. - In this Section, the relation with the
vortices, introduced by Kosterlitz and Thouless [15]
will be shown in the special case of 2-D systems.
Eq. (13.6) reads for D = 2 :

In the limit e = 0, J6v does not depend on the variables

but only depends on the variables :

It is important to note that the Fourier transforms
pP and qp are integers. They are defined at the centres p
of the unit cells, as follows :

a and b are the vectors aa and ay which define the unit
cell.

Insertion of (4.3) into (4. 1) yields : in the limit
e=0:
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The term k = 0 has been omitted because

as results from the definition (4.4) if cyclic boundary
conditions are imposed.
The integers qp are the charges introdubed by

Kosterlitz and Thouless.
From now on, one assumes :

4.2 VORTEX INTERACTION IN THE DIRECT SPACE. -

Because the qp’s, and not the qk’S are integers, it is
convenient to rewrite (4. 7) in the direct space as :

where

can be rewritten as :

where 

goes to infinity when the dimension L goes to infinity.
This is of no importance, because (4 .10) reads :

and the second term vanishes because of the condition

(4.8). Finally :

where

is found to have the following special values :
VpP = 0 (4.13a) ,
vpp, = - n2 A for nearest neighbours (4 .13b) .

When the distance r pp’ between p and p’ is large, the
asymptotic form of Vpp, has been given by other
authors [11,16], but a more explicit calculation will
be given below ; VPp, is easily seen to be isotropic for
large distances, so that rpp, can be assumed to be

parallel to Ox ; in this case the integration over ky
can be carried out and yields :

where u = k,, a and rpp, = na ; for large n, one obtains

where y = 0.577 is Euler’s constant ; thus :

An interpolation formula between (4.13b and c),
accurate within 3 %, is [ 16] :

The Hamiltonian becomes :

At low T, A = J according to eq. (2.11) and eq. (54)
and (57) of reference [15] are recovered.
The above equations give average values, correla-

tion functions, etc., but not the partition function.
The calculation of the partition function is not difficult
but : i) the additive constants in (2.4 and (2. 5) should
not be dropped ; ii) the factor 2 V’ nf3B in (2.15) should
not be dropped ; iii) the contribution of the second
term in (4. 1) should be considered : it is easy because
the pp’s can be considered as continuous in the limit
e - 0. All these contributions are regular functions
of T.

4. 3 EFFECT OF THE VORTICES ON THE SPINS. - If one
wishes to calculate the spin pair correlation function,
which is the task of Section 5, one has to calculate the
following quantity which appears in eq. (3. 10) :

The limit E = 0 has been taken.
Since the pp’s defined by (4.2) and (4.5) do not

appear in the hamiltonian (4.7), they are expected to
be non-physical and therefore, if one writes the

following equation, in principle easily deduced from
(4.15), (4.2), (4.3) :

it is expected that the second term vanishes. Actually,
it does not but one can take advantage of the fact that
all functions of 03C8i which have a physical meaning are
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periodic with period 2 n, and replace (4.16) by an
equation valid modulo 2 n, namely :

The derivation of this expression, which does not
depend on the p’s, is tedious and can be found in

Appendix B. It is also shown in this appendix that if
the distance ri, between i and p is large :

is the angle of rip = R; - R, with a fixed direction Ox.
Eq. (4.17) and (4.18) can be more easily derived

from the qualitative picture of Kosterlitz and Thou-
less [ 15]. Finally, the model of these authors is comple-
tely recoverred, except that J has to be replaced by
A - a quantitative correction, which is small at

low T, and amounts to 38 % at Tc.

5. Spin pair corrélations in the two-dimensional

isotropic planar magnet. - 5.1 FACTORISATION OF

THE SPIN PAIR CORRELATION FUNCTION. - The case
B = 0, which will be considered in this section, has
been extensively treated by Kosterlitz and Thouless [15]
and by Kosterlitz [16], and we shall only summarize
their results and show that the improvement of their
method, that we have introduced, gives a quantitative
agreement at low T with the Hartree approximation
of Pokrovskii and Uimin [17].

Since the variables 0k.. and are independent, the
spin pair correlation function :

can be decoupled as follows :

The first factor is well known :

so that the problem reduces to the calculation of the
second factor in (5 .1 ).

5.2 THE PHASE TRANSITION OF THE 2-D ELECTRO-
LYTE. - Whereas the 3-D electrolyte exhibits no

phase transition, as is well known, the existence of a
phase transition in the classical, 2-D electrolyte has
been shown in a beautiful paper by Hauge and
Hemmer [18], at least in the absence of a hard core.
Above a critical temperature Tc, the dielectric cons-
tant is infinite as in any well-behaved electrolyte, and
can be calculated by an approximation of the Debye,
or R.P.A. type, as discussed in a recent paper by
Deutsch and Lavaud [19] ; below Tc, pairs of opposite
charges are formed, and, since they constitute neutral

FIG. 3. - The exponent T/A of the pair correlation function (5.2)
as a function of temperature.

units, the system becomes insulator. The conductor-
insulator transition is still present if there is a hard core

repulsion [15, 16, 19] because at low T the polariza-
bility is given by the mean square radius of the pairs,
which is finite [15], whereas at high T, R.P.A. applies
and produces an infinite polarizability, as in any
well-behaved electrolyte.

Thus, the equivalence of the 2-D planar magnet
with a 2-D classical electrolyte (clearly shown in the
present paper) yields a very convincing proof of the
existence of a phase transition (disputed by Yamaji
and Kondo [9]) in the 2-D planar magnet ; this proof
is perhaps simpler than the proof given by Berezinskii
and Blank [5], which is quite convincing too.

It is of some interest to give a numerical evaluation
of Tc, although comparison with experiment is
difficult because real 2-D systems have marked

quantum properties. Tc is given by eq. (3.5) of
reference [ 16], where J is replaced by A :

For more precision, n’ is replaced by

yielding :

This value is much lower than Kosterlitz’ result
2.7 Js2 as well as the S.C.H.A. result [14, 17],

but is in quite good agreement with Stanley’s pre-
diction [20] from high temperature series. We believe
that our result is more reliable, however. For the
Heisenberg model, a plausible approximation is
obtained if s2 is replaced by  S; + Sy2 &#x3E; =2 s2/3, yield-
ing, in good agreement with Stanley and Kaplan [1] ]
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This value fits the experimental data quantitatively
(2 %) in the reasonably classical example of (s = 3
Ca2Mn04 [21 ], whereas the fit with experiment is qua-
litative for K2NiF4 [6] (s = 1) and bad in K2CuF4 [7]
(s = t, Tc~ J/2).

5.3 REGION ABOVE T,,. - For T &#x3E; Te, the equi-
valence with the classical electrolyte is of little help
for the investigation of the 2-D planar magnet, because
the quantity of interest (the second factor in (5 .1 )) is
difficult to calculate by standard theories like R.P.A. ;
for instance, a cumulant expansion limited to first
order :

would be a very bad approximation above T, because
the resulting spin pair correlation would not decay
exponentially with rij.

However, Kosterlitz has shown [16] that there is a
characteristic length which is an exponential function
of 1 /( T - Tc)’ which corresponds to a critical exponent

and therefore y = oo, in contradiction with Betts [22],
who obtains for s = 2, on the basis of high tempera-
ture expansions :

In the absence of any calculation of the spin pair
correlation function, it is not obvious that there is

only one characteristic length, and that the length
obtained by Kosterlitz is the one of interest for

magnetic problems. On the other hand, investigation
of critical properties by means of high temperature
expansions seems difficult in 2-D isotropic sys-
tems [9, 16].

5.4 CRITICAL REGION. - The spin pair correlation
function at Tc has been calculated by Kosterlitz [16],
who finds critical exponents :

just as in the 2-D Ising model, and again in contra-
diction with Betts [22] who finds :

So far as we could see from Kosterlitz’ calculation,
the dielectric constant is not infinite at Tc, but only
above Tc.

5.5 REGION BELOW Tc. - For T  Tc, it can be
shown that [15, 16] :

It follows from (5.2) that :

where

The power law (5.5) is similar to those derived by
other methods [10, 11, 12, 14], but the present deriva-
tion is more reliable, since the potential has been
replaced by an approximate potential which has the
same symmetry as the original potential.
We now give an elementary derivation of (5.4),

correct sufficently below Tc.
At low T, vortices are paired and the interactions

between pairs can be neglected because their distance
is very large. If pairs do not interact, the probability
law of (03C8i - 03C8j) is gaussian because of the central
limit theorem (1) and therefore (5.3) is correct.

Insertion of (4.17) yields :

where the equation :

has been used. For non-interacting pairs :

it is easily seen that the dominant contribution to (5 . 7)
comes from r pp’  rip  rij (resp. r pp’  r jp  rij)’
so that the factor (03A6iP - 4’jp’ - ’03A6ip’ + 03A6jP,)Z can be
replaced by (rpp’/2 r;p)2 (resp. r2pp,/2 r7 p). Insertion
of (5.8) and (4.14) into (5.7) yields eq. (5.4), with :

This formula is consistent with a transition at :

As discussed by Kosterlitz and Thouless [15], this
value is reasonable, since the correct value calculated
above is 1.7 J, but eq. (5.9) does not describe the
correct critical behaviour of i’. A more careful
calculation [16] shows that T remains finite at Tc.
However, (5.9) is quite correct at low T and can be
used to see at which temperature i’ becomes important
in (5.6). Using (5.10) and (5.9), it is found that for
T  0.9 Tc, T’ can be neglected in (5.6) with an

accuracy of 10 %.
In this region, A is reasonably well approximated

by a linear function of T, eq. (2 .11 ), and insertion
into (5.6) yields :

(1) This is only true if 03C8i, is defined by (4.17), where Oi. is a
smooth function of ri., as shown in Appendix B ; if definition (4.15)
is used, 03C8i; is singular and the central limit theorem does not apply :
actually the right hand side of (5.3) is infinite at all T.
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in agreement, to lowest order in T, with the Self
Consistent Harmonic Approximation of Pokrovskii
and Uimin. One notices that i’ is not analytic at

T = 0 and cannot be accounted for in a expansion
of the above type. A final remark is that a correct
calculation [16] shows that 7:’ can be neglected in

(5.11) with an acceptable accuracy at all T  Tc.

6. Discussion. - a) It is not perfectly obvious that
the problem defined by (2.1, 4, 5) is strictly equivalent
to the problem defined by (2.1, 2, 3). This might be the
reason why the critical exponents obtained from
series expansions for the latter problem are different
from those obtained by Kosterlitz for the former

problem. We believe, however, that both problems
are strictly equivalent (apart from obvious quanti-
tative différences), and we try to justify this statement
below.
A first remark is that the high temperature series

expansions using model (1. 1, 2, 3) seem to be consis-
tent with an infinite value of y (Camp and Van Dyke,
preprint).

b) An alternative way of writing (2.6) is a sum of a
bilinear exchange term similar to (2.2), plus a biqua-
dratic exchange, etc. In addition the coupling constants
are functions of T, but these functions are analytic,
so that this fact cannot influence the critical exponents.
Now, the existence of biquadratic and higher terms is
not expected to modify the nature of the order below
T, nor the critical exponents, provided the Univer-
sality Principle is admitted : both problems (2.1, 4, 5)
and (2.1,2,3) are obviously represented by the same
type of Landau-Wilson free energy.

c) However, since the Universality Principle cannot
be considered as a proof, one wishes to improve the
approximation (2.4) of the original potential (2.2) :
the next approximation is given by (2. 18) ; in this

approximation, the vortex hamiltonian (4. 7) is repla-
ced if (4. 9) holds by :

A simple way to account for the additional terms
is to assume a linear law :

so that (4.7) is recovered, except that A must be
replaced by A(1 - 2 aE2 Xsk + a2 xk2) and the results
are essentially unchanged. The susceptibility xk of the

spin system cannot be easily calculated but it is fairly
clear that it has no singularity. Of course the linear
law (6.2) is only valid in the limit a --&#x3E; 0, and the
effect of possible higher order terms in (6.2) is difficult
to evaluate. It is reasonable, however, to speculate that
they are not essential.

d) Finally, the same exponents as obtained by
Kosterlitz can be derived in a quite different (but not
rigorous) way : the 2D, classical, X - Y model can be
transformed by a functional integration technique
into an X Y chain of spin 1 at T = 0 in a transverse

anisotropy field (which depends on the temperature T
of the original 2-D problem). If one approximates the
latter problem by an X Y chain of spin 1/2 in a trans-
verse field (a rigorously soluble problem) one finds
a = - oo and therefore, if one accepts scaling laws :
Dv = 2 - a and v = + oo, in agreement with Kos-
terlitz. Thus, there is a strong theoretical support in
favour of the result v = ce, and probably

y = (2 - 1) v = oo.

e) However, recently published experimental data
yield a finite value y = 2.37 for the 2-D XY model,
although it is much larger than Betts’ prediction [23, 24],

f ) In the absence of any calculation of the spin pair
correlation function above Tc in the model (2. l, 4, 5),
one can have no idea of the temperature region where
the divergence of the critical exponents becomes

significant.

7. Conclusion. - Our method provides a more

quantitative basis to the Kosterlitz-Thouless theory
of the 2-D planar magnet, and suggests substantial
corrections : for instance, the critical temperature is
lowered by about 40 %. It is confirmed that the spin
pair correlation function behaves like a power law
below Tc, and the exponent coïncides at low T with the
prediction of the self consistent harmonic approxi-
mation ; however, the discrepancy with S.C.H.A.
becomes important near T,,, : for instance the value

predicted for Tc is twice as small as in S.C.H.A. Our
value of Tc compares favourably with experiment, but
a precise comparison is impossible because of quan-
tum effects, which we have neglected. More detailed
comparison with experiment will be made in a subse-
quent paper, devoted to more realistic models with
an anisotropy.
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APPENDIX A

One wishes to approximate the function : by an expression of the form :
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where R and y are constants and n is an integer. In the
’ 

notations of Section 2 ; one has -

and

According to the prescription of Section 2, the
first 2 Fourier components of (A 1) and (A 2) must be
the same. The Fourier series for g(u) is :

with

On the other hand the Fourier series for (A 1) is

with :

where In is a modified Bessel function.

If (A 2) is wished to approximate (A 1), one must
have :

Eliminating R, one gets from (A 6) and (A 8) :

a) For large e (low T limit)

and (A 9) reads :

b) For small e (high T limit)

and (A 9) reads :

and (A 9) reads :

Insertion of (A 3, 4) into (A 10,11 ) yields eq. (2. 9,
10, 11)..

APPENDIX B

The Fourier transform of (4.15) can, using (3 .1 c),
be written as :

It is convenient to express §; in terms of the pp’s
and qP’s in the case when all nij = 0 except for one
single bond. If an equation which has the same form
for all bonds horizontal or vertical is obtained, and
if it is linear, it can be easily extended to any number
of bonds with nij "# 0.

i) If all nij = 0 except on one vertical bond, the

following expression can be deduced after some

manipulation from (B 1) and (4.4) :

with :

The assumption (4.9) has been used. (B 3) also holds
if nij = 0 except on any number of vertical bonds,
since it is linear.

ii) If all nij = 0 except on one horizontal bond, the
corresponding relations are :
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A unified form is wanted instead of the 2 relations (B 3)
and (B 5). For this purpose, (B 5) can be replaced by :

where, from (B 4) and (B 6) :

where xip and Yip are the components of (Rp - Ri)
and the function :

satisfies the relations :

Hence :

and :

In the case when all n’s vanish except on one horizon-
tal bond, it can be shown by inspection that (B 7) and
(B 8) can be replaced by :

with 
r

The advantage of (B 9) over (B 7) is that it can be
seen by inspection that if all n’s vanish except for one

. 

vertical bond, (B 3) can also be replaced by (B 9).
Since (B 9) applies for one horizontal bond or one
vertical bond and since it is linear, it is perfectly
general and applies to all values of the nij’s.

Expression of 03C8i far from vortices. - We now wish
to find an approximate form of (B 9) when all

are large. In this case K,, and Ky can be replaced by
kx and ky in (B 4), and therefore : the function :

satisfies :

where 03A6 = (Ox, r) is the polar angle of r. Integration
of (B 11 ) vields :

where f ( y) is a function of y. Similarly :

Insertion of (B 12) and (B 13) into (B 8) shows
that

where the constant C disappears from all physical
problems and will not be precised. If (B 12) and (B 14)
are inserted into (B 9) f ( y) cancels Fi, and (B 9) reads :

where Oip = (Ox, rip) is the polar angle of rip.
Eq. (B 15) can be derived in a much simpler way in

the model of Kosterlitz and Thouless [15].
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