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Résumé. 2014 Nous montrons sur un modèle atomique et invariant par rotation que deux branches
de phonons localisés dues à un défaut plan dans un cristal peuvent exister. Une de ces deux branches
peut à la limite élastique rentrer dans les bandes de phonons de volume pour donner une résonance
généralement bien définie.

Abstract. 2014 We report on a rotationally invariant atomic model the possibility of two distinct
branches of phonons localized at a planar defect. One of these branches falls inside the bulk band in the
elastic limit and transforms in a generally well defined resonance.
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Crystals present planar defects (grain boundaries
for example), as well as point and line defects [1].
The free surface considered as a plane defect has
been extensively studied in the last few years [2].
Acoustic surface phonons are now easily generated
and propagated on these surfaces ; and they are

even used as electronic devices [2].
The lattice vibrations in the presence of a linear

or planar defect consisting of isotopic atoms has
been considered by several authors [3-5]. Models of
planar defects described by variations of force
constants between two neighbour planes were also
studied [6-8]. In all these works it was assumed that
there was no coupling between atomic displacements
along different crystallographic orientations

(a = x, y, z). This unrealistic assumption does not
lead to unphysical results [3] for the localized or

resonant phonons as long as the defect does not
admix different states, J ; this is particularly the case
for purely isotopic planar defects [3-5]. However,
when one assumes [6-8] that the force constants

change between neighbour planes, this unrealistic

assumption leads to a lack of rotational invariance
in the vicinity of the planar defect. This has already
been pointed out [3] in the case of a free surface,
where such models were unable to show Rayleigh
waves. In order to remove this difficulty, one has

(*) Associé au C.N.R.S.
(**) Present address : Laboratoire de Physique des Solides

I.S.E.N., 3, rue François-Baës, 59046 Lille Cedex, France.

to introduce into the equations of motion of the
surface atoms, a new interaction coupling different
states Q. The magnitude of this interaction is determin-
ed [3] by the rotational invariance condition. Never-
theless this was not done in the preceding studies [6-8]
of non purely isotopic planar defects, which as a
consequence do not give reliable results for localized
phonons. We have, however, to acknowledge that
all the preceding studies [3-8] of planar defects give
good formal and qualitative information about quan-
tities involving the variation in the phonon density
of states. They [3-8] were even able to predict that
the localized states near a planar defect will, in the
acoustic region, have a dispersion relation of the
form Q) = ct k + dk2 differing from the transverse
bulk phonons only in the value of d. But because of
the lack of rotational invariance of the models
used [6-8], their value of d cannot be expected to be
correct from a physical point of view. To our know-
ledge only one [9] theoretical study of localized and
resonant phonons near a physically realistic planar
defect appeared. This work was done in the frame
of elasticity theory.
We used [10] recently a simple lattice dynamical

model obeying the rotational invariance condition
to study the dispersion curves of surface phonons
with and without an adsorbed layer and also the
interface phonons at a point of high symmetry
(nlao, 0) of the two-dimensional Brillouin zone.

With the same model we study here along an axis
of the two-dimensional Brillouin zone, the localized
and resonant phonons due to a planar defect described
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by the variation of the interaction between two

neighbours planes. Our results in the long wavelength
limit are compared to those of Kosevich et al. [9].
For simplicity, we consider a simple cubic mono-

atomic crystal with central force interactions between
first (K) and second nearest neighbors (2 K). These
forces are derived from central potentials, with the
assumption that the first derivatives of these poten-
tials are negligible and set equal to zero. The inclusion
of these first derivatives is important when one wants
to study surface [11] ] or interface (*) [12] super-
structures. We describe schematically the planar
defect by a variation of the interactions between two
adjacent (001) planes ; let us designate these inter-
actions by (K’) and (-f K’) respectively for the first
and second nearest neighbors. This defect problem
can be solved [10] by the Green’s function method
which enables one to calculate resonances as well
as localized states. Noting that our planar defect
has the symmetry of reflexion through a fictious
mirror plane situated in its middle, we can block
diagonalize our problem and study separately the
vibrations corresponding to atomic displacements
respectively symmetrical and antisymmetrical through

FIG. 1. - Localized and resonant phonons at a planar defect for
a = K’/K = 3 and 0.8. The hachured regions are the bulk bands.
In - - - lines are given the free surface localized and resonant
phonons ; in - - - - - - - - - - and .-.. lines the localized and
resonant phonons for the planar defect respectively for K’IK = 0.8

and 3.

(*) A. BLANDIN, private communication.

the mirror plane. All the physical information we
need is contained in the determinant

where V is the perturbation of the dynamical matrix
due to the planar defect and G is the bulk Green’s
function [10]. The block diagonalization described
above enables us to treat separately the symmetric
and antisymmetric part of A. Each of these deter-
minants is (3 x 3), due to the three directions of

polarization (x, y, z), and to the fact that the pertur-
bation is localized between the planes n = 0 and
n = 1.
We give the results along the kx axis of the two

dimensional Brillouin zone (k being the propagation
vector). In the model used here, the vibrations polariz-
ed along ÿ decouple from those polarized in the

sagittal plane (x, z). It is easy to see that these purely
transverse vibrations (ÿ) give rise to no localized or
resonant mode near the stacking fault. We are then
left with two (2 x 2) determinants As and AAs to
be solved for the vibrations corresponding to vibra-
tions polarized in the sagittal plane. Let us note at
once that in the z direction the symmetric displace-
ments dilatate the planar defect and the antisymmetric
ones displace it. We therefore expect different fre-

quencies for these symmetric and antisymmetric
vibrations.

It is straightforward to write As and AAS for the
planar defect, once one knows [10] these determinants
for the case K’ = 0 (free surfaces) :

w r&#x3E;

where M is the atomic mass ; a = K’/K ; cp = kX ao
(ao being the lattice parameter). G"" and G1r are
the symmetric and antisymmetric elements [10] of
the bulk Green’s function coupling the planes n = 0
and n = 1.

In this model we have three bulk bands (see Fig. 1) :
whose square frequencies are :
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Let us first study, eq. (1) in the elastic limit, where
our cristal is isotropic by setting

where ct is the velocity of transverse vibrations.
Below the bulk bands (ç  1), we expand the defect

determinants (1) for small ç ; keeping only the terms
necessary to obtain the expansions of the W2 localized
or resonant modes) to the order ç4 :

FIG. 2. - Regions of existence of the symmetric and antisymmetric
phonons localized near the planar defect.

The localized phonons are obtained for A = 0.
One sees easily that for a = 0 (free surfaces case)
we obtain the well known Rayleigh waves as well
from As as from AAs. For the planar defect (a = 0),
these two time degenerate surface modes split into
two distinct ones.

By, setting 03BE = 1 in (4a) we see that the symmetric
localized mode exists only for (Q &#x3E; Q0 (see Fig. 2)
with

Let us note that a symmetric localized mode of
the same type was obtained before [7] for a two-

dimensional defect consisting of an isolated impurity
plane bounded by different (than in the bulk) force
constants to its two neighbour planes. However, as
mentioned previously the model employed in this
work [7] does not satisfy the condition of rotational
invariance.

By setting ç = 1 - yQ2 in eq. (4b), we obtain

which gives the following dispersion relation for the
AS localized mode :

This AS localized mode was of course the only one
Kosevich et al. [9] could find in their elastic limit

approach. This mode exists for all values of a  1

(see Fig. 2).
At cp = n we obtain the following expressions [13]

for the square frequencies of the localized phonons :

The vibrations associated to these phonons at cp = n
are polarized in the direction normal to the (001)
surface.
When there is no coupling of the crystal vibrations

between the two parts of crystal (a = 0) we obtain
W2 /w2M =2/ 9 which is the square frequency of the
free surface modes (S, AS).

For 1  03BE  3 (in the 1 and 2 bulk bands) we
expand also the defect determinants (1) for small (p
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keeping only the terms necessary to obtain the W2
to the order Q4 :

From (8b), we see that there is no antisymmetric
resonance. 

For a = 0 the equation Real As = 0 gives ç = 2
which corresponds to the free surface resonance [l0a].
For ex =1= 0 let : 

._ _._ 

The equation Real As = 0 gives : .

This result differs from the result of Kosevich but
we can check ours, by noting that this resonance is
continued by the symmetric localized mode at

lp = (Po (eq. (5)). One obtains this result by putting
ç = 1 in (8a). This resonance

is well defined [10] if

For ç « Qo, we found

and in this limit, the resonance is found to be a sharp
peak in the bulk density of states.
On figure 2, we give along the kx axis, the dispersion

curves obtained from eq. (1) for the localized resonant
modes. The results for a = 1/3 is given to illustrate a
case where the S mode is resonant in the elastic limit
and localized outside. In the a = 0.8 case the S branch
ils completely inside the bulk bands and the AS
branch is just below the bulk bands. One expects [1] ]
in general the force constants near stacking faults
to be almost the same as in the bulk. However,
phenomenas of the type described here should exist
(at least for the long wavelength phonons) at highly
desoriented grain boundaries, if they are not partially
coherent.

This study is now extended [12] to the case of an
interface between two different media and to the case
of interface superstructures.
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