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Résumé. 2014 De Gennes a montré que les propriétés d’un polymère isolé en solution pouvaient
être déduites de l’étude d’une théorie Lagrangienne pour un champ à zéro composante sans champ
extérieur. Ce résultat est généralisé au cas de solutions de polymères à des concentrations inter-
médiaires. On montre qu’un grand ensemble de polymères peut être décrit en utilisant une théorie
Lagrangienne pour un champ à zéro composante, couplé à un champ extérieur. Les concentrations Cp
de polymères (chaines) et Cm de monomères (maillons de chaines) sont fixées par deux potentiels
chimiques. On montre que la pression osmotique obéit à une loi d’échelle de la forme

(P/KTCp) = F(Cp N303BD)
où N est le nombre moyen de monomères par polymère (N = Cm/Cp) et 03BD l’indice critique définissant
la taille d’un long polymère isolé. La fonction F(03BB) peut être développée en puissances de 03BB; elle
est donnée implicitement par la fonction génératrice des fonctions de vertex à moments nuls, tirée
de la théorie Lagrangienne. Les résultats semblent en bon accord avec l’expérience.

Abstract. 2014 De Gennes has shown that the properties of an isolated polymer in a solution (a
chain with excluded volume) can be deduced within the framework of a Lagrangian theory for a
zero component field in the absence of an external field. This result in generalized to the case of
polymer solutions at intermediate concentrations. It is shown that a grand ensemble of polymers
can be described by using a Lagrangian theory for a zero component field coupled to an external
field. The concentrations Cp of polymers (chains) and Cm of monomers (links) are fixed by two
chemical potentials.

It is shown that the osmotic pressure obeys a scaling law of the form

(P/KTCp) = F(Cp N303BD)

where N is the mean number of monomers per polymer (N = Cp/Cm) and 03BD the critical index defining
the size of a long isolated polymer. The function F(03BB) can be expanded in powers of 03BB and it is given
implicitly by the generating functional of the zero-momentum vertex functions derived from the
Lagrangian theory. The results seem to be in good agreement with experiments.
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1. Introduction. - A few years ago, P. G. de Gen-
nes [1] showed that the theory of a self-avoiding chain
(polymer) is equivalent to a Lagrangian field theory
of the Wilson type. For a field with n components,
the Green’s functions can be expanded in terms of
the interaction, it is possible to pass to the limit
n = 0 and, in this way, to build a theory determining
the statistical properties of a single chain made of
a large number of links (monomers).

More recently, this approach has been used by
the author [2] to investigate the asymptotic behaviour
of the correlation function between the extremities
of a single chain.
The purpose of this article is to generalize this

method and apply it to the case of polymer solutions.
We will show that the properties of such solutions
can be studied by using a Lagrangian theory with
a source. In other terms, a linear term is added to
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the original Lagrangian and this term couples the
fluctuating field to an external constant field.
The equivalence is obtained by considering the

polymer solution as a grand canonical ensemble :
the total number of polymers and the total number
of monomers are not fixed but their averages are
determined by two chemical potentials. We note
that magnetic systems are described by the same kind
of Lagrangian [3, 4] but with n &#x3E; 1 ; thus extending
the language adapted to these systems to the case
of polymer solutions (i. e. for n = 0), we may say
that the chemical potentials which we introduce

correspond respectively to the magnetic field and
the temperature. As an application, we express the
osmotic pressure and the concentrations Cm of mono-
mers (links) and Cp of polymers (chains) in terms of
two parameters. The results depend only on a uni-
versal function which, unfortunately, is only partially
known. In this way, we obtain a scaling law which
has non-trivial consequences.
Thus the main purpose of this article is to demon-

strate that the Lagrangian theory with external
field can be directly applied to study the properties
of polymer solutions and that it leads to useful results.
However, we must note that the equivalence has

been established only in the case where the length
of the chains is large compared to the length of a
link. Thus, the continuous limit popularized by
S. F. Edwards is used for describing the chains.
In the absence of any interaction, the chains would
be Brownian and the mean square distance would
be written ( r2(L) &#x3E; = 2 1L where L is the length
of the chain and 1 an elementary length. Thus even
for continuous chains we can define a quantity
Jw = L/l which will be called the number of links.

For reasons of simplicity, we assume that the
chain interactions are given by a ô-function of ampli-
tude go. Thus the strength of the interaction can be
determined by a dimensionless constant (see sec-

tion 6)

Consequently, the free energy is a function of three
dimensionless parameters a, Cp Id and Cm 14, and
the average number of links per chain can be defined as

However for practical applications and in particular
for the calculation of the osmotic pressure, we shall
consider only polymer solutions belonging to a

critical domain characterized as follows. The excluded
volume effëcts are supposed to be strong. For an
isolated chain, it is not difficult to show from dimen-
sionality arguments that in this case

where v is the critical index associated with the
swelling of the chain.

Thus, we have to assume the condition gf/£ L » 1

which can be written

On the other hand, it is clear that the concentration
of monomers must remain small. When the chains

overlap strongly, they have a tendancy to become
Brownian and this fact is consistent with our results
but a close examination of our equations seems to
indicate that the method is valid only, if, on a small
scale, the chains retain their excluded volume beha-
viour.
More precisely, we note that the chains begin to

overlap for X &#x3E; Nc where

and in agreement with eq. ( 1. 3) and ( 1. 4), we assume
that a1/E &#x3E; 1 /Nc.
Thus we obtain a second condition

which can be more conveniently written

It is clear that conditions ( 1. 4) and (1 . 6) are always
satisfied if X is large and if we deal with a good solvent
(we must be reasonably far from the 0 point since
a = 0 at the 0 point).
We note also that the situations for which Cm Id &#x3E; 1

seem rather unrealistic from a physical point of
view and need not be considered.
Thus the theory presented here has a large domain

of validity. Moreover, if the chains do not exactly
satisfy our conditions, it is possible to calculate
corrections to scaling in the frame of the Lagrangian
theory but this question is beyond the scope of the
present article.

In section 2, we recall the formalism of Lagrangian
theory without external field. In section 3, we show
how the concept of Green’s function and vertex

function can be used in polymer theory. These two
sections, therefore, describe in a systematic way
the concepts introduced by De Gennes. In section 4,
we indicate how the Lagrangian theory formalism
is modified by the introduction of an extemal field.
In section 5, we introduce grand ensembles of poly-
mers and the formalism described in section 4 is

applied to the study of polymer solutions. A grand
partition function is defined. The osmotic pressure
and the concentrations of chains and links are

expressed in terms of this partition function and,
after some transformations, in terms of the generating
functional of the vertex functions. In section 6, the
theory is renormalized, the expressions obtained
for the osmotic pressure and the concentrations are
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simplified and a scaling law is derived. This law
is studied in section 7 and compared in section 8
with the results of older theories. In section 9, it
is shown that it agrees wich experiments. Finally,
a few remarks concerning the correlation functions
are made in section 10.

2. Lagrangian formalism in the absence of an exter-
nal field. - The action is defined by

where j = 1, ..., n, d = space dimension.
The mean value of a functional 0 { qJ } of the field

is defined by

where dm { ç ) is the element of integration for the
functional integral.

Fourier transforms are defined by setting

We deal only with short range potentials and
therefore for d  4, after renormalizing the mass mo,

- il will be convenient to set :

In this case, there , really exists a Lagrangian

In the general case, the Green’s functions are

defined by

The Green’s functions Gh,...,jq(ki,..., kq) can be
expanded with respect to the interaction.
Using Wick’s theorem and the trivial result

(free propagator) we can represent the Green’s
functions GJ..jq(ki, ..., kq) by diagrams in the usuel
manner (see Fig. 1).

FIG. 1. - a) The interaction vertex. b) A general diagram for
n # 0, the line indices have been indicated but not the momenta.

c) The same diagram for an ordered Green function. The corres-
ponding contribution is proportional to n because the diagram

contains one loop.

The rules for calculating a diagram are the follow-
ing (see Fig. 1).

1) A factor (k2 + m20)-1 is associated with each

part of a solid line.

2) A factor V(q) is associated with each dashed line.

3) A factor of the form b(k + k’ + q) is associated
with each vertex (momentum conservation).

4) Proper symmetry numbers are introduced and
all the free momenta are integrated in dimension d.

5) Each solid line corresponds to a well defined
component j of the field. However, for closed loops,
we may sum over j and this gives a factor n.
It is convenient to introduce ordered Green’s

functions G(2A,)(ki ... k2A,) as the sum of the contri-
butions of diagrams defined as follows.
A diagram of rank (T is made of S open lines and

any number of closed loops (each closed loop is
connected at least with one open line).
Each line is labelled by an index M (where

Nf = 1, ..., «,) and by definition the corresponding
ingoing momenta are k2M-1 and k2M. Thus, the

indices j do not appear in the definition of

but this expression is a function of n (a series of

powers of n : see Fig. 1). Consequently, it has meaning
for any values of n and, in particular, for n = 0.

Conversely, when n is a positive integer, we may
express all the Green’s functions in terms of ordered
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Green’s functions

where (Tl,... ; (T(2 JL) are the numbers obtained by
any permutation (T of 1, ..., 2 M.
Thus

The generating functional

can also be expressed in terms of the connected
Green’s functions

where W { H } is obtained by replacing in eq. (2.12)

and

The connected Green’s functions are simpler than
the ordinary Green’s functions but the most important
quantities are the vertex functions. The vertex func-
tions rJ..,jN(ki, ..., kN) and F(2A)(k@@ ..., k2,,) are

obtained for N &#x3E; 2 and JC &#x3E; 1 by amputating (of
their external lines) the corresponding one particle
irreducible Green’s functions and by changing the
sign.
On the other hand, for M = 1 we have, by defi-

nition :

The generating functional

can also be defined as the Legendre transformation
of W{H}

3. Polymer theory. - Let us consider JL chains in
a box.
Each chain is labelled by an index m ; the corres-

ponding length of a chain is L.. We associate wich
each point of a chain a vector r.(Â.) where is
the length, measured along the chain between the
point defined by r. and one end of the chain

Following S. F. Edwards [5], we may express the
energy of a configuration C of this classical system
by writing

These Hamiltonians are dimensionless, and the

length 1 can be considered, in some way, as the length
of one link (though we have proceeded to the conti-
nuous limit).

According to Boltzmann’s law, the mean value
of a functional 0 { C } of a configuration is given by

(the temperature is included in the definition of the
Hamiltonians).
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The element of integration can be formally defined
by

From a theoretical point of view, the most interest-
ing quantities are the probabilities associated with
given configurations of the extremities of the chains.
They may not be very easily measurable but at least
they correctly describe the main correlation effects
and they have a very simple interpretation.
For this reason, we consider the probabilities :

and their Fourier transform

These quantities can be expanded in terms of the
interaction and the functional integrals can be elimi-
nated as follows.

Let us consider one chain (,4C = 1) of length L,
a set of lengths À1 ... à and a set of momenta qi,..., qj.

For a free chain (no interaction), we define the
mean value

A simple calculation shows that

On the other hand in HI(L1, ..., LM), we express the
potential in terms of its Fourier transform

and therefore with the help of the preceding identity,
we can easily find the successive terms, of the expan-
sion.

Now, it is convenient to define the ordered Green’s
functions

where L = Li + ... + LM.
These functions depend on s but the same notation

is used as in section 2, for reasons which will appear
obvious below.

These Green’s functions will once again be defined
by diagrams. Each solid line in the diagram corres-
ponds to one polymer (but this polymer has not any
more a definite length).

In order to determine exactly how G(kl, ..., k2A)
must be calculated, we introduce the intermediate
expression

We obtain immediately

Now, we introduce the notation

and we see by direct inspection of eq. (3. 1) and of
eq. (3.4) to (3.11) that the rules for calculating the
expansion of G(2.At,)(ki, ..., k2A,) are exactly those
which have been given in section 2. The only diffe-
rence comes from the fact that, now, we have never
any loop in any diagram (see Fig. 2) and this remark
shows that for polymers n = 0. Thus, we generalize
to JC polymers the result of de Gennes [1].

FIG. 2. - a) This diagram appears in polymer theory. b) This
diagram does not appear in polymer theory (since n = 0).
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4. Lagrangian formalism with external field. - Let
us introduce a constant external field Ho. We start
with a new action (Ho(x) = Ho)

The corresponding generating function for the Green’s
functions is

In order to define HW { H} and its Legendre
transform Hr { M}, we may rewrite eq. (2.15)
as follows

The magnetic moment Mo is related to Ho in the
following way.
We may set

where W(Ho) and T (Mo) have finite limits when the
volume V becomes infinite. Thus, from (4.3), we
deduce the relations

This functional r(Mo) can be easily expressed in
terms of the ordered vertex functions and since

we find (see eq. (2.13) and (2.14))

Now, we may give the following definitions of

H W { H } and ’F { M } which are suggested by the

structure of eq. (4. 3)

Thus, by construction, these quantities appear
as Legendre transforms of each other (i. e. they satisfy
equations similar to eq. (2.15)).

Using these generating functions, we may define
modified Green’s functions or modified vertex functions
(which again correspond to 1-irreducible diagrams).

Thus, we may set

and in this case, we find

Again, we may define ordered Green’s functions
and ordered vertex functions but there are several
kinds of such functions.
For instance let us consider the vertex function

of rank two. When n is an integer, we may define
longitudinal and transversal Green’s functions by
setting

Using eq. (4.11) and, for vertex functions, an
equation exactly similar to eq. (2 .11 ), we obtain

These functions have also a meaning when n is
not an integer and a limit when n -&#x3E; 0.
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5. Representation of polymer solutions by grand
ensembles. - Let us consider a large box of volume V
containing polymers.

In an infinite space, a quantity such as

is infinite and meaningless. But, in a large box,
we may give a reasonable meaning to such quantities
by writing

Using this consistent notation, we see immediately
from eq. (3.2) and (3 . 4) that the number of configura-
tions Z(Li,..., LA,) of the polymers in the box is

given by :

We introduce a grand partition function Z(Ho)
depending on two chemical potentials Ho and s=m20 l’

with L = Li + ... + LM.
Here Ho l(dI2)+ 1 must be considered as a dimension-

less parameter, and therefore Ho can be interpreted
as a magnetic field. The integral fl-l dLp amounts
to a summation over the links of the chain of order p
since the number of links is by definition Np = 1 - 1 Lp.
Using eq. (3.8) and (5.2), we see immediately that

If, in eq. (2.12), we set

we find that, by proceeding to the limit n = 0, we
may write

Using eq. (2.13) and (4.4), we find

It is not difficult to show that W(Ho) is directly
related to the osmotic pressure P

The concentration Cp of polymers (chains) and
the concentration Cm of monomers (links) are given
by (see eq. (5. 3) and (5. 7)).

and

In particular, when there is no interaction

therefore

Thus, we obtain the classical relation

and for the average number of links per chain

When there are interactions, the vertex functions
are more elementary objects than the connected
Green’s functions, and therefore it is convenient
to express P, Cp and Cm in terms of T(Mo).

Using eq. (4. 5), we find immediately

Here the quantity s plays the same role as the
temperature T for magnetic systems. In the plane
(Mo, s), the half axis (s &#x3E; Sc, Mo = 0) represents
infinitely diluted chains. We, then, have r(Mo) = 0
and therefore Cp = 0 and C. = 0. On the other
hand, the number of links is given approximately
by N = l l(s - s,,
On the coexistence curve ar/oMo = 0, Mo # 0

and therefore the concentration Cm of monomers
remains finite. Thus, the length of the polymers
becomes infinite and it is not difficult to see that in
this case, the polymers overlap very strongly.

6. Renormalization and scaling law for the osmotic
pressure. - Until now all the quantities which have
been introduced are unrenormalized and they have
a meaning only when the potential has a finite range.



288

We shall now consider the case, where the short

range potential is replaced by a delta function inter-
action (see eq. (2. 7)). Thus

The coupling constant go is not a pure number
but it can be written as

where e = 4 - d. Now, a is a pure number which ,
can be chosen as we wish.

In order to obtain finite results within this limit
we must first of all renormalize the theory [6]. If
e = 4 - d is finite, a simple mass subtraction is
needed as can be shown by power counting, but if
d = 4, a field renormalization and a vertex renor-
malization are also needed. These field and vertex
renormalization are useful in both cases for the

investigation of the critical behaviours near the
critical point, and they are singular at this point.
For polymer solutions, this critical domain which
we wish to study here corresponds to dilute solutions
of long polymers. In other words the concentration
of monomers remains small but the polymers are
so long that they can overlap with one another.

In the absence of an external field, we may define
a renormalized field (PR and a renormalized mass m

by means of two constants zi(s) and z2(s). By definition

As above we assume that s = mô 12. The mass mOc
is the critical mass ; it is infinite when there is no
cut off but in this case (mô - mÕc) remains finite.
The coefficients zl(s) and Z2(S) can be considered
as the renormalization constants of the fields cp
and ({J2, respectively.
The relations between the renormalized and unre-

normalized Green’s functions or vertex function
are the following

The renormalization constants zl(s) and Z2(S)
are determined by the renormalization condition

for small values of k.
Near the critical point (s --&#x3E; s,,,), it can be shown

that they may be written as

where b = b(sc) and c = c(s,,,) are finite.

Eq. (4.2) shows that

One the other hand, from dimensionality arguments,
we find that

Thus, setting

we obtain from eq. (4. 7) and (6. 7) that

However, according to eq. (b . 3) and (6.6) for
small values of S - Sc

Thus

where fl is defined as usual by

It seems that this function has a singularity when
s ---&#x3E; sc, but this is an illusion. Here Sc plays the role
of the critical temperature for magnetic systems. Thus,
it is clear that in this case, when an external field is

applied, nothing special appears at the critical tem-
perature. Consequently, T(Mo) must be regular with
respect to (s - sc). This property has been explicitly
proved by E. Brezin and J. Zinn-Justin [4], who have
shown that for large values of X

Thus, it is convenient to set ,

since cp(y) is a regular function of y around the
value y = 0.

Defining two new variables y and z

we may write
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On the other hand

Thus, eq. (5.14) can be written more explicitly

A measure of the average length per chain is given by

These expressions give a parametric representation
of the scaling law

They are valid for yo  y  + oo where yo is a
solution of the equation

For the corresponding value Xo of X (i. e. yo = yo 0)1
we have (see eq. (6.15))

or according to eq. (6.8)

Thus, for this value the field Ho vanishes and this
equation defines the spontaneous magnetization curve.
The behaviour of cp(y) and cp’(y) in the vicinity

of yo, i. e. the behaviour of t/I’(x) and t/I(x) near the
value x = xo are not exactly known ; this point has
been only partially studied for n &#x3E; 1 and anomalies

appear for n  1.

However, it seems reasonable to assume that zozo)
is finite : thus cp(Yo) is also finite and we have

Accordingly, for high concentrations of monomers
eq. (6.19) can be reduced to the simple form

where

This means that, for large values off the asymp-
totic expression of F{À.) (see eq. (6.21)) must be

One may wonder whether, in this limit, the chains
can be considered as Brownian. To give a precise
answer to this question, it is necessary to study
correlation functions. However, we may remark
that even in the case of strong overlap, the chains
cannot be considered as purely Brownian. We must
remember that, according to our assumptions each
chain is continuous and can always be divided into
smaller parts. Then, it appears that a small part of
a chain cannot behave in a Brownian way ; probably
it looks more like a small part of an isolated chain.
Thus even in the case of strong overlap, the excluded
volume effects cannot be forgotten and this fact

appears clearly in eq. (6.28).

7. The scaling law for low concentrations. - For
dilute solutions, y is large and X is small and it is
therefore convenient to express our results in terms
of Y’(X).

Thus, according to eq. (6.15) and (6.19) we may
write

We may now use the fact that tp(X) can be expanded
as a series with respect to X2 as follows

Consequently, the function F(/)) (see eq. (6.21))
can be expanded as a series with respect top

where

-

and 

,/

The critical indices have been expanded with

respect to e = d - 4, up to third order by Brezin,
Le Guillou, Zinn-Justin and Nickel [8]. Unfortu-

nately the series does not converge at all for e = 1

and it seems reasonable to keep only the first two
terms.
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Thus for n = 0 (and e = 1), we have

Using the results of Brezin, Le Guillou and Zinn-
Justin [9] we find for small values of a

which gives for d = 3, f2 ~ 0.343.
A second order calculation of 13/(/2)2 has been

made (see Fig. 3) and we find

where 
1 1

FiG. 3. - Diagrams contributing to f3, with their symmetry
numbers.

From an experimental point of view, the most

interesting quantity is

For small e

For e = 1, we obtain the approximate result

8. Comparison with previous theories. - Let us now
compare our results with those obtained by Edwards [5]
and Flory [10].

Using our notation, we may write Edwards’ result
as follows

where a is given by eq. (6.2).

Comparing this result with our eq. (6.21) and
(7.3), we see immediately that the expression given
by Edwards cannot be considered as an expansion for
dilute solutions. This is not surprising since Edwards’
expression should apply in a domain of concentra-
tions where the chains are supposed to overlap
sufficiently to insure strong interactions between

neighbouring chains (À &#x3E; 1). We note also that
Edwards’ result is incompatible with the scaling
law given by eq. (6.21). It would become compatible
if the last term was dropped, but this would give for v,
the Stockmaier results (vs, = 3) and we know that
this value is not very good. However for large values
of À., our eq. (6.21) and (6.28) give

and this result is not very different of the first term

given by Edwards since for d = 3, vd/(vd - 1) - 2.25.
We may also compare our result with an expression

given by Flory [10]

where U is the excluded volume associated with two

polymer molecules.
However, keeping the first nori-trivial term in the

expansion of F(Â), we find

This formula is a agreement with the expression
given by Flory. The polymer molecules can be replaced
by hard spheres of radius proportional to XV as

suggested by Flory. The corresponding exclude volume
is therefore proportional to JY’vd and this expectation
is consistent with eq. (8. 2) and (8. 3).

9. Comparison with expérimental data (dilute solu-
tions). - In general, the experimental data are express-
ed in terms of Cm and, therefore, for small values
of À, it is convenient to write our result as follows

Thus, by plotting the logarithm of A 2 = Fixvd-2
versus the logarithm of X (i. e. of M the molecular
mass of one polymer), we may calculate v. The expe-
rimental data quoted by Flory [11] in his book give
v = 0.62 for polyisobutylene fractions in cyclo-
hexane and v = 0.61 for polystyrene fractions in

toluene.

Thus, since we know that the exact value of v
is probably not far from the Flory value (VFI = 0.6),
we see that the present theory agrees rather well
with the experimental values.
On the other hand, the crude estimate F2/Fl = 0.362

is quite compatible with the experimental values [12]
i. e. 0.1  FZ/Fi  0.4.



291

10. Corrélation functions for polymers. - The same
kind of discussion can be used to study the properties
of the correlation functions by using the formalism
give in Sections 4 and 5.

The correlations between the extremities of one

polymer are determined by a transverse Green’s
function which can be expressed in terms of a momen-
tum k and of the parameters y and z. However,
for values of y which are not very near to yo, we
do not expect a very drastic change in the behaviour
of this Green function.

On the other hand, if we study the correlations of
one end of a polymer with one end of another poly-
mer, we have to deal with the longitudinal Green’s
functions.

Unfortunately, these functions are not very well
known at the present time and much work remain
to be done in the future in order to determine pre-
cisely their properties.

Conclusion. - In this article, we have shown that
the Lagrangian theory can be used to study polymers
solutions as well as individual polymer (i. e. chains
with excluded volume). However the theory applies
only for small concentration of monomers.

We have used a grand ensemble with two chemical
potentials and we have shown that in some way a
polymer solution is similar to a magnetic system.
Thus the chemical potential which is associated
with the concentration of monomers corresponds to
the temperature of the magnetic system and the
chemical potential which is associated with the
concentration of polymers corresponds to the magne-
tic field.
As an application of this formalism, we have derived

a scaling law for the osmotic pressure. This law

agrees very well with the experimental data and

using this result, we find a new method for measur-
ing v. A calculation of the first terms of the virial

expansion has also been made.
Thus, all the results which have been obtained

recently illustrate the power of this Lagrangian
theory and we anticipate new and interesting applica-
tions of this method for investigating the properties
of polymers in solutions. The aim of the present
article was to show that this is possible, but more
work is needed in order to clarify some details and
to study the correlation functions.
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