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ORBITAL SUPERLATTICE

IN THE DEGENERATE HUBBARD MODEL

M. CYROT and C. LYON-CAEN,
Laboratoire de Magnétisme, BP 166 Centre de Tri, 38042 Grenoble-Cedex, France

(Reçu le 10 juin 1974, révisé le 25 novembre 1974)

Résumé. 2014 En utilisant un modèle de Hubbard deux fois dégénéré nous étudions quelques effets
dus à la dégénérescence orbitale dans les bandes étroites. Lorsqu’il y a exactement un électron par
atome, l’état de base est ferromagnétique et il se forme un superréseau orbital : le réseau se divise
en deux sous-réseaux ; sur chacun des sous-réseaux il y a prédominance d’une des deux orbitales.
Nous discutons l’importance de l’énergie d’échange intraatomique sur la stabilité de cet état. Nous
calculons les excitations collectives de ce système dans l’approximation RPA : nous trouvons en
plus des ondes de spin un nouveau type d’excitation lié au superréseau orbital : les ondes orbitales.
Nous étudions également l’effet de la température dans l’approximation du champ moléculaire ; le
superréseau orbital disparait toujours à une température supérieure à celle de Curie.

Abstract. 2014 We study some effects of the orbital degeneracy in narrow band solids using a doubly
degenerate Hubbard model. When there is exactly one electron per atom the ground state is ferro-
magnetic and an orbital superlattice is set up : the lattice breaks up into two sublattices, each with
predominantly one of the orbital states. We discuss the importance of the intraatomic exchange
energy for the stability of this state. We calculate the collective excitations corresponding to this
ground state in the RPA : we find, besides the spin wave modes, a new kind of excitation linked
with the orbital superlattice : the orbital waves. The effect of temperature is investigated in the
molecular field approximation : the orbital superlattice disappears at a higher temperature than the
Curie temperature.

LE JOURNAL DE PHYSIQUE TOME 36, MARS 1975,
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1. Introduction. - Magnetism in transition metals
and in their compounds is known to be due to intra-
atomic Coulomb interaction [1]. The simplest model
which takes this into account is that due to Hub-
bard [2]. It has been investigated by many authors,
but no complete solution exists up to now. This
model describes a narrow and non-degenerate tight
binding band and permits repulsion between electrons
only when they are on the same site. However Van
Vleck [3] has emphasized the importance of dege-
netacy for the occurrence of ferromagnetism. Thus it
is of importance to reintroduce it in the simple Hub-
bard model. In the following our purpose will be to
study the effect of degeneracy in this model and to
show that completely new features can arise from it.
With one electron per atom, the non degenerate

Hubbard hamiltonian probably leads to antiferro-

magnetism. Van Vleck proposed the following mecha-
nism for ferromagnetism when degeneracy is intro-
duced : consider two weakly interacting atoms each
with one electron apiece, the electrons prefer to line
up parallel and occupy different orbitals in order to
lower their energy by mixing in ionic states with

parallel spins ; these states lie lowest in energy because
of Hund’s coupling. FIG. 1. - Energies of the four possible configurations when t « U.
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The model we are considering here consists of two
degenerate tight binding bands with intraatomic Cou-
lomb interactions. The Coulomb interaction between
two electrons depends on the configuration of the
two electrons : Ul, U2 and J are respectively the
intraband Coulomb, interband Coulomb and exchange
energies. We then suppose that the hopping inte-

grals tij connect only electrons on neighbouring sites
in the same orbital. Following Van Vleck, we consider
two atoms with one electron apiece. If tij = 0 each
electron is localized on an atom. The second order
contributions to the energy, due to the virtual trans-

fers, are given in figure 1 for the four electron confi-

gurations. The lowest energy state is found to be
a ferromagnetic state where the electrons of neigh-
bouring sites are in different orbitals : we have an
antiferromagnetic ordering for the orbital states.

Roth [4] suggested that this mechanism works
for sufficiently narrow bands : then the most favo-
rable configuration is to form two sublattices each
with predominantly one of the orbital states and the
spins tend to line up parallel to lower the energy
during virtual transfers. However, Roth’s formalism
describes only the very narrow band limit when all
the spins are aligned in the same direction.

In this paper we will develop this natural gene-
ralization of ordinary super-exchange which is res-

ponsable not only for magnetism but for orbital

ordering. We will discuss the ground state, the
influence of temperature and the main consequences
for physical effect.
We first consider in section 2 the atomic limit. In

the non degenerate case, Anderson [5] has shown that
the Hubbard band hamiltonian is equivalent to a
Heisenberg hamiltonian with an exchange interac-
tion given in terms of the bandwidth and the Coulomb
interaction. We work out a similar transformation
for the degenerate case. The result is not so simple
because the effective hamiltonian describes not only
the ordering of spin but also the ordering of orbital
states. The lowest energy state is ferromagnetic for
spins and antiferromagnetic for orbits. Kügel and
Khomskü [6] work out similar limit but our results
are somewhat different from these authors because
we use a more complete hamiltonian including all

spin flip exchange interactions (interband and intra-
band spin flips).

In section 3 we extend this calculation for finite
value of the bandwidth. We use a formalism deve-

loped in a previous paper [7] based on a Hartree-
Fock approximation. This formalism is a generali-
zation of the spin dependent potential introduced by
Slater. Our potential is not only spin dependent but
orbital dependent. Different orbital states see difi’e-
rent Hartree-Fock potential. Such a method has been
used by Ashkenazi and Weger [8, 9] to describe the
band structure of V203. Here we point out the close
relationship between the magnetic and orbital order-
ing. This calculation shows that the orbital super-

lattice favours the appearence of magnetism. Magne-
tism can be obtained for values such that the usual
Stoner criterium is not fulfilled. We also consider
different kinds of orbital order which tum out to be
unstable. This result is in agreement with a calculation
of Inakagi and Kubo [10] who examined the stability
at zero temperature of different types of phases.
The effect of orbital order on the collective exci-

tations is discussed in section 4. We compare the

spin wave energies with the energy calculated by
Yamada and Shimizu [11] without orbital order. We
also point out that there exist other excitations
without spin reversing which are linked only with the
orbital order.

Section 5 discusses the effect of temperature. The
orbital lattice is found to be more stable than ferro-

magnetism. Thus two transitions occur. At the lower
one ferromagnetism disappears and, at the higher,
the orbital order. Section 6 gives some experimental
consequences of the orbital superlattice and the rela-
tionship with Jahn-Teller effect [12, 13] is discussed.

2. The atomic limit. - 2.1 Té HUBBARD HAMIL-
TONIAN. - We consider the Hubbard hamiltonian
for a doubly degenerate Eg band [2] in a cubic lattice.
It contains two types of terms : the band energy and
the intraatomic Coulomb interactions. The general
expression for this hamiltonian is :

m and m’ are the subband indices, and J is the spin
indice. tijml is the hopping integral between state m
on site i and state m’ on site j. We use the tight binding
approximation : only the hopping integrals between
nearest neighbours are assumed to be non zero. Here
for simplicity, we make the following approximations :
- we neglect the hopping integrals t 2 connecting

electrons in different orbital states ;
- we assume that tm’ is independent from

m : t’[jm = t ij ; J
- we assume that tii is the same for all directions

of the i-j pair.

Then the first part of the hamiltonian has a simple
form :
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The band structure depends only on one para-
meter, the bandwidth, :

This hamiltonian Hl is not valid for an Eg band,
but we show in the appendix that the qualitative
results are not changed when we use the true hopping
integrals. ,

In the second part of the hamiltonian we assume
thàt the intraband Coulomb energies Umm are the
same for the two bands : Ul 1 = U22 = Ul ; we
define U12 = U2. Usually U2 jUl is of the order of 1,
J/ U2 of the order of o.1.

In the following we will vary Ul U2 and J indepen-
dently for our discussion. However in a realistic model
Ul U2 and J are related as shown in the appendix.

2.2 EFFECTIVE HAMILTONIAN. - In the non-degene-
rate case Anderson [5] has shown that for one elec-
tron per atom the effective hamiltonian to second
order in tu is an Heisenberg hamiltonian with an
exchange interaction :

We can apply the same type of transformation to
the degenerate case ; however the effective hamiltonian
does not reduce to a simple Heisenberg hamiltonian.

If tij = 0 in the case of one electron per atom,
each atom has one electron characterized by its spin
and orbital state ; we call these ground states [ ce; ).
These states form a complete basis for the set of states
with one electron per atom. If tij = 0, to the lowest
order in perturbation the ground state belongs to
the ai ) states subspace. Thus the effective hamil-
tonian has to verify the equation :

for all [ ce; ) and 1 (X j &#x3E; states.
To calculate Heff we use the following method [16] :

if we can find a transformation S which is a solution
for the equation :

the hamiltonian H = e - 1 H e is equivalent to H and
does not contain any term of the first order in Hl :

If we restrict ourselves to the states with one elec-
tron per atom we can find the transformation S from

eq. (5). Eq. (4) becomes :

r

where 1 fi &#x3E; is any eigenstate of Ho.

Using (5) it is easy to show that :

Then we can restrict the states 1 P &#x3E; to a particular
subspace :  oci 1 Hl 1 P &#x3E; is non zero only if 1 fi &#x3E;
is a state where one electron has hopped from one
atom to a neighbouring one : these states have one
atom without any electron and one atom with two
electrons. They are not eigenstates of Ho. However,
eq. (7) remains true. Defining Ep, Ào, and 1 P’ &#x3E; for
each 1 P &#x3E; state as in table I, we can write :

TABLE 1

Values of Eo and Àp

Using (9) and (5),  fi 1 S 1 (Xj &#x3E; is of the form :

where X is an operator.
Substituting (9) and (10) into (7), we obtain :

where in Hl XH, we keep only terms

which contribute to Heff. These terms take into account
the virtual hopping between neighbouring sites and
the intraatomic spin flip in the intermediate state

which has one doubly occupied site.
We obtain the following expression for Heff :
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Kugel and Khomskii [6] did not obtain exactly the
same expression : in their calculation they considered
only intraband spin flip and neglected the last term
of Ho :

Thus their effective hamiltonian can be used to
calculate the intraband spin waves but not the inter-
band spin waves (Section 4).

2.3 MAGNETIC AND ORBITAL ORDER. - We now
want to describe an approximate ground state for
the effective hamiltonian. For this we take as the

energy of astate ce; ) the following expression :

where Hd is the diagonal part of Heff (the states ai )
are not rigorously eigenstates of Heff’ but the problem
is the same for the antiferromagnetic ground state
of an Heisenberg hamiltonian : we neglect the zero
point energy of the collective excitations).
By introducing two Ising variables on each site :

- a spin Si = ± 1
- an orbital momentum Li = ± 1, Li = + 1 for

one of the orbital states, Li = - 1 for the other,

we can write Hd as follows :

with

We can use this expression to calculate the energies
of the four configurations shown in figure 1 : Ul U2
and J are now replaced by U’ U2’ and J’ ; the per-
turbation theory does not take the spin flip interactions
into account. One of the effects of these interactions
is to replace the Coulomb and exchange energies by
the effective values U,’ UZ and J’.

However this effect is only of the second order in
J/ U ; by neglecting spin flip interactions we can
calculate the energy of the ground state up to the
first order in J/ U.
The ground state of Hd is given by the conditions :

The L, Lj = - 1 condition can be fulfilled for all
pairs in a simple cubic or bcc lattice, but not in a fcc
lattice. In a fcc lattice the ground state is more compli-
cated and we restrict ourselves to simple cubic lattices.
In this case the lattice breaks up into two sublattices
and one of the orbital states is occupied on each of
them.

If J = 0 the spin order can be either ferromagnetic
or antiferromagnetic. Both states are degenerate.
The exchange energy stabilizes the ferromagnetic
state.

The orbital order is a direct consequence of the

degeneracy. Even if J = 0 the orbital order is anti-
ferromagnetic ; this is easy to see from expression (13)
when Ul &#x3E; U2. In the case when Ui = U2 and
J = 0 we have three degenerate ordered states at

T=OK:

- ferromagnetic with antiferromagnetic orbital
order (Li Li = - 1, Si Sj = + 1) ;
- antiferromagnetic with antiferromagnetic orbital

order (L, Li = - 1, Si Sj = - 1) ;
- antiferromagnetic with ferromagnetic orbital

order (Li Li = 1, si si = - 1).
But as soon as temperature increases the only

stable state is the second one. Thus in the ground
state, the orbital order is always antiferromagnetic.

3. The case of a finite bandwidth. - In the previous
section we have discussed the atomic limit and the

ground state in this limit. We want to generalize our
result to the case of finite bandwidth. For this purpose
we use a Hartree-Fock approximation which permits
the self-consistent potential to be spin and orbital
dependent. Such a procedure has been used by
Ashkenzi and Weger for V203. We will also assume
and verify later that the magnetic order remains

ferromagnetic and the orbital order antiferromagnetic.
Our Hartree-Fock approximation may be justified
for small value of the bandwidth. However it is

obvious that near the appearence of magnetism or
of orbital order, fluctuations will tum out to be

important. Thus we cannot hope for better than a
qualitative understanding in this region.
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3.1 METHOD AND RESULTS. - We shall use a self-
consistent approximation, thus the spin flip terms
can be neglected. We rewrite the other terms of the,
intraatomic Coulomb interaction (2) in the following ’
form :

- Il 1

We make a Hartree-Fock approximation which
introduces four parameters on each site. These

parameters will be selfconsistently determined :

the magnetic moment due to electrons in orbital m,

the number of electrons in orbital m.

As we always restrict ourselves to the case of one
electron per atom, vim satisfies the relation E vim = 1.

m

The total moment on site i is :

As we are looking for an orbital superlattice, Mi.
and vm, can be différent on each site. In the case of an

antiferromagnetic orbital order, the vim have the

following behaviour :

where p is half a reciprocal vector which divides the
lattice sites into two sublattices. Values of vo different
from zero describe an orbital superlattice. In the
atomic limit we have vo = 2, i.e. Vim is 1 or 0. For a
finite bandwidth, vo  2 the two orbitals are occu-
pied on each site but the number of electrons in the
two orbitals is different. If there is no orbital order

vo = 0.
The contributions of each orbital to the magnetic

moment, Mi., have the same type of variation. Here
we are looking for a ferromagnetic solution; the
total magnetic moment 03BC, is the same on each site.
Then we can write for the magnetic moments :

Using the expressions (16) and (17) in the Hartree-
Fock approximation of (15), the total hamiltonian

Ho + Hl can be exactly diagonalized [17].
For simplicity we assume Ui = U2 = U. The

eigenvalues for J spin electrons are independent
from m :

Each of these bands is defined in half of the Bril-
louin zone and contains one electron per atom if

vo + ap 1 e 0. When vo + api = 0 eq. (18) becomes :

£(1 is defined in all the Brillouin zone and contains
two electrons per atom.
The total energy is :

n(E) is the Fermi function at T = 0 K. vo, po and pi
are calculated by minimizing the total energy. Thus we
obtain :

Et = sum over half of the Brillouin zone ; we chose
k B

the normalization so that 03A31 = N
k 

The relation (21) between vo and 03BC1 is very simple :
it is a consequence of the assumption U, = U2. If
vo = pi the energies for down spin electrons form
only one band which contains two electrons per atom.
 The band of down spin electrons is degenerate, but
this degeneracy would be lifted if Ui # U2. If Ui = U2
a down spin electron interacts with an up spin electron
in the same way when the two electrons are in the
same or in different orbitals.
We can solve (22) and (23) in the atomic limit

Ek = 0. In this limit we find that the solution of the
lowest energy is /10 = 2, /Ài = 2; in accordance with
the results of section 2 ; we have three energy levels :

If W is very small, the three bands are very near
these three levels (Fig. 3) ; in this situation the band E q
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FIG. 2. - Two types of orbital orders : (a) Antifcrromagnetic
orbital order ; (b) Ferromagnetic orbital order.

FIG. 3. - Schematic density of states for spin up and spin down
electrons.

is completely filled and the other bands empty. Thus
we have a ferromagnetic insulator with a magnetic
moment on each site 2 po = 1 ; the occupation diffe-
rence between the two subbands is always smaller than
1 as can be seen from (22). For a very narrow band,
we can develop (22) :

The metal non metal transition occurs when the

Et band or the El band overlap the Et band. If
the Et band overlaps first, the total moment 2 Po
does not decrease at the transition. If the E overlaps
first the moment decreases at the transition; this is

always the case in the simple cubic structure.

Figure 4 gives the values of po and pi as a function
of U/W for different values of J/U in the simple cubic
structure.

e For large values of J/U (J/U &#x3E; 0,5) magnetism
appears when U/W is larger than a critical value, and
the orbital superlattice appears at a larger critical
value. Both transitions are second order.

FIG. 4. - Magnetic moment on a site 2 po, and difference of occu-
pation of the two subbands on a site 2 pi as a function of U/W for :

(a) large; (b) intermediate ; (c) low values of Jj U.
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e For small values of JIU (JIU  0,2) magnetism
and orbital superlattice appear for the same value
of U/ W with a discontinuous transition. The tran-
sition occurs when two different solutions have
the same energy. The energy of these solutions is given
by (20). The difference in energy between the non

magnetic state (Po = pi = 0) and a state where po
and 03BC1, are non zero for a fixed value of U/W is given
by :

This expression can be obtained from (20) by calcu-
lating the derivative ôE/ôU for constant W and J.

e For intermediate values of J/ U magnetism
appears continuously and there is a discontinuity
when the orbital superlattice appears.

3.2 STABILITY OF THE SOLUTION. - The condition
for appearance of a magnetic moment po can be
obtained from (23) :

where p(EF) is the density of state at Fermi energy.
This criterion is a generalization of the Stoner criterion
for the degenerate case [18]. We can obtain the condi-
tion for appearance of an orbital superlattice form
eq. (22) :

n(Et) - n(E T ) . is the susceptibility of the up spinY, k 1- 1 -- Ek - ek 1 , 1 
is the susceptibility of the up spin

k IEk-Ek+pl Î
band for wave vector q = p, and p(EF) is the suscepti-
bility of the two bands for wave vector q = 0. We
can rewrite (27) as :

In (26) p(EF) is the density of states for po = 0
but it depends on Ill. In (28) XT(EF) is calculated for
pi = 0 but it is function of the number of electrons in
the spin up band, or a function of po.
The criterions (26) and (28) are similar to those

obtained by Coqblin and Blandin [18] for the degene-
rate Anderson model : their condition for appearance
of spin magnetism is exactly (26). For orbital

magnetism their condition is :

where pt is the state density of up spin electrons ; it is
also the susceptibility of the spin up band for q = 0
and (29) is the condition for appearance of a ferro-

magnetic orbital order. Coqblin and Blandin [18]
also found first or second order transitions according
to the value of J/U : one first order transition for
small values of JIU and two second order transitions
for large values of J/U as we have found here.
The first order transition occurs at a value of U/ W

where the condition (26) is not fulfilled for pi = 0 as
can be seen on figure 4. Thus the orbital superlattice
stabilizes the ferromagnetic state. However, the orbital
superlattice is stable only if U - J is large enough ;
if U = J spin up electrons do not interact if they are
in different orbitals. Thus it is not favourable to
create a dissymmetry in the occupation of the two
orbitals on one atom. When J/U is large the super-
lattice is stable only for large values of U/ W ; on the
other hand eq. (26) shows that the higher J j U is,
the smaller the value of U/ W for which the ferro-
magnetic state becomes stable. Thus the two transi-
tions are distinct. For small values of J/U condi-
tions (26) and (28) may be fulfilled with po and IÀ 1
both different from zero while they are not fulfilled
for po = pi = 0 because p(EF) and XT(EF) are increas-
ing functions of po and y,.
The exchange energy is not favourable to the orbital

order. In section 2 we already noticed that the orbital
order is a consequence of degeneracy but not of
exchange energy. However, exchange energy is neces-
sary to have a ferromagnetic state : we can show that
the energy difference between the ferromagnetic and
the antiferromagnetic states (both with antiferro-

magnetic orbital order) is zero when J 0 and
increases with J. For small values of J :

The preceding results show that po is always larger
than 03BC1. Thus the ferromagnetic state is more stable
when J is large.

4. Collective excitations. - In a non degenerate
band the only collective excitations are acoustical

spin waves. In the case of two degenerate bands we
will obtain several kinds of excitations.

In the atomic limit we can describe a solid by a
set of atoms with an electron apiece, this electron

being in a state mff, An electron in the state 1 T in
the ground state can be excited in three different
states :

- in state 1 the corresponding collective exci-
tations are intraband spin waves ;
- in state 21 it gives interband spin waves ;
- in state 2T : it leads to a new kind of collective

excitations, the orbital waves.
In the atomic limit there is always one electron per

atom for all these excitations ; thus we can use the
hamiltonian Heff obtained in section 2.
We find the same kinds of excitations when using

the band picture. If U/W is large enough only two
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of the six bands are filled : Et1 and Et2. The other
E’ Et2 E,l and E are empty (in section 3 we
ommitted the subband indices because the energies
do not depend on these indices ; but here we need
the expressions of the wave functions which depend
on these indices).
An electron in the ET1 band can be excited in four

different bands :

- in the ET1 band : it leads to plasmons,
- in the ET2 band : it leads to orbital waves,
- in the El, band : it leads to intraband spin

waves,
- in the E12 band : it leads to interband spin

’ 

waves. ,

In this section we will study the spin waves and
the orbital waves using both atomic and band des-
criptions. All calculations are made in the simple
cubic structure.

4. 1 INTRABAND SPIN wAVES. - These spin waves
arise from reversing the spin of an electron while
keeping it in the same orbital. This excitation is

represented by an operator S - defined by :

where Si- = Cim, Cimt. The spin waves energies are
determined using the random phase approxima-
tion (RPA). In the atomic limit, we can use the effec-
tive hamiltonian (12). We find two normal modes :
- The acoustical mode is given by sql + Sg2 ;

the spin waves in the two subbands are in phase.
For small q the excitation energy is :

- The optical mode is given by Sq- - Sq2 ; the
spin waves formed in the two subbands are out of
phase. The energy of this mode, for q = 0, is :

In the case of a finite bandwidth we must use the
full hamiltonian. We need the expression of the ope-
rators corresponding to the eigenstates. Using the
same notation as des Cloizeaux [17, 19] these ope-
rators are :

- for 1 T states :

Eit band : rx:lt = cos ({Jk Ckir + sin ({Jk Ck+pl?
Elt band : P + iÀk( C + sin Wk Cài) .

À. is such as eiÀP = - 1.

- for 2j states :

- for 1 spin states the operators are simply the
Bloch operators Ckl.
We restrict ourselves to the po = 2 case ; only Emt

bands are occupied. Thus the intraband spin waves
are defined by the operator :

In the RPA we get 2 N linear equations in Âkl and
Âk2. The solutions can be separated into two groups :

N solutions are given by Âkl = Âk2 = Âk and :

The N other solutions are given by Â.k 1 = - Âk2 = /1k
and :

We can notice that if J = 0 (35) and (36) are iden-
tical : in this case there is no coupling between the
two subbands.

Eq. (35) gives the optical mode. Before calculating
the spin wave energy we solve (35) when J = 0. In
this case one of the N solutions, for q = 0, is given
by À-k = cos (Pk and the energy of this solution is
E = 0. The other solutions are single particule exci-
tations.

If J ¥= 0 (35) has no solution with zero energy ;
thus the collective excitation given by

is an optical mode. For small J we can calculate the
energy of this mode :

When Uj W &#x3E; 1, Pl is given by (24) and (37) is iden-
tical to (32) at first order in J/ U.

Expression (37) is valid for all values of 03BC1. ln parti-
cular if there is no orbital order i.e. 111 = 0 we find
E = J. This is the value found by Yamada and
Shimizu [11], Chao [20], Chang and Young [21] J for
the optical mode in a degenerate band without orbital
order.
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We consider now the solution of eq. (36). When
q = 0, one of the solutions is given by Âk = cos ({Jk,
E = 0 for all values of J ; thus this mode is the acous-
tical mode. For small q we can obtain the dispersion
relation from (36) :

The first term is exact but the second one is calculated

up to the lowest order in t/ U.
If t/ U  1, (38) becomes :

Again this is identical, up to the first order in J/ U,
to the result (31) found in the atomic limit.
Roth [4] calculated the next term of the develop-

ment in t/ U, which is negative ; thus if J = 0, the
spin wave energy is negative and the ferromagnetic
state is unstable. The ferromagnetic state is stable
if J is higher than a critical value.

4 . Z INTERBAND SPIN WAVES. - In these excitations
the magnetic order and the orbital order are destroyed
simultaneously. The spin wave operator is defined as :

with Sim = Cim’1 Cimt (m # m’).. 
In the atomic limit, we use Heff to calculate the

spin wave modes. In the RPA we get for the energies
of the normal modes :

1

and

If Ul = U2 we find only two spin wave energies,
an acoustical and an optical one. Each of them is
twicely degenerate.

If U1 U2 the four spin waves, an acoustical and
three optical ones, have different energies (Fig. 5).

U1 - U2
When J/U « 1 and U1 - U2 « 1, the optical modesl  

u 
, p

have the following energies :

(intraband spin waves)

(interband spin waves).

FIG. 5. - Schematic curves of the spin wave spectrum : Eo and El
are the intraband spin waves, E2 and E3 the interband spin waves.

For a finite bandwidth, the spin wave operator is
defined by :

If Ul = U2, the 2 N equations in Âkl and Àk2 are
exactly the same as for the intraband spin waves. Thus
if Ui = U2 the two branches are degenerate.
When U1 # U2, by extrapolating the expres-

sions (41) we can write :

These expressions are valid if Ul = U2. If U1 = U2
they give the correct result (41) when U/ W &#x3E; 1. On

the other hand they give also the correct result when
there is no orbital order : for this case the spin wave
energies have been calculated by Yamada and Shi-
mizu [11 ] who found for the optical modes :

(intraband spin waves)

} (interband spin waves) .
When 03BCo = § (44) gives the same results as (43) and
(37) with III = 0.

4. 3 ORBITAL WAVES. - In this type of excitation
the magnetic order is not destroyed, but the orbital
order is destroyed. We always restrict ourselves to
the case po = § in which there are only up spin elec-
trons.

In the atomic limit we can restrict ourselves to the

following terms of Heff :
t2
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This can be written :
2

Li is an orbital momentum :

Horb is a Heisenberg hamiltonian with an antifer-

romagnetic interaction ; in the ground state

as we found previously. We can also use Horb to cal-
culate the orbital waves. The dispersion relation is
similar to antiferromagnetic spin waves :

In the general case of a finite bandwidth, from the
Hubbard hamiltonian we can also deduce an Horb by
keeping the terms only for up spin electrons :

We can omit the spin indices because only one
spin direction is involved. (48) is equivalent to the
non degenerate Hubbard hamiltonian and we get
the orbital waves when using the same calculations
as for the spin, waves in the antiferromagnetic Hub-
bard model. Thus we can use the result of des Cloi-
zeaux [19] : the excitation energies are solutions of
the equation :

where the functions Fq, Gq and Hq have exactly the
same expression as in [19].

At q = 0 one of the solutions is E = 0 : this is an
acoustical mode. The other solutions are single parti-
cules excitations.

For small q (49) gives E = C q and if U J &#x3E; 1

we find for C the previous expression (47).
At low temperature the variations of po and /11 are

determined by the collective excitations. The magnetic
moment 2 lio decreases as T3/2 ; this is a consequence
of the dispersion relation of the acoustical spin wave
E = Dq2. The dispersion relation of the orbital wave
is linear in q ; thus the orbital order decreases like T 2
at low temperature.

5. Effect of température. - In this section, we
discuss the effect of temperature. We restrict ourselves
to the atomic limit where we can use the effective
hamiltonian Heff derived in section 2. This limit also

allows us to neglect single electron dynamic effects
which exist when there is a free Fermi surface. This

1 effect can be important as soon as the subbands

overlap. The molecular field approximation that we
will use in this section allows us to obtain qualitative
results conceming magnetic and orbital orders.
We use expression (13) to calculate the partition

function in the molecular field approximation :

We rewrite Hd as :

with :

J2 and J3 are always positive. JI may be negative if
J’ U]
- &#x3E; = - ; . In any case, J,  J3  J2.
U2 

&#x3E; 

Uli + U2 
. ln any case, JI  J3  J2.

In the molecular field approximation Hd has the
following form :

We have introduced three molecular fields :

il  Sj), J2  Lj) and J3  Lj Sj ).  Sj) is the
total moment on site j, ( Lj) is the difference bet-
ween the occupations of the two orbitals, ( Lj Sj )
is the difference between the magnetic moments of
the two orbitals. These three parameters are deter-
mined selfconsistently by minimizing the free energy
F = - kT log Z.
At T = 0 K the ground state is ferromagnetic

with antiferromagnetic orbital order. Thus we have
to look for a solution which has the following beha-
viour :

We obtain three equations to calculate S, L and P.
These equations have many solutions for the same

value of the parameters Jl, J2, J3. We can show that
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there are at most two transition temperatures because
two parameters always vanish together, and the third
one generally becomes zero at a higher temperature.
As in our case Ji  J3  J2, when the temperature

decreases, the first transition occurs at kTo = 2 zJ2 ;
at this temperature, the parameter L becomes different
from zero : To is the orbital temperature for which
an orbital superlattice is set up. The parameters S and
P become different from zero below the Curie

temperature Tc : We obtain :
. T T " ?’B.

The results are shown on figure 6.

FIG. 6. - Curie temperature Tc and value of the parameter L at
the magnetic transition for U2/Ul = 0,9.

The Curie temperature is zero when J = 0. For
small values of J/ U, the transition temperature is

given by kTc = 2 z(J3 - Ji) and the transition
occurs when the orbital order is not destroyed (L - 1

at the transition). Thus in this case, the Curie tempe-
rature is given by the exchange interaction between
the spins calculated for L = 1 because L does not

change in the whole magnetic region ; this interaction
is exactly :

for small values of J/U.

For larger values of JI U, the transition occurs

when L is much smaller than 1 (Fig. 6) : the exchange
energy between the spins depends on the temperature,
and it decreases when temperature increases ; between
two atoms, when L, Lj = - 1 the exchange is

ferromagnetic and given by J3 - J1, but when

Li Lj = + 1 the exchange between two atoms is

antiferromagnetic and given by J3 + Jl ; thus when
the temperature increases some of the interactions
become antiferromagnetic and the effective ferro-

magnetic exchange energy decreases.
The orbital temperature To is always determined

by the parameter J2 which is the exchange energy
between the Li when the magnetic order is destroyed
(S = P = 0). For small values of J/ U and for

U2lUl 1 we obtain :

Thus in this case :

For small values of J/ U the two transitions are
second order ; we can show that near Tc :

The behaviour of L, S and P is shown on figure 7.

FIG. 7. - Schematic behaviour of the three parameters L, S and P
as a function of temperature for small values of J/ U.

For large values of J/U the transition can be first
order. We have determined the order of the transition
for the different values of U 21 U 1 and of J/ U2 by
an expansion of the free energy near the Curie

temperature.
The results are shown on figure 8. When the tran-

sition is first order the Curie temperature is not

given by eq. (52) which is valid only for second order
transitions.
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FiG. 8. - Order of the magnetic transition for the different values
of U21U, and J/Uz.

In conclusion, the molecular field approximation
gives us only qualitative results. For instance we have
shown that the orbital transition always occurs at a
higher temperature than the magnetic transition.
For small values of J/U the Curie temperature is
much lower than the orbital temperature
(7c/7o = 2 J/ U). This result does not depend on the
approximation we used.

6. Direct effects of the orbital superlattice. - We
have shown, using a very simple model, that an

important effect due to degeneracy is the formation
of an orbital superlattice. This superlattice may be

. detected by X rays or neutron diffraction experiments :
on the two sublattices the electrons have different
wave functions and the form factors are different.
This gives additionnal diffraction peaks as for an
antiferromagnet. These peaks exist in KCuF3 [22]
even above the magnetic transition temperature ;
they indicate an orbital ordering. However KCuF3 is
an insulator and in this case the orbital ordering can
arise from a Jahn Teller effect as well as the mechanism
we discussed here [6].

In the Jahn-Teller effect, the orbital degeneracy is
lifted by a deformation of the lattice. The lattice

distorts near a transitional ion and the elastic inter-
actions between local distortion are responsible for
the coopérative effect. Orbital superlattice is a conse-
quence of distortions and magnetic ordering is not
in general related to the orbital superlattice. In our
approach, orbital ordering and magnetism are related
and are due to a superexchange mechanism. This
mechanism is independent of any distortion. However
orbital ordering can be coupled to the lattice and

produce a distortion. If such a distortion occurs,
our mechanism is difficult to distinguish from a

Jahn Teller one. Thus it would be interesting to find
such an orbital ordering in metallic compounds
where the Jahn Teller effect is not expected to play a
significant role. Cobalt disulfide seems to be a good
candidate : the study of the transition metal disulfides,
FeS2, CoS2, NiS2, CuS2, ZnS2 [23], shows that this
series corresponds to the filling of an Eg band; in
the first elements of the series (FeS2, CoS2 and N’S2)
there is no mixing of the Eg band with s ou p bands,
thus our approach could be relevant for these

compounds.
Another consequence of the orbital superlattice is

the very low value of the spin wave énergies ; the

optical mode energies are reduced by a factor (1 - 4 M2)
when an orbital ordering is present ; the acoustical
mode also has a low energy : without orbital order
the D coefficient is proportional to t ; we found here
that D is proportional to t2 J/U2. The acoustical spin
wave energy is much reduced by this effect.
The orbital waves contribute to the specific heat

as well as the spin waves ; the contribution of the
orbital waves gives a T3 term while the spin wave
contribution gives a T 3/2 term. Both contributions
can be separated.
When we try to apply our crude theory to real

systems we have to take into account some important
features neglected here. The first one is the structure.
Here we have only considered simple cubic structure ;
in COS2 the cobalt atoms are on a fcc lattice ; in this
structure the orbital superlattice will be more icompli-
cated because it is not possible for all pairs of nearest
neighbours to be antiferromagnetic. Another impor-
tant parameter to consider is the hopping integral dl
which connects electrons in different orbitals. These
terms have an important effect upon the stability of
the superlattice. However we show in the appendix
that the orbital order has still an important role in
the stability of the ferromagnetic state.

APPENDIX

Orbital and magnetic order in an E, band. - In the
preceding sections we have used a very simple model
for the two degenerate states. In the case of two Eg
states (which is the case in KCuF3 and in CoS2)
some of our assumptions have to be modified. The
model is more complicated but in the atomic limit
we can obtain some results in the same way as in
section 2.

The two Eg wave functions are :

Using these expressions of the wave functions the
parameters Umm, and Jmm- have the following
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expressions :

Generally there are other intraatomic terms in the
degenerate Hubbard hamiltonian (1) as :

with :

but for the Eg wave function Imm, = 0.
The tijm’ elements of the hopping matrix T,j depend

on the direction of the i j pair. They are different
in the three directions [24] (Table II).

TABLE II

Hopping integrals for the Eg states [24]

We can write the Hubbard hamiltonian in another
basis defined by the two wave functions :

In this new basis the Coulomb energies are U..,(O),
J(0), 1..,(0). These energies can be calculated using
the expressions (A .1 ), (A. 2) and (A. 3) with t/J m
instead of qJmo Using the général expression for
the Coulomb energies it is easy to see that

are independent of 0.
In the case of the Eg wave functions, all Coulomb

interactions are independent of0.

For 8 = n/3 we find :

Thus, in this basis, t/J 1 and 03C82 have the same form
as (pl and ({J2, and the Coulomb interactions are the
same in the two basis; using the relations between
Umm, (n/3), J(n/3), Imm-O/3) and Umm, (0), J(O), 1..,(0)
we find :

and if 1

If we put (A. 4) and (A. 5) in the general expressions
we see that Umm-(8), J(8) and Imm,(e) are independent
of0.
Thus for the Eg wave functions, the Coulomb

interactions do not depend on the choice of the wave
functions and we have very simple relations (A. 4)
and (A. 5) between the Coulomb energies.

Relation (A. 5) shows that it is not possible to
make the assumption Ul = U2 as we did in this paper.
However the effect of the exchange energy J is much
more important than that of the difference Ul - U2.
The intraatomic terms of the hamiltonian (1) are

invariant with respect to a wave function rotation,
but the hopping terms are not invariant. However
the trace and the determinant of the hopping matrix Tij
are independent of 0 and for the Eg wave functions
independent of the direction of the i j pair.

In order to find the ground state of an i-j pair of
atoms in the atomic limit we have to calculate the

energies of the four configurations (Fig. 1) in an

arbitrary basis :

1) The ferromagnetic state with antiferromagnetic
orbital order (Si Sj = + 1, Li Lj = - 1) has an

energy : 

The minimum of E1(0) occurs in the basis where

1 tl l(B) I2 + I t22(9) (2 is maximum.
As / tl1(O) /2 + t229 12 =T 2 - 2 D - 2 t12(O) 2,

the minimum of El is :

The best basis to form the orbital superlattice is
the basis in which the matrix T is diagonal, but in
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this basis tll(O) ;:/= t22(O). In this paper we assumed
that tll - t22 and t12 = 0 : in this case all orbital

superlattices are stable because T is always diagonal.
For two atoms, the orbital superlattice has to be

formed in the basis where t12 = 0. But in a crystal
it is not possible that tlJ2(O) = 0 for all directions of
the i-j pair.

2) The energy of the antiferromagnetic state with
an antiferromagnetic orbital order

is :

E2 is minimum when t12(O) = 0. The two states with
Li L j = - 1 are stable in the same basis, and in this
basis E 2 min &#x3E; El ’n, Thus the ferromagnetic state is
more stable than the antiferromagnetic one.

3) The energy of the antiferromagnetic state with
ferromagnetic orbital order (Si Sj = - 1, Li Lj = + 1)
is :

E3(0) is the average energy for the two equivalent
configurations.
The minimum of E3 occurs when t12 is maximum,

i.e. when

and in this basis ’t12(O)’2 = -!(T2 - 4 D).
In all bases E3 (0) &#x3E; E2 (0) and the difference E3 - E2

is always proportional to Ul - U2.

Thus in all bases the antiferromagnetic state is more
stable if there is an orbital order.

4) The last configuration is ferromagnetic with
ferromagnetic orbital order

Its energy is :

The minimum occurs when t12 is maximum and :

This state is never stable because Erin &#x3E; .Ei ’n. More-
over in all basis E4(e) &#x3E; Ei(8) because El aX  E4 ’n.
For two atoms, the ground state is always the

first one. In a crystal it is more complicated because
the hopping integrals are different in the three direc-
tions. Kugel and Khomskü [6] used the follow-

ing method in the case of a simple cubic lattice :
on both sublattices the basis can be different ; these
are defined by 0 and 0’. On one sublattice the occupied
state is 03C81 = cos 0çi + sin O(P2 and on the other one
it is 03C82 = cos 0’ (pl + sin 0’ ~2. The authors calculate
the crystal energy for several spin configurations and
minimize this energy according to 0 and 0’. Thus they
find for small values of J/U :

In the (x-y) plane the orbital order is antiferro-

magnetic and the spin order is ferromagnetic. Along
the z axis they found two degenerate configurations,
both with antiferromagnetic spin order but where the
orbital order can be either ferro- or antiferromagnetic.
This is only a consequence of their assumption
Ul = U2 because in this case E2(0) = E3(0) in all
basis. But if U, =A U2 only one of these states is
stable : the state with antiferromagnetic orbital order.
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