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91405 Orsay, France

(Reçu le 21 novembre 1973)

Résumé. 2014 La condensation de Bose Einstein, considérée comme une transition de phase, est
étudiée dans un espace de dimension arbitraire. La correspondance, avec la limite n ~ ~ du modèle
n-vecteur pour la condensation à volume constant et avec la limite n = 2014 2 pour la condensation à

pression constante, est discutée et précisée. L’influence d’un type particulier de désordre (sources
et puits de bosons aléatoires) est étudiée ; la transition de phase subsiste, avec de nouveaux exposants
critiques qui ne satisfont pas certaines lois d’échelle.

Abstract. 2014 Ideal Bose Einstein condensation is studied as a cooperative phase transition for
arbitrary dimensionality. The correspondence with the n ~ ~ limit of the n-vector model in the
constant volume case and with the n = 2014 2 limit in the constant pressure case is discussed and

precised. The influence of a special type of disorder (random sources and sinks) is studied ; a sharp
phase transition occurs with new critical exponents which are calculated and shown to violate some
scaling laws. 
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Ideal Bose Einstein (B. E.) condensation is one
of the few phase transition models which are exactly
soluble in any dimensionality d. The cooperation
inside the system. leading to the phase transition
comes only from the statistics, there being no inter-
action potential between particles.

It has been recognized for some time [1] ] that the
ideal B. E. condensation at constant volume was
similar to the spherical model and corresponded to
the n - oo limit of the n-vector model, as far as

critical behaviour is concerned. This correspondence
shows that the properly chosen order parameter
for condensation at constant volume has an infinite
number of degrees of freedom. On the other hand,
condensation at constant pressure is equivalent to
the gaussian model and, in some sense, to the case
n = - 2 [2]. This, a priori surprising, equivalence
deserves some detailed discussion since ideal B. E.
condensation appears then to contain two limits
n = - 2 and n = oo of the physical interval of
values for n.

In many respects, B.E. condensation présents
also analogies with the ordinary liquid-gas transition,
corresponding to n = 1. Similarities and différences,
and the question of the definition of the order para-
meter will be discussed. The motivations for the

study of B.E. condensation in the presence of disorder

are two fold : i) a first motivation is the attempt to
squeeze the infinite number of degrees of freedom
of the order parameter for condensation at constant
volume by introducing an inhomogeneous field ;
however the hope of being able to span continuously
the range - 2  n  +00 is not realized in practice,
as the disorder introduced leads to values for the
critical exponents which do not correspond to any
homogeneous problem described by - 2  n  oo,

ii) a second motivation is the study of an exactly
soluble model of disorder, which turns out to be
different from both the mobile impurities and frozen
impurities models ; in the presence of the type of
disorder considered here, a sharp second-order phase
transition subsists, but some basic scaling laws are
violated.

1. The homogeneous ideal Bose-Einstein gas. -
1.1 BASIC FORMALISM. - The Hamiltonian of the
ideal B.E. gas is

where nk = ak ak, ak and ak are creation and annihi-
lation boson operators. We take e(k) = a1k 10". The
standard case a = 2 corresponds to short range
forces in the corresponding vector model, whereas
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the case Q  2 corresponds to long range forces

decreasing as 1/rd+G [3]. The case a &#x3E; 2 appears
as somewhat academic for the moment, because in

general such ka terms will appear in conjonction
with k2 terms which will be dominant.

Let us define as usual the order parameter M as
 aô &#x3E; N-1/2, , where N is the number of particles.

and the brackets denote thermal average.
The square of the order parameter is thus the

relative number of bosons in the condensate.
Introduction of a symmetry breaking term in the

Hamiltonian

where B is the complex field conjugate to M, allows
to obtain the equation of state f (T, M, B) = 0.
The grand potential Q is obtained as

where fi is the inverse temperature .and fi is, for

simplicity, the opposite of the chemical potential,
and therefore non-negative. The pressure p and the
number of particles N are then derived :

The order parameter is found to be

so that we have

In this last formula, the dependence is only on the
modulus of the complex- number M, so that for

simplicity, we will take hereafter M and B real.
The correlation function is

and the susceptibility is

1.2 THE PHASE DIAGRAM. - Let us consider first
the case B = 0 of zero applied conjugate field and
let us determine the phase diagram (p, V ) with its
isotherms. At constant volume and number of

particles, for example, ;u can always be calculated
at high enough temperature from equation 4. If
the temperature is lowered, fi decreases. For a certain
critical temperature Tc, u is zero and the susceptibility
diverges. For T smaller than Tc, u is zero, but there
is a non zero order parameter, so that one must use
equation 6 with M # 0. The transition line in the
p - V plane at constant N is thus defined by

The isotherms are defined by

The integrals defining p and V are easily evaluated,
and one finds :

From these formulas, the equation of the transition
line is easily derived : 

’

- for d  a, we obtain V - 0 if ,u -&#x3E; 0 so that
the transition line collapses on the p-axis ;
- and for d &#x3E; a, we have

For the isotherms :
- for large /i, that is small p and small density,

we have p V = NT as expected ;
- and for small fi, we obtain for the slope on the

coexistence curve :
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non zero and finite for dIa = 1/2
and dia&#x3E; 2 ,

There are consequently four typical ’kinds of phase
diagrams (plus the special case dla = 1/2, which
has a collapsed diagram with finite critical compres-
sibility).

i) a normal diagram, with finite critical compressi-
bility for dl6 &#x3E; 2 (Fig. l,a),

ii) a normal diagram, with infinite critical compres-
sibility for 1  dfa K 2 (Fig. 1 b),

iii) a collapsed diagram, with infinite critical com-
pressibility for 1/2  d/a  1 (Fig. 2a),

iv) a collapsed diagram with zero critical compres-
sibility for 0  d/a  1/2 (Fig. 2b).

When d/6 &#x3E; 1, there is a transition for all values of

p and V. On the contrary, when dfa K 1, there is a
transition at constant p, but not at constant V.

There exists an obvious analogy between this

phase diagram and the ordinary liquid-gas phase
diagram. If the order parameter had been chosen
similarly as being the difference in specific volume
between the condensate (liquid) and the rest (gas),
then the B.E. phase transition would have to be
considered as a first order phase transition (this is
the view point adopted, for instance, by K. Huang [4]).
In comparison with the ordinary liquid gas transition,
some peculiar features of the B.E. condensation,
considering for specificity the case (d = 3, a = 2),
are the zero specific volume of the condensate, the
particular position (p = oo, V = 0) of the critical

point and the horizontal slope of the isotherms on
the coexistence curve, excluding the possibility of
metastability effects (this last feature is valid in a

restricted dimensionality range af2  d  2 a).

FIG. l. - Normal phase diagram in the (p, V) plane, the low tem-
perature phase area is hatched.

a) dia = 3 ,
b) d/6 = 1.5.

FIG. 2. - Collapsed phase diagram in the (p, V) plane.
a)dla = 1 , 
b) dla = 0.4 .
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Proceeding now with the choice of order parameter
made in section 1.1 we shall consider the constant
volume and constant pressure situations, determine
the critical behaviour and discuss the order of the
transition.

1. 3 B. E. CONDENSATION AT CONSTANT VOLUME. -

At constant volume and number of particles, the

equation of state f (M, B, T) =.0 is

where y = B/NM.

A finite Tc exists only for d &#x3E; a. Tc is then defined by

so that

From the equation of state

the critical exponents {3, £5, y are easily derived.

The exponents 1 and v are derived from the correla-
tion function at small k and fi

- The correlation length is

The exponent u for the specific heat can be calculated
from

The values of the critical exponents are given in
Table 1

TABLE 1

Critical exponents in the constant volume case

No B.E. condensation at finite temperature

The phase transition is second order in Landau

sense, with No, the number of particles in the conden-
sate, square of the order parameter, rising linearly
in Tc - T below Tc.
For d  6, the only singular temperature is the

zero temperature. It is possible to define critical

exponents around T = 0 but, to avoid excess listing,
only finite temperature transitions are considered in
this paper.
As mentioned before, the critical exponents both

for a  d  2 a and for d &#x3E; 2 a are identical to
those of the n - oo limit of the n-vector model. This
infinite dimensionality of the order parameter is due
to the fact that, at constant volume, the wave function
of the condensate can actually be distributed any-
where in space : there is a considerable degeneracy

of the condensed state. In presence of a repulsive
interaction between particles, however small, the

degeneracy of the condensed state is considerably
reduced ; thus, for He4, the number of degrees of
freedom is n = 2. In the ideal case, at constant pres-
sure, there is a postulate of spatial homogeneity which
reduces the effective number of degrees of freedom
even further to... n = - 2, as discussed now.

1. 4 B. E. CONDENSATION AT CONSTANT PRESSURE. -

If the pressure is held constant, when the temperature
decreases, y decreases again and the critical tempe-
rature is reached when fi is zero. If d &#x3E; a, the phase
diagram being of normal type, when T reaches Tc,
the system collapses under the external pressure,
with the order parameter M jumping from 0 to 1.
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If d is less than 6, when T approaches Tc, the volume
, of the system tends to zero, and the collapse occurs

continuously. This collapse is due to the fact that the
bosons in the ground state do not contribute to the
internal pressure.

In contradistinction with the constant volume

situation, the critical temperature at fixed pressure,
as function of the dimensionality d, does not go to 
zero for d  a but instead is a continuous, mono-
tonously decreasing function of d (Fig. 3). As in the
gaussian model, the low temperature phase is not

thermodynamically well defined, and the transition
is first order in the Landau sensé ; however there is a
critical regime because the correlation length does
diverge at Tc, and some critical indices can be cal-
culated.

’ 1 

FIG. 3. - Critical temperature versus dimensionality for constant
pressure and constant volume B.E. condensation. Arbitrary tem-

perature scale.

From equation 3 and 9, we obtain

which détermines y from Z-’ = Nu.n and v are
derived from g, just as in the constant volume case,
and a is calculated from the specific heat at constant
pressure

The results are collected in Table II

TABLE II

Although Fisher scaling law y = (2 - il) v is

obeyed in all cases, Josephson law dv = 2 - a is
violated for dla  1 [5].

For d/6 &#x3E; 1, the behaviour of Tc, the values of
the exponents (a, y, il, v) are identical to those of the
n-vector model for n = - 2. Although for n = - 2
the low temperature phase is well defined, it has been
proved [6], for d = 1 and Q = 2, that the critical

point for n = - 2 is a triple point in the (T, n) dia-
gram. The pathologies of the constant pressure
B.E. condensation, plus the connection with the
case n = - 2, enhance the plausibility of the n = - 2
line being a boundary of the continuity domain in
the (n, d) plane. 
The description of the low temperature phase may

actually be done in two ways at least ; either p is
considered as being the internal pressure, then the tem-
perature cannot be decreased below Tc and there is
indeed no low temperature phase ; or, as done above,
p is considered as being the external pressure and the
collapse of the system lowers its dimensionality to
zero. 

2. The inhomogeneous B.E. gas.’- To study the

influence of disorder on this transition, we introduce a
field of random sources and sinks of bosons

where X is defined by (1) and the h’s are random
variables the correlation function of which is taken
as

where the bar denotes statistical average over h, -
This type of disorder is a disorder due to a non

uniform field, and therefore different from usual
models of impurity disorder. In a magnet, it would
be equivalent to a non uniform stray magnetic
field. Here, the effect of the coupling term simply
produces a displacement of the boson oscillators.
To calculate the thermodynamic properties of this

model we first perform the thermal average as in the
homogeneous case, then, we take the statistical

average over the random h-field on physical quanti-
ties. We obtain for Q’, the grand potential,

* (N)from which p’ and v are easily obtained
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1 The correlation function is

2. 1 THE PHASE DIAGRAM. -. AS lri the homoge-

neous case, we first evaluate p’ and

A high momentum cut-off has been used in the
k-integration in the last integral of p’ to avoid unphy-
sical divergences due to (11). There still exists, for

d + 0 &#x3E; 1 a transition line defined by Tt = 0 : 
,(7 

On figure 4, the diagram is of normal type in

regions I, II, III, IV and of collapsed type in regions
V and VI.

For the isotherms we have :
aDN

- for large li, p2 V = d + 0 (the gas does not
obey the ideal gas law),
- for small J1,

FIG. 4. - Definition of regions I, II, III, Iv, v, ’v discussed in
the text for the inhomogeneous case.

FIG. 5. - Definition of regions A, B, C discussed in the text for
the inhomogeneous case.

v

FIG. 6. - Collapsed phase diagram in the ( p, V) plane for the

inhomogeneous case, drawn for dla = 1.5 and 8ja = .25.



431

Figure 6 shows an example of a collapsed diagram,
and figure 7 is an example of the normal type. It

can be seen that, in the latter case, B.E. condensation
occurs at constant volume only if this volume is less
than a given volume, and that, in all types of (p, V)
diagrams, there is a forbidden region below the
T = 0 isotherm.

2.2 CRITICAL INDICES IN THE CONSTANT VOLUME
AND CONSTANT PRESSURE CASES. - The calculation
of the critical indices in the inhomogeneous case
runs as in the homogeneous case, with careful compa-
rison of the two types of terms coming from disorder
or otherwise.

Results are shown in Tables III and IV
On these tables, il is seen to be smaller in the pre-

sence of disorder and this goes in opposite direction
to what would be expected from an effective number
of degrees of freedom - 2  n  + oo. Also both
the Fisher scaling law y = (2 - il) v, and Josephson
scaling law dv = 2 - a are violated in the regions
where disorder is relevant.

FIG. 7. - Normal phase diagram in the (p, V) plane for the inho-
mogeneous case, drawn for d/Q = 1.5 and 0/a = .75.

TABLE III

TABLE IV
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3. Conclusion. - In conclusion, we think we have
shown that there is more in the ideal Bose-Einstein

condensation than one might think at first. Dimen-
sionality effects in the phase diagram and in the shape
of the isotherms have been discussed. The consequent
drastic differences between the condensations at

constant volume and at constant pressure are closely
related to the differences between the n infinite and
n = - 2 limits of the physical range of values for n
in the n-vector model. The introduction of a parti-
cular type of disorder, yielding to exact solution,

although inappropriate to span the domain

as first hoped, has the merit of extending our typology
of disorder effects by providing a model which differs
qualitatively from both the mobile impurities and
the frozen impurities models.
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