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Resume. 2014 Dans un spécimen smectique, les couches doivent être équidistantes, mais elles
peuvent être courbées. Lorsque les conditions aux limites ne sont pas compatibles avec des couches
planes, on obtient une texture dite à coniques focales. Nous considérons ici le cas usuel où chaque
volume élémentaire de la texture est un cône. Les interstices entre ces cônes sont remplis par
d’autres cônes plus petits, etc. Nous discutons certains aspects de ce remplissage itératif, et montrons
qu’il doit se poursuivre jusqu’à une échelle très petite. Une estimation de l’énergie associée à la
structure itérée indique qu’une texture à coniques focales est plus économique qu’un joint de grains,
en accord avec les observations optiques usuelles. Nous discutons aussi la diffusion de la lumière
par la structure itérée, au moyen d’un postulat de similarité. La dépendance angulaire de l’intensité
diffusée à laquelle on arrive est singulière et son étude pourrait peut-être permettre de déterminer
1’« indice de similarite n» associé au processus itératif.

Abstract. 2014 In a smectic sample, the layers must be equidistant, but they may be curved. When
the boundary conditions are not compatible with flat layers, one obtains a focal conic texture.
We consider here the most familiar case where each unit in this texture fills a certain cone. The
interstices between these cones are filled by smaller cones, etc. We discuss some features of this
iterative filling of space, and show that it should persist down to a few molecular lengths. An esti-
mate of the energy associated with the iterated structure indicates, that (in the absence of all
external fields) focal conic textures are less expensive than grain boundaries, in agreement with
the standard optical aspect of smectic samples. We discuss the scattering of light by an iterated
focal conic texture, in terms of a simple scaling law ; the resulting angular dependence of the
scattered intensity is anomalous and may allow for a direct determination of the « scaling index »
n associated with the iterative process.
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1. Introduction. - The present paper is concerned

only with the simplest smectic phase, the so called
smectic A in the classification of Sackmann and
Demus [1]. In an ideal single domain of a smectic A,
we have equidistant layers of width a. Each layer is
a two dimensional liquid. The constituent molecules
are on the average normal to the layers, and the
system is optically uniaxial (Fig. la).

In practice, the arrangement of figure 1 a is obtained
only if special precautions are used. In particular
the boundary conditions at both sample surfaces must
be controlled, and must be compatible with the layer
stacking. A more complicated case is shown on

figure 1b where the conditions on both plates are

different. An important practical question is to

FIG. 1. - a) Texture of a smectic A between two parallel
glass plates with identical boundary conditions. b) Case where
the two plates impose different boundary conditions : the match-
ing procedure represented here uses a grain boundary. In
actual situations, this grain boundary will usually break up into

focal conics, as explained in section (2.3).

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphys:01973003407066100

http://www.edpsciences.org
http://dx.doi.org/10.1051/jphys:01973003407066100


662

FIG. 2. - Focal conic textures. a) « Jelly roll » arrangement
with one singular line Il. b) Deformation of the jelly roll into
a torus : two singular lines Fi (circle) and T2 (straight line)
are involved. c) The general case : Fi becomes an ellipse and

T2 is the conjugate hyperbola.

understand how a smectic system adjusts to conflicting
requirements of this sort.
The solution shown on figure 1 b corresponds to a

grain boundary, of thickness generally comparable to a,
and of surface energy 6 (1). However, grain boundaries
are rarely observed in smectics : the adjustment to
uneven surface conditions is usually obtained by a
system of focal conics. This arrangement is described
in the classic reviews by G. Friedel [2], by W. L.
Bragg [3], and in a more recent series of papers by
Y. Bouligand [4].
The essential features can be summarized as follows :

the layers can be bent easily, and since they are liquid,
they can slip on each other. This allows for a broad
class of deformations, restricted only by the require-
ment of constant interlayer thickness. The simplest
deformation is depicted in figure 2a : the layers are
folded into cylinders, with one singular line ri on the
axis. But it is also possible to bend ri into a circle :
each layer then becomes a torus, and we get the arran-
gement of figure 2b with two singular lines : the circle
r 1 and the axis r 2 of the torus. Finally the most
general case is obtained by deforming r 1 into an

ellipse, and r2 into a conjugate hyperbola (Fig. 2c) :
these two lines are called focal conics. The core struc-
ture and the energy of the focal conics have been
discussed recently for one simple limiting case [5].
The smectic layers are set in agreement with the

(1) A simple calculation of the thickness, and of 6, can be
carried out for the special case of a low angle grain boundary :
this is explained in appendix A.
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above rules inside a cone of revolution, as shown on
figure 3a. The apex of the cone is located on the hyper-
bola, and the base is the ellipse. If we want to fill a
volume of definite shape, such as the square based
pyramid of figure 3b, we begin by an ellipse of maximal
size in the basal plane ; then we fill the remaining
interstices with smaller cones as shown on the figure.

FIG. 3. - a) Example of a region of space filled by one focal
conic arrangement : this is a cone of revolution based on the

ellipse and with the apex S on the hyperbola. Very often, sym-
metrical cone (of apex S’) is also filled. b) Filling a pyramid
S[ABCD] of given shape by cones of the type shown in (a).
All cones have the same apex S and are mutually tangent.
On the figure are shown the first generation cone (I), and
some examples of the second (II) and third generation (III).
The iteration process goes on up to a very high number of

generations.

All the cones are tangent along their common lines :
this ensures that the orientation of the local optical
axis is not discontinuous when going from one cone
to the next. 
The aim of this paper is to discuss some features of

this « iterative filling of space » by tangent cones of
decreasing size. We begin in section 2 by a geometrical
discussion of the number of cones, of the perimeter of
the associated focal conics, and of the remaining
interstices, when the iteration is carried down to conics
of some small size p. We find, by an estimation of the
energies involved, that the physical limit p* should
be very small (- egp* - 10 a). Finally, we compare
the energy of the iterated solution to that of a grain
boundary, and show that the latter is higher.

Optical studies are in principle very adequate to

probe the iterated structure : the optical wavelengths
are much larger than p *, but they are much smaller
than the size L of the largest conics (in most usual
situations L is comparable to the sample dimensions,
and is thus of order 20 Jl or more). The spatial corre-
lation functions which control the light scattering are
then expected to have some rather simple scaling
properties. We describe a conjectural form for these
functions (or rather for their Fourier transforms) in
section 3. Some further conjectures, analogies, and
words of caution are listed in section 4.

2. Itérative filling of space with smectic material.
- 2.1 THE APOLLONIAN PACKING OF CIRCLES. - Let
us return to figure 3b, and consider for simplicity the
limiting case where S is far away from the basal plane
ABCD, so that the axis of each cone is nearly normal
to the basal plane : then the ellipses are nearly circular.
In the basal plane, we have a pattern of tangent circles
shown on figure 4. Three mutually tangent circles
define an interstice ; inside the interstice we can insert
a fourth circle, tangent to the first three, thus defining
three new interstices, etc.
An apparently similar iteration has already been

used by one of us [6] in connection with properties of
smectics under magnetic fields. However, the physical
situation considered in [6] was very différent : the
smectic layers associated with one circle were assumed
to be cylinders of revolution ; of axis normal to the
basal plane. This differs widely from the present
problem, where the smectic layers become essentially
parallel to the basal plane at levels higher than the
radius p of the conic, as is clear in figure 2c. As we
shall see later, the discussion of the energies associated
with the two models are not related. To make things
quite definite, we may start with a periodic system
of equal, large circles, and discuss the iteration inside
one interstice between them. This iteration is known

as the Apollonian packing of circles, and has been
discussed in the mathematical literature [7], [8] (2).
The results concerning the iteration to be presented
below, were derived independently by us - without
any mathematical rigor - but they do agree with the
precise analysis of [7], [8].

(2) These references have been kindly quoted to us by pro-
fessor B. Mandelbrot.
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FIG. 4. - The iterative filling of figure 3b as seen in the basal
plane. For simplicity the apex S has been assumed to be far from
the basal plane, so that all intersection are circles. Also, for
the sake of illustration, a different set up has been chosen for
the first generation, with three equivalent circles. (The choice
of conditions at the first generation is not important for the

scaling laws.)

The dimension of the largest circles, as well as the
distance between the apex and the basal plane, will be
associated with one macroscopic length L. Let us

assume that we have carried out the iterative filling
described above down to circles of radius &#x3E;, p (where
p « L).

Let us call g(p) the number of circles obtained at this
stage. Clearly, g depends only on the ratio p/L. As a
function of p, g(p) has the discontinuous aspect shown
on figure 5. However, for p/L - 0, g may be approach-
ed by a continuous function. It is easy to see that

The first inequality is obtained by observing that each
circle counted in g(p/L) has a radius # p, and an
area &#x3E; np2. All the circles are located in the initial
interstice, of area aL 2 where a is a numerical coeffi-
cient. Thus g  aln(Llp)’. The second inequality is

obtained by counting a subseries of circles represented
on figure 6. It can be shown that the radius of the

m’th circle in this subseries is of the form

FIG. 5. - Number g(p) of circles generated by the iteration
process, and of radius larger than p. (The size of the circles of
the first generation is called 1). Asymptotically for, p « 1, g

tends towards a power law.

FIG. 6. - A partial iteration leading to a family of circles
of radii Ro, Rl, R2, ...
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where mo is a numerical constant, depending on the
choice of the first circle (R1) (3). Stopping the series
at R,,, &#x3E;, p and counting the number of terms, one can
prove the second half of (2.1).
The inequalities (2.1) suggest that g is of the form

The exponent n will be called the scaling index. We
already know that 1/2 , n  2. Stronger inequalities
are demonstrated in the references listed under [7b].
Numerical studies by Gilbert [8] gave n N 1.3. Similar
calculations, carried out independently in [6], indi-
cated n -- 1.32. More detailed compilations are

described in appendix B, and give n - 1.307. In

practice, to simplify the algebra, we shall often write
n = 4/3.
A number of useful auxiliary functions may be

associated with g.

2.1.1 The total perimeter P(p) of the circles gene-
rated by the iteration down to radius p. We have

2.1.2 The residual surface E(p) is defined as the
surface of the interstices which are left when the
iteration is stopped at radius p. Whe have

Note that for p --+ 0 the total perimeter P(p) diverges
(since n &#x3E; 1). On the other hand, the residual surface
,E(p) goes to 0 when p --+ 0. This was first proven by
Kasner and Supnik [7a].

2.2 PHYSICAL LIMIT OF THE ITERATION PROCESS. -

Let us now return to the three dimensional problem
of figure 3b, and estimate the energies involved.

a) To each ellipse is associated an energy per unit
length of the form xKi, where Ki is a Frank splay
coefficient [9], and x a number [5]. (x depends loga-
rithmically on the radius of the conic, but we shall
ignore this weak dependence). The total energy of one
circle is thus 2 xpxKi.

b) To each hyperbola is also associated a line

energy : for small p, the length of the hyperbola ( N L)
is much larger than p. Thus at first sight we might
think that the resulting energy is of order K1 L. But
this is not correct : the only significant portions of the
line are within a distance p from the basal plane.
Above this distance the smectic layers intersect each
other at a very small angle on the line, and the energy
drops rapidly [5]. The result is again of the form
Cte K, p. The sum of the contributions (a) + (b) for

a volume L3 is thus of order

c) We must now consider the shape of the layers
near the interstices which remain when we stop the
iteration process. The total area of these interstices is

1(p). Also, the vertical size of the strongly distorted
region above them is of order p. In all this region the
dilatation of the smectic layers is of order unity, and
the elastic energy per cm3 is comparable to the corres-
ponding Young’s modulus B [10]. Thus we get a

contribution

The line energy (2. 6) tends to favor large p values,
while the distortion energy (3. 7) favors small p’ s. The
optimal p = p*, obtained by minimizing Fi.,, + Fd;st,
and using eq. (2.4. 5) is of the form

(K,IB)’I’ = Â is a molecular length (4) : we see that
the iteration process should go down to a very small
scale. The value of the free energy is

The discussion leading to eq. (2. 7) is clearly over-
simplified. In particular, the smaller conics will deform
into polygons, for which the filling becomes per-
fect [4b]. But eq. (2.7) should remain qualitatively
correct.

2.3 COMPARISON BETWEEN GRAIN BOUNDARIES AND

FOCAL CONICS. - A grain boundary is shown in

figure 7 : at the boundary, the smectic planes from the

FIG. 7. - Structure of a symmetrical grain boundary. The
thickness 2 (e is discussed in appendix B, and is comparable
to the interlayer distance a (except for the case 000 -&#x3E; 0 where

ée - alO. &#x3E; a).

(3) The simple form (2.2) holds only when all circles (Ri)
(R2)... are much smaller than L.

(4) This argument fails near the smectic A-nematic transition
température Tc : when T -&#x3E; Te, B - 0 and 2 and p * become
macroscopic lengths. The iteration process must then be

stopped after a few generations.
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right half space make an angle 2 f) 00 with the planes
from the left half space. The adjustment takes place
in a microscopic length ( which is discussed in appen-
dix B. The energy per unit area is a - (Kl B)1/2.
Is it possible to solve the same adjustment problem
with a suitable set of focal conics ? We describe in

figure 8 a periodic pattern which is nearly adequate
[11]. Many other patterns are also possible, and this

FIG. 8. - One possible substitute for the grain boundary of
figure 7. The boundary plane is ABCD. The pyramids S[ABCD]
and S’[ABCD] are filled with focal groups as in figure 3b. The
tetrahedron ABTS is essentially one single focal group, AB and
TS being conjugated arcs. The same is true for the tetrahedron
BCSV (not shown). The pyramid B[STUV] is filled with spherical
layers centred on B. The directions of the local optical axis
are shown by double arrows. The structure must be repeated

periodically by translations parallel to AB and AD.

particular one is chosen only for illustrative purposes.
The arrangement is built as follows.

a) The square based pyramids such as S[ABCD]
have their base in the nominal boundary plane. The
median SI corresponds to the average optical axis in
the right half space. Each of these pyramids is filled
by iteration of cones as described above. On the left
side we have a symmetrical pyramid S’[ABCD] : the
smectic layers in both pyramids match smoothly in the
basal plane. The distance between S and the basal
plane L is comparable to the sample dimensions. The
lateral dimension AB is expected to be a finite frac-
tion of L.

b) Tetrahedra such as ABST can be described in a
first approximation as two confocal arcs (AB and ST)
inside which we have a single family of layers, with
their normals touching both AB and ST (5).

c) Square based pyramids such as B[STUV] are
filled with spherical layers centred on B.

With these rules the contacts between all adjacent
polyhedra are smooth. The only remaining troubles
are weak grain boundaries on surfaces such as STUV,
which can be removed in turn by interating the whole
procedure ; since the angular discontinuity at this

surface is much smaller (and equal to 0 on the average)

this new iteration should converge rapidly as regards
energies. In practice, the features at the STUV level
may depend of the details of the sample boundaries,
which are not far.
The energy associated with the model of figure 8

comes mainly from the first group of pyramids (the
group (a) above) ; this is the only group where (in our
approximate description) we find internal singular
lines. The energy due to this group is estimated in

eq. (2.9). The contribution of the other polyhedra (b)
and (c), results from simple curvatures, of order IIL,
and is of order

per polyhedron. This energy is proportional to L,
while (2. 9) is proportional to L" with n &#x3E; 1. Thus (2 . 9)
is the dominant term, and we may write for the energy
per unit area in the basal plane

We may now compare u and 6 :

Since the scaling index n is smaller than 2, the exponent
in (2.12) is positive (2 - n N 2/3) and the ratio Q/Q
is small. Typically if /)* = 100 A and L = 10 g,
àla - 1/100. Thus, at least for the simple situation
discussed here a grain boundary is metastable and
tends to collapse into a set of focal conics (6). However,
the concept of a grain boundary may remain convenient
to guess the possible distortions of a smectic A under
external constraints, provided that, at the end of the
discussion, the grain boundary is replaced by à set of
focal conics (i. e. Fig. 7 is replaced by Fig. 8). This idea
is applied in appendix C (to discuss certain magnetic
field effects). However, the discussion of appendix C is
based on an assumption of complete equilibrium,
which may be very hard to achieve. A more direct test
of the iterative filling can be obtained, in principle,
by optical scattering studies, to be described in the
next section.

3. Light scattering by focal groups. - 3.1 DEFI-

NITIONS. - Locally a smectic A is a uniaxial medium,
the optical axis being normal to the layers. It is
convenient to label this axis by a unit vector n(r),

(5) We are indebted to M. Kleman for suggesting this pos-
sibility.

(6) Eq. (2.12) also shows that it is favorable to have L as

large as possible : usually L will be comparable to the sample
size. Under fields, however, a natural unit of length may occur
for L (see appendix C).
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which we call the director. The dielectric tensor may
be represented in dyadic form as

where ei(e jj ) are the dielectric constants for a field E
normal (parallel) to n, and ga = E Il 

- e_L. The intensity
of light scattering from an incident beam of wave
vector ko, polarization c, scattered into (ki, f), is

essentially proportional to

The main assumption hidden behind eq. (3.1) is that
the birefringence anisotropy (described here by sj
must be small (Ba « 1). This requirement is more

stringent for studies on focal conics than for the more
conventional studies on thermal scattering by single
domains : a) in the larger focal domains we want to
avoid any curvature of the light rays, b) multiple scat-
tering must be ruled out. These demands may impose
the choice of special materials (such as cholesterol
esters) where 8. is indeed small.

3.2 CONJECTURE ON THE FORM OF I(q). - Let us now
return to the system of cones shown on figure 3b. An
exact calculation of the intensity I(q) scattered by such
a structure is clearly not feasible. We shall now
describe a tentative argument leading to a simple
form for I(q) : near one circle of radius p of the basal
plane, we have a strongly perturbed region of volume
Q -p3 which can give rise to an intense scattering.
Let us think of these regions as independent scatterers :
this should be qualitatively correct, since correlations
between the optical axes n at two points near two
different interstices are weak. We may then write I(q)
in the form

where F(qp) is the form factor of one scattering
object normalized by F(0) = 1. [ - dg] is always the
number of objects of size between p and p + dp. The
factor Q2 expresses the fact that we have a double
volume integral in (3.1). More physically, we may say
that the scattering amplitude is linear in Q, and the
intensity is thus quadratic in Q.
The detailed structure of the form factor F [its

dependence on the polarization directions i and f

and on the direction of q] is expected to be very
complex. But, when all those angular parameters
are fixed, F is a function only of the dimensionless
variable qp. Making use of eq. (2.3) for g, we get

The integration limits are

We can always replace xm;n by zero. The upper bound
xmax is large for the situations of main physical interest.
(If qL was of order unity, the scattering would be very
sensitive to the details of the boundary conditions,
sample shape, etc.). It is thus tempting to let X,,,a,, go to
infinity. However, we must first make sure that the
integration converges. This is a delicate point : the
behaviour of F(x) at large x is controlled by the singu-
larities inside each scattering object.
We shall assume here that the focal conic texture

under considération is perfect : the only singularities
are the focal conics themselves. On the focal conics
the scattering amplitude Bif(r) has discontinuities of
finite amplitude. As shown in appendix D, this pro-
bably leads to a scattering intensity for one line

behaving like 1/q5. Then F’(x) - llx’ for x » 1 and
xmax

the integration f X0 dx in eq. (3.3) may be extended0

to xmax = 00. We are thus led to :

The main features contained in eq. (3.4) are : a) I is
proportionnal to L" (and not to L3 as in usual systems).
b) I(q) is very strongly peaked at small angles (q -+ 0).

3 . 3 DIsCUSSION. - It may be of interest to compare
(3.4) to the spontaneous thermal scattering (due to
fluctuations in the density, the interlayer thickness,
etc.) : as shown in [10], for general q values, this ther-
mal contribution should be rather small - i. e.

comparable to what it is in a liquid. We may put
qualitatively, for a volume L3

where B is a Young’s modulus. For smectic systems
in usual conditions, we may say that kB T/B N a3, @
where a is a molecular length. This then gives

Taking L = 100 Jl, q-l = 1 g, a = 20 A, we obtain
Illth f"OJ 3 000 : the thermal effects appear to be negli-
gible.
A more serious worry is related to the presence of

defects in the texture. Our discussion above was based
on the assumption that the layers inside each focal
domain were ideally arranged : however, as shown

recently by Bouligand [4], one does observe in practice
local distortions which are incompatible with the rule
of constant interlayer thickness. These distortions are
probably realized through a system of dislocations [11].



668

The long range distortions present around certain
dislocations in smectics have been analysed recently
[12] : they could contribute significantly to the light
scattering.

4. Concluding remarks. - Our description of focal
conic textures is extremely primitive for various
reasons :

a) Geometrical aspects : we have mainly focussed
our attention on the filling of one pyramid by a large
number of cones. Usually, such pyramids will not
be the only building blocks of the texture : for instance,
in the example of figure 8, we needed two other

building blocks : tetrahedra (which in a first approxi-
mation we treated as belonging to one single pair of
focal conics) and pyramids with spherical layers. A
much more detailed geometrical study would be

necessary to define all typical building blocks and their
internal structure.

b) Calculational aspects : the scaling laws of sec-
tion 2 and the exact value of the exponent n are pro-
bably independent of the various simplifications
imposed on the model (such as replacing the ellipses
by circles, etc.). But the conjectures which we have put
forward, for magnetic field effects and for light scat-
tering must be considered as very tentative.

c) Physical aspects : here, in our belief, the main
trouble is related to the possible role of dislocations
lines. When a finite density of these lines is present,
the rule of constant interlayer thickness is relaxed, and
the structures can adjust more flexibly. All our discus-
sion of the minimal interstices, and of their size p*,
should probably be restated in terms of a dislocation
field. However, we tend to believe that the estimate of
the elastic energy (eq. (2.7)) will remain valid when
this is done.

In spite of these complications, we are inclined to
hope that the physical picture presented here is
correct on the whole : we start with big objects, of size
L controlled by the sample dimensions or similar

properties, and fill the interstices with smaller objects,
iterating the process down to a very small length p*.
This iterative property is very reminiscent of the eddies

occurring in a strongly turbulent flow [13]. The range
L &#x3E; p &#x3E; p * is the range where simple scaling laws
hold and is the analog of the « inertial subrange » in
the turbulence problem.
Another interesting notion emerges when we

compare the iterated focal conic texture in smectics
and the domains occurring in ferromagnets, in ferro-
electrics or in superconductors. Domain structures

originate from the possible coexistence of two (or
more) thermodynamic phases of equal free energy
(e. g. spin up an spin down in a uniaxial ferromagnet).
The characteristic thickness of the domains is usually
well defined, and is of the form (La)’I’ where a is a
microscopic length : the distribution of sizes p is not
peaked towards small values of p.

This statement must be qualified, however, for
normal and superconducting domains in a type 1

superconductor : to satisfy a certain stability require-
ment, the domains may have to « branch » down to
small sizes, as suggested long ago by Landau [14].
However this branching is not observed in practice :
the iteration is stopped at an early stage by physical
cut-offs, as explained in [15]. For the smectics A,
we have not been able to imagine similar cut-offs, and
we believe that the iteration will proceed down to
very small sizes p* : the optical experiments discussed
in section 3 would be of great help to clarify this point.

Acknowledgments. - We have greatly benefited
from conversations with Y. Bouligand, J. Friedel,
M. Kleman and B. Mandelbrot.

Appendix A : structure of a low angle grain boun-
dary. - We consider here a symmetrical grain boun-
dary, where both sets of smectic planes intersect the
boundary plane under the same angle (Tr/2 2013 0,,,,)
(Fig. 7) (’). We assume furthermore that the angle 800
is small : in this limit, as we shall see, the structure of
the grain boundary can be derived from continuum
elasticity. Our discussion is a simple transposition
of [5] (where focal conics are analysed) to a simpler
one dimensional problem.
The free energy density is of the form

where y is the local dilatation of the interlayer distance.
Assuming that there are no dislocations associated
with the surroundings of the boundary, we must have
a/cos 0,,, = a’/cos 0 where a’ is the local interlayer
distance. This gives

It is then convenient to introduce the dimensionless

variables f = 0/0,,, and

where Çc = 2 À/800 and = (K1/B) 1/2 . In the limit of
interest ç c is much larger than Â, and this justifies the
use of a continuum theory. The energy per unit area
of the grain boundary is

Minimising Q with respect to f, one is led to a non
linear equation of the Landau Ginsburg type

(7) A symmetrical grain boundaries must always contain

some dislocations.



669

With the first integral (correctly adjusted to the

boundary conditions)

This gives

The thickness of the boundary is thus of order 2 .
The energy is conveniently calculated from (A. 4),
(A. 3) and (A. 6), as

Eq. (A. 8) applies only when 0,,, « 1. However, it

also gives us a qualitative estimate of the energy for a
large angle grain boundary, namely 6 = Cte RÂ : This
estimate is used in section 2.

Appendix B : Calculation of the scaling index n. -
In this appendix, we describe first two simplified
geometrical problems where an index n can be defined
and computed exactly. Then, we proceed to the actual
problem, and devise an estimation of n based on

computer techniques.
The first simplified model is shown on figure 9 :

instead of circles, we deal with equilateral triangles ;
after m iterations we have 1 triangle in the first gene-
ration, 3 triangles in the second generation, etc.,
and 3m - 1 triangles in the mth and last generation.
Thus,

FIG. 9. - Simplified model for the iteration, based on equi-
lateral triangles rather than on circles I, II, III represent

successive generations.

The lateral dimension of the smallest triangles is

Thus

and

with

A similar model is obtained by inscribing first a

hexagon in the initial triangle at the first generation,
leaving three equal equilateral triangles which are in
turn filled with three hexagons at the second gene-
ration, etc. At each successive generation, the linear
size of the hexagons is divided by a factor 3, so that,
for the mth generation, the number of hexagons is
3m-l while the lateral dimension of these hexagons is

It is then a simple matter to prove that

with

The triangular model underestimates the filling.
The hexagonal model overestimates it. Thus we

expect that the correct value of n is intermediate
between (B. 4) and (B. 6).
A more mathematical discussion of similar models

has been carried out by A. Eggleton [7c].
Let us now return to the full problem of figure 4,

where we choose to start with three equal circles of
radius 1, and fill the interstice between them by succes-
sive generation of circles.
Once more the number of circles belonging to the

mth generation will be 3’-’, but after the second

generation, the radii of circles belonging to a given
generation are no longer equal ; in fact, the mth gene-
ration exhibits [3m - 2 + 1]/2 different possible radii
for its 3m - 1 circles. Therefore, it is necessary to resort
to computer calculations : our calculations are similar
in spirit, but différent in extension, with the earlier ones
of [8] and [6].
For each « generation » of circles, all the possible

radii have been calculated, together with the number
of circles attached to each radius (in fact 3 or 6). In
our calculation, all circles of radius &#x3E; exp( - 10) have
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been generated (some of them had to be looked for as
far as the 50th generation).

Figure 5 shows a plot of [In g(p)] vers. ln 1/p. The
existence of a scaling index seems undisputable, at

least in the region of values of p considered. A linear
adjustment corresponding to the interval 8  In

1/p  10 where a maximum density of data is
available leads to the following result :

with n -- 1.306 9 and k N 2.600 0.

One can see that the dispersion of n(p) about the
adjusted value n = 1.306 9 is very small, even for the
values of ln 1/p which have not been taken into account
for the adjustment.
As pointed out above, the difficulty in proving the

existence and establishing the exact value of the index n
lies in the fact that, for each generation of circles, there

FIG. 10. - Distribution of sizes (p) for the circles of the Apollo-
nian problem belonging to one same generation. Note the broad
spectrum of p values. The largest p’s are associated with the

special iteration process of figure 6.

This result can be put under the alternative form :

with

We may also define a « local » value of the index n
from the ratio

where k = 2.600 0. The results are shown in the

following table :

exists a wide distribution of the radii ; figure 10 shows
this distribution, computed for the 8th and 9th

generation : AN(p) represents the number of circles of
a given generation having radii belonging to a given
interval of width 0.2 in log 1/p (the corresponding
point is plotted at the center of the interval). A for-
mulation of AN(p), even empirical, in terms of p or
log 1/p, would be most welcome.

Appendix C : Compétition between wall alignment
and field alignment in a smectic A. - We consider a
semi infinite medium filled with smectic A, under an
applied magnetic field H. The boundary conditions at
the limiting wall impose an optical axis normal to H.
How does the smectic adjust to these conflicting requi-
rements ? If we had a nematic fluid, the adjustment
would take place gradually in a thickness

where K is a Frank constant and X. is the diamagnetic
anisotropy [16]. With a smectic A the problem is
much more complex, and the answer which we shall
describe here must be considered as tentative.

The geometry is shown on figure 11. One possible
method of adjustment (discussed in [6] for a similar
problem) involves grain boundaries. Presumably the
least expensive grain boundaries would be symmetrical,
with the smectic planes at ± 45° from the boundary
plane as postulated on the figure. We would then have
prismatic regions extending to a distance L inside the
smectic. Each of these regions is oriented unfavorably
with respect to the field, and contributes an energy

(8) po is not very different from the radius of the first inner
circle.
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FIG. 11. - Competition between wall alignment and field
alignment : the figure shows a naive model using grain boundaries
PQ, QP’, etc... A more plausible model is obtained by replacing
each grain boundary by a system of focal conics, as in figure 8.

xa H’12 per cm3. The cross section area of one prism
is L2, and the length covered by it is 2 L. Thus the

magnetic energy per unit area of wall is

The surface energy of the grain boundaries is Q/cm2
of boundary, or (since the boundaries are at 45° from
the wall) it is, per cm2 of wall :

Finally we have singular lines in P, P’, etc. and in
Q, Q’, etc. Each of these lines will have an energy per
unit length of order K (where K is always a Frank
constant) and the system of lines will give a contribu-
tion per unit area of wall :

Minimising the sum Fmag + Fs + FL we would obtain
L = 2 ÇH’ i. e. the effects of the wall would be of compa-
rable range in a nematic and in a smectic A. One major
difference occurs, however, if we compare the ener-

gies : the surface term FS is dominant here, and is very
large when compared to Fmag or FL : this suggests that
arrangements of lower energy might exist.
At this stage we recall the discussion of section 2 :

each grain boundary is probably unstable, and should
break down in a system of focal conics, more or less
similar to the model of figure 8. We then make the

following assumptions :
a) In spite of the complications introduced by the

focal conics, the average alignment directions inside or

outside the prisms are not far from the simpler picture
of figure 11. This means in particular that (C .1 )
remains valid.

b) We ignore any special end effect occuring at the
points P, P’, ... or Q, Q’, ... This means that we drop
out the analog of FL for a focal conic system. The
validity of this assumption is extremely dubious. But
any refinement on this point would require a consi-
derable effort.

Accepting (a), (b), and (c) we are led to minimize
an energy of the form

In eq. (C. 4) and in all what follows, all numerical
coefficients are purposely ignored. The minimum of F
corresponds to

Putting n = 4/3 this would correspond to

The penetration depth L is then proportional to H - 6/ 5.
In view of the tentative prediction (C. 6) it appears
tempting to probe the behaviour of a smectic A under
the conflicting actions of a wall and of a field. However,
the arrangement would have to be prepared reversibly :
even by forming the smectic phase from a nematic
(or isotropic) phase by slow cooling under H, this

reversibility may be prohibitively difficult to obtain :
we may always observe growth figures rather than
equilibrium figures.
For the opposite case (where the layers must be

normal to the wall, and the field is also normal to the
wall) other modes of adjustment are conceivable. One
of them has been suggested by Y. Bouligand (private
communication) : in this mode the ellipses are all

circular, and are in the plane of the surface. The

hyperbolae are straight lines normal to the surface.
The filled region associated with one pair of conics is a
cylinder of revolution, based on the circle. These

cylinders fill all the available space by Appolonian
packing. (Note that no polygons are required by such a
case.) Eq. (C. 4) (C. 6) remain valid, L being now the
size of the largest circles in the structure. This is also
the thickness of the perturbed layer : thus, in spite of
the geometrical differences, our estimate of this thick-
ness is the same for both models.

Appendix D : Qualitative discussion of the scattering
of light by one focal conic in the limit qp » 1. - We
shall discuss here the scattering amplitude A corres-
ponding to eq. (3. 1)
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Gif(r) is discontinuous on each focal conic line : this
implies a certain form of decrease of A(q) at large q,
which we want to analyse. We consider one singular
line, with a radius of curvature p which is large com-
pared with 1/q : then the main contributions to A(q)
will come from a tube of radius - 1 /q surrounding
the line, and the interrelations of different lines are
not expected to be very important.

Let us start by a straight line (along z) and use semi
polar coordinates (r, ç, z). The director n has one
component nz which is independent of the observation
point (nz = cos f) 00)’ and two variables components

Gif is a quadratic function of the components of n.
It will contain terms proportional to cos cp, sin (p,
cos 2 ç, sin 2 (fJ. The qualitative features of the results
are the same for all these terms. For definiteness we
shall discuss the (2 (fJ) terms, and write them in the
form

The integral (D .1) will vanish if 3qz -# 0. Let us thus
put q normal to the line and (for instance) along x.
We must compute the two dimensional integral

The last factor e-"’ (with a positive, small e) is intro-
duced to ensure convergence, and we shall take the
limit e -&#x3E; 0 in the final results. Integrating first on r,
one obtains

This integral can be evaluated by putting z = eiqJ. The
result (for B --&#x3E; 0) is

Let us now turn to the physical case of a curved line
(Fig. 12) : in the limit qp » 1 the only important
regions will be those where the line is normal to q. Let
o be the point of the line where this condition is

satisfied, oz the tangent to the line, xoz the osculator
plane. The wavevector q has two non vanishing
component qx qy. To a good approximation we may
write

where s is calculated as in (D. 3) for an observation
point at the distance (U2 + y2)1/2 from the line. The
length u is shown on figure 12. For x, z « p we may put

FIG. 12. - Geometrical basis for the calculation of the scatter-

ing by one curved focal conic.

The amplitude A(q) may then be written as

The essential feature of eq. (D. 9) is its proportiona-
lity to 1 Iq’ q1/2 . For the general q vectors of interest
here q,, - q and the intensity 1 A 12 will be propor-
tional to q- 5.
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