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UMBILICS : STATIC PROPERTIES
AND SHEAR-INDUCED DISPLACEMENTS

A. RAPINI
Laboratoire de Physique des Solides, Université Paris-Sud, Centre d’Orsay, 91405 Orsay, France

(Regu le 8 février 1973)

Résumé. — Appliqué sur une lamelle orientée de cristal liquide nématique, un champ électrique
peut, dans certaines conditions, créer des défauts ponctuels appelés « ombilics ». Nous étudions
leurs structures et nous montrons comment un écoulement dans la lamelle induit un déplacement

de ces défauts.

Abstract. — We study the structure of umbilical « defects » which should appear under certain
conditions in a nematic slab in an electric field. We show that a shear flow can induce a displacement

of these defects.

1. Degenerate Fredericks transition. — A slab
contains a nematic monocrystal with a negative
dielectric (or magnetic) anisotropy (Fig. 1). The unper-
turbed configuration is chosen to be homeotropic
(by a suitable treatment of the surfaces). A static
electric (or magnetic) field, parallel to the optical axis
can (above a threshold value) distort the structure.
This situation is reminiscent of the Fredericks tran-
sition [1]. However, the nature of the distorsion is
very particular : the optical axis tends to lie parallel
to the surfaces to minimize the magnetic (or electric)
energy, but no direction is preferred in this plane.
We may describe the direction of tilt by a two dimen-
sional unit vector C(x, y). The amplitude of the tilt
can be measured by a real number S(x, y, z) = [ n, |,
where the ordinary directorisn = (n,, n,, n,) = (n,,n,).

When C varies slowly with x, y, we may assume S to
be essentially identical to its value S(z, E) for an undis-
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FI1G. 1. — Nematic slab under an electric field.

torted situation (C = constant vector). Thus S(z, E)
can be calculated while the C direction is unknown.
In the ordinary Fredericks transition [1], we had a
twofold degeneracy (since n and — n were equivalent)
this allowed for two kinds of domains and for walls
between them [4]. But, in this new case, we have an
infinite degeneracy for the C direction in the x, y plane.
And, for slow variation it is possible to define a two
dimensional continuum elasticity for the C vector.
The free energy of distorsion should be of the form :

F/unit volume = % Ll[dlv C]2 + '% LZ[(C'V) C]2 . (1)

When U » U, (the threshold value for the electric
potential applied to the electrodes), S is equal to one

except in two thin layers, near the surfaces, of
U d

thickness ~ é(é = v’ —<d the thickness of the
slab). In this limit K, is associated with splay distor-
sions : K, = L, and Kj to bend distorsions : K3 = L,.
When U # U,, S <1 and the situation is rather
different.
With n; = S(z) C(x, y), the Frank energy can be
written :

F/unit volume = F(S) + %Kl Sz(z) [le C]z
+1K,S’@ [(C.V)C]*.

Thus for the slab, the elastic constant for splay dis-
torsions is L; = K; < S*(z) > while that for the
bend distorsions is now L, = K, < S%(z) >. The
mean value < S?(z) > is defined by :

+d/2

< 8z) > = 1 S*(z)dz . 3)

d —d/2
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In the first order approximation
S(z) = Syu(U) cos (g z) , < SN2)> = %Sﬁd(U).

The peak amplitude Sy (U) can be calculated with the

elastic energy F(S) and the electric energy F,...(S).
These two functions are given by :

Llab F(S)dz =

J [ K, (((11“:) + %KI(S%)Z + O(SG)] dz

7T2K3) 1 K, 2) 2 6
=(4d (1+4K3SM Sum + 0(Sw) @

and [3] :

j Felec(S) dz =
slab

-5 ()[4
B 2 d d slab
®)

1 (U*e, 81)( 1Ae _, I(As) )

Ae = ¢; — ¢, ; & and ¢, are the dielectric constants
measured parallel and perpendicular to the optical
axis respectively and U is the electric potential applied
to the electrodes.

In a virtual deformation with constant potential U,

) =(],,

should be an extremum [3] for any variations of Sy.
This requires

2) 2
(1—%)+1(‘5—§f£)52 +0(st) = 0

dz -1

Feiee(S) dZ)

2 \K; g, U?
where the threshold potential value is :
K3 ) 1/2
=qn|—: . 6
o=l T ©
And for (U — U)/U, €1
2 _ 2
suw) = 20 )
U? (& &)
"\K; g

Thus, we know the critical behaviour of L, and L, in
the limit U # U,.

Even in these situations, it is necessary to bear in
mind that the assumption stated above does not hold
when C is not smoothly varying. This is the reason why
in section 2 we shall come back to a more general
situation where S is function of z but also of x and y.
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2. Static structures of the umbilics. — In the limit
U # U, we want to study the point defects which
appear in the slab and look like Frank defects [2].
These singular points have been called « umbilics »
(Fig. 3). In contrast with Frank defects, their core is
continuous, which allows for very accurate calcula-
tions. In order to describe the core, we should now
consider the transverse part of the director n to be
given by :

= SC = a(r) cos (g z) C(@). (8)

The C(®) function will give the projected structure of
the defect while a(r) will describe the continuous core.

We first average the energy over the slab :

<F>z=lj F(r, d,z)dz.
d slab
Then :
1 . 1 ]
< Fap >, = 7K,y [div @O)]* + Zl1<2[cur1 (@0)])* +

BN ) e

< Fg.. >, = constant + ( 2 (U_)
4d

X (1 +
The only changes with section 1 concern the two first
terms of < F,,; >,. In the second order terms, we
have disregarded the contribution of the r and ¢
variations, these variations being smooth compare
with the z variations. For a constant potential virtual
deformation, < F,,, >, — < F,.. >, should have an
extreme value. In the one constant approximation
(K; = K, = Kj3), this requires for the C vector :

>

&

4

a2) a* + 0(a®).

B -
™

1

AC = iC. (10)

Equation which is equivalent to Af = 0, where 0 is
the angle between C and the x axis. Thus,

0 =pd+ 0, (11)
p is the strength of the defect. Since C and — C are
not equivalent, p must be an integer (while for the
screw disclinations of Frank, p may be half an integer).
Keeping these solutions for C in the general case (*)
(K; # K, # K3), a(r) is solution of the equation :

+()(2 _;,13)“ :(£)2a3. (12)

(*) This is a rather good approximation as pointed by
Frank [2].

d%a

dr?

1 da
rdr



Ne 7 UMBILICS : STATIC PROPERTIES AND SHEAR-INDUCED DISPLACEMENTS 631
With (above) //? D
2 2 - PRI
7’ K\ (U vty VRN
XZK(P,90)=( 23)(—2—1); DL ,,f.\\\ AP AN
d U; P AR L ‘\:\
///: ‘\‘ . ‘i'-,/‘/ - . -‘/ ;. P
(x)zK( 60 *K,\ (K, U? Ae) 13) SN AN AR
PR=\0e )k, " v e K€K K3 K N
© 3 t 1 : : /
. . SPAY _* UMBILIC CHIRAL * UMBILIC '
U, the threshold potential being defined by (6). T Plv\ ] |M|l 1 T ‘AI EANRN !
K(p, 6,) being some combination of elastic constants \\\\\\ Vs ! R O i ',
which depends on the nature of the defect. b \‘:\\{,/ | // “ . I,' L : W o
!/ bt
il

The eq. (12) has been previously solved numerically
and the associated energy per unit length for vortex
lines in helium calculated [6] (Fig. 2). The energy is
roughly proportional to K(p, 6,).

gleh T . .

N |—

1 1 1 1 i
0 1 2 3 4 5 (3

FI1G. 2. — Solution of eq. (12) g(r) = a(r)/ax ; p = xr; ax and
x are defined by eq. (13).

For umbilicsp = 1,0 = & + 6, and C, and C, are
constant. Then, K(1, 6,) = K, cos® 0, + K, sin® 0, ;
thus, the stable structure is

0, =0, K(p,0p) =K, if K, <K,
splay umbilic (Fig. 3)
. 14
b=% K@0)=K, if Ky >K, a9

chiral umbilic (Fig. 3)

For umbilics p = — 1,
K(— 1,0y =
=< K,;cos2(2® — 0,) + K,sin> (2D — 0)>
_Ki+K,
2

and the projectedﬁ structure is rather different with a
higher associated energy than umbilics p = + 1,
since (K; + K,)/2 is always larger than the smallest of
K, and K,.

The size { of the core is essentially given by :

[ =yt = (de(p, 00)) 1z U, N
2 K, U? — UH?

02w

"W\ -
The core spreads out for U # U, and we cannot
describe the umbilics in this limit with the energy (1).

(15)

Lt

Fi1G. 3. — Projected structure of defects, p = 4 1. The arrows
indicate the different structure of the defect as we observe it
from above or from below.

3. Displacement induced by a shear flow. — F. Bro-
chard [4] has described the static structure of walls
which can appear in the Fredericks transition of a
nematic thin layer. She shows how a slight tilt of the
magnetic field gets them moving to enlarge the favour-
ed domains. We expect to find a similar displacement,
of these walls or of the umbilics when a shear flow is
produced in the slab since it generally removes the
degeneracy between different orientations of the C
director.

3.1 METHOD OF CALCULATION OF THE VELOCITY. —
The velocity of the walls (or umbilics) can be evaluated
from the energy loss by friction. We consider only the
case when the defect is weakly perturbed by the flow.
Then, we may still use our static results for the shape
of the umbilics (or the walls). Moreover, we take into
account only the z variation of the flow velocity :
in the xy plane, a soft variation of the static structure
should be coupled to a soft variation of the velocity.
Hence, the velocity is given by the equation :

0 (On
M2 0ye: + 02 5 (6—;) =0. (16)

And for a shear flow, the velocity tensor
Ai; = 3(,; + v;)

is given by :

— . 2
e (52 G ol o

where : *

T
=2z

d); [v|<1.

n, #vcos(

s=V/2d; V is the velocity of the upper glass
surface in the k direction, the lower being at rest.

21, = a4 + a5 — a, ; the a; being the Leslie coeffi-
cients of viscosity.
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Then the entropy source for |n, | € 1is:

. * %)2

0ny) 2] J on, .
+(*‘5t— dT+4azs -5{df—0 (18)

with [4] :

o2 8
vi‘=v1—i(1——2). (19)
T

P

It is clear that such a theory can only be applied in the
immediate neighbourhood of U, so that, as it is assum-
ed, the variation of the velocity in the xy plane may
be neglected.

3.2 A DIGRESSION ON WALLS. — Let us first study
the case of torsional walls in a conventional Fredericks
transition [4], [5]. We shall return to the more complex
case of the umbilics later. With the use of the static
structure calculated in reference [4] and of eq. (16)
and (18), we find :

n,=0; b,=0; nx=0(y—th)cos(gz). (20)

And C,, the velocity of the wall induced in the y
direction by the shear flow is given by :
c - 16m @

*
Y1 X204

@D

x> and a,, are defined by relations (13) and s’ is the
projection of the shear rate s on the x direction.

Let us remark that the velocity C, of the wall is
normal to the shear inducing flow and depends upon
the sign of the torsion via the sign of n. It is also
interesting to note that the effect of the shear flow on
the walls can be used to balance the magnetic displa-
cement described in [4].

3.3 EFFECT OF THE FLOW ON THE UMBILICS. — A
chiral umbilic (K; > K,) can be seen as kind of closed
torsional wall. To derive the response to shear flows,
the same method can be used. The static structure has
been calculated in paragraph 2: n, =0;

[

ne = a(r) cos (3 z)

where a(r) is solution of eq. (12). With a shear flow
in the x direction, we get from eq. (18) :

yl_[(at dt +4oa,s 5t dt=0. (22

Thus the velocity C,, should be in the y direction :
nd)(y - Cch Z, x, Z) and,

2
75 Cep (%%") sin® @ dt +

+4oc2sj(%'%)sin2@dr=0. (23)
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Using reduced functions

a(r

=20 and p=rar, 12 = 2K 00 = K)

(160(2) ( s ) jo (%)pdp
CCh == * @ 2 :
Y1 X2 4w j‘ (a_g) p dp
o \dp

The two integrals can be evaluated numerically [6]

and
46s)\ (16 «
- 252 ().
A2 A/ \ Yy

The sign of the velocity changes with the sign of the
torsion.
For a splay umbilic (K; < K,), ny = 0 and

24

(25)

T

n, = a(r) cos (3 z) ;

the velocity C,, and the shear flow velocity should be
in the same direction (bearing in mind that the sign
of C,, depends upon the sign of »,).

46s 160
lcspl= 2'

. (26)
X180 TV1

We should note that the critical variation of the velo-
cities C with the potential is the same for walls and
umbilics (C oc (U? — UH™Y).

For the room temperature nematic MBBA (at 23 °C)

v #13p; Y #1lp; o #1p;
&4 #4-7; 82#5.4.

Thus :
/ 2
C~ 10d(—2—U‘—2)s
—_ Ut

with d 7# 100 pm and

2 12
(E_ZIA)#OZ,
%h

C ~ V (the velocity of the upper glass surface).
An easy measurable value for C is 1 pm/s.

4. Experimental remarks. — It should be easy to
observe optically the umbilics and their displace-
ments [S]. The shear can be produced by an oscillat-
ing glass surface. C' is proportional not only to V
but also to (U? — UZ)~! and d. Thus, choosing
appropriate values for U and d, we can distinguish
the velocity C of the umbilics from the shear velocity V'
even vhen they are both in the same direction. The curve
g(r) = a(r)/a,, may be deduced from optical measure-
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ments applying the calculation of H. Gruler [3] to
our case : The nematic liquid crystal is uniaxial and
a normally incident monochromatic light beam will
be split inside the slab into an ordinary and an extraor-
dinary beam. The ordinary beam travels through
the crystal with its electric field vector normal to the
optical axis (n) and with, in the whole thickness, a
constant refractive index N,. While the extraordinary
beam sees an effective refractive index given by :

1 +d/2
Neo =3[ N@es @7

—d/2

where

N(z) = No N[NZ n} + N5 ni]™'/?

NE - NZ) o]
=N0[1+( N2 )nl

e

(28)

N, is the extraordinary refractive index.
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This gives a phase difference 6 between the two
transmitted beams :

5= %I(No — N # (%) (—Jy—‘z’—]—v_—zyj) da*(r)
- (i"_z) (ﬁ#) (@2 d).g*(r) . (29)

Placing the sample between crossed polarizers and
illuminating with monochromatic light, one observes
a black cross and concentric dark rings. Using these
rings, one should evaluate the function g(r).
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