

Analyse de la bande de vibration-rotation ν 9 du méthane bideutéré vers 8 μ

J.-C. Deroche

► To cite this version:

J.-C. Deroche. Analyse de la bande de vibration-rotation $\nu 9$ du méthane bideutéré vers 8 μ . Journal de Physique, 1973, 34 (7), pp.559-569. 10.1051/jphys:01973003407055900. jpa-00207416

HAL Id: jpa-00207416 https://hal.science/jpa-00207416

Submitted on 4 Feb 2008

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. Classification Physics Abstracts 5.428 — 5.444

ANALYSE DE LA BANDE DE VIBRATION-ROTATION ν, DU MÉTHANE BIDEUTÉRÉ VERS 8 μ

J.-C. DEROCHE

Laboratoire d'Infrarouge, Laboratoire associé au CNRS, Université de Paris VI, Campus d'Orsay, Bâtiment 350, 91405 Orsay, France

(Reçu le 1^{er} février 1973)

Résumé. — Nous avons enregistré la bande ν_9 de type A de CH₂D₂ vers 8 μ à l'aide d'un spectromètre à fentes qui possède un pouvoir de résolution de 0,1 cm⁻¹ dans cette région. 215 transitions de cette bande ont été attribuées. Nous avons pu déterminer les constantes rotationnelles et 3 des constantes de distorsion de l'état vibrationnel $\nu_9 = 1.\nu_9 = 1.236,348$ cm⁻¹, $A^9 = 4,293.8$ cm⁻¹, $B^9 = 3,555.0$ cm⁻¹, $C^9 = 2,941.4$ cm⁻¹, $d_{JK}^9 = 4,13 \times 10^{-4}$ cm⁻¹, $d_{K}^9 = -1.93 \times 10^{-4}$ cm⁻¹, $d_{WJ}^9 = -0,036 \times 10^{-4}$ cm⁻¹. Ce jeu de constantes permet une bonne reconstitution du spectre observé.

Abstract. — The A-type band v_9 of CH₂D₂ was studied between 1 150 and 1 320 cm⁻¹ with a Czerny-type spectrometer having a resolving power of 0.1 cm⁻¹. 215 lines of this band were identified. We obtained the rotational constants and 3 of the distortion constants. $v_9 = 1\,236.348 \text{ cm}^{-1}$, $A^9 = 4.293\,8 \text{ cm}^{-1}$, $B^9 = 3.555\,0 \text{ cm}^{-1}$, $C^9 = 2.941\,4 \text{ cm}^{-1}$, $d_{JK}^9 = 4.13 \times 10^{-4} \text{ cm}^{-1}$, $d_K^9 = -1.93 \times 10^{-4} \text{ cm}^{-1}$, $d_{WJ}^9 = -0.036 \times 10^{-4} \text{ cm}^{-1}$. This set of constants provides a good simulation of the spectrum.

1. Introduction. — Dans la série des dérivés deutérés du méthane, le méthane bideutéré est la molécule dont le spectre infrarouge est le moins connu. La molécule CH_2D_2 est d'ailleurs la seule molécule asymétrique de la série.

Cette molécule est très asymétrique, puisque dans son état fondamental $\kappa = -0,27$.

Dans un travail ancien, Wilmshurst et Bernstein [1] ont montré que 5 des 9 bandes fondamentales de CH_2D_2 se trouvaient entre 950 et 1 550 cm⁻¹. Leur appareil ne leur a pas permis de voir la structure rotationnelle de ces bandes. Olson *et al.* [2] ont analysé les bandes de combinaison $v_3 + v_9$ de type *A* et $v_3 + v_6$ de type *C*, Dowling *et al.* [3] ont étudié la bande harmonique 2 v_6 de type *B*. La structure rotationnelle d'aucune bande fondamentale n'a donc été interprétée.

Nous avons commencé l'investigation des fondamentales par la bande v_9 de type A qui est centrée vers 1 236 cm⁻¹. Parallèlement l'étude des bandes v_4 de type B à 1 033 cm⁻¹ et v_7 de type C à 1 090 cm⁻¹ est menée par C. Alamichel et M. Morillon. La bande v_9 a été interprétée et la partie la plus caractéristique de son spectre a été reconstituée à l'aide des constantes rotationnelles et des constantes de distorsion qui ont été déterminées.

2. Conditions expérimentales. — Pour cette étude, nous avons utilisé un spectromètre à fentes de type

Czerny de 180 cm de focale. Ce spectromètre est équipé d'un réseau de 75 traits par millimètre, de 206 mm de large et ayant un angle de miroitement de 26° 45' ce qui correspond à 12 μ dans le premier ordre. La source lumineuse de cet appareil est un filament de Nernst. Le détecteur est une cellule Ge-Hg refroidie à l'hélium liquide.

La bande de vibration-rotation v_9 a été enregistrée entre 1 100 et 1 330 cm⁻¹ en utilisant le réseau dans le premier ordre. Le gaz que nous avons employé est le gaz commercial de Merck, Sharp et Dohme et nous n'avons pas enregistré de traces visibles d'impuretés dans notre spectre. Le court trajet à l'air libre du faisceau lumineux crée dans le spectre les seules raies d'absorption parasites qui proviennent de la vapeur d'eau atmosphérique.

Le gaz est contenu dans une cuve en verre de 40 cm de longueur équipée de fenêtres de MaCl. Avec une pression de 20 torr, la largeur des raies à mi-hauteur obtenue expérimentalement est de 0,100 cm⁻¹. Nous enregistrons simultanément le spectre d'absorption infrarouge et les raies d'émission visibles d'une lampe à vapeur de thorium, ce qui permet un étalonnage commode. La précision des mesures est de l'ordre de 0,02 cm⁻¹.

3. Théorie. — La molécule CH_2D_2 appartient au groupe C_{2v} . Elle possède un axe d'ordre deux et deux plans de symétrie perpendiculaires entre eux. Un de

JOURNAL DE PHYSIQUE

TABLEAU I

Concordance des dénominations des bandes de vibration de CH₂D₂

Type de symétrie du ni- veau	A_1	A_1	A_1	A_1	A_2	B_1	<i>B</i> ₁	<i>B</i> ₂	<i>B</i> ₂
Type de la bande fonda- mentale en IR	В	В	В	В	Inactive	С	С	A	A
Fréquence en cm ⁻¹	2 976	2 139	$\simeq 1~435$	1 033	1 329	3 013	1 090	2 234	1 236
Dénomination (*) dans ce travail	v ₁	v ₂	v ₃	v ₄	v ₅	v ₆	v ₇	v ₈	v ₉
Dénomination (**) Herz- berg	v _{3a}	v ₁	v _{2a}	v _{4a}	v _{2b}	v _{3b}	v _{4b}	v _{3c}	v _{4c}

(*) Cette numérotation a été obtenue en suivant les recommandations officielles de [4].

(**) G. Herzberg Infrared and Raman Spectra (Van Nostrand New York) p. 238 et 309.

FIG. 1. — Géométrie de la molécule CH_2D_2 dans la représentation I^r.

ces plans contient les deux noyaux d'hydrogène, nous l'appellerons \mathcal{K} , l'autre contient les noyaux de deutérium, nous l'appellerons \mathfrak{D} (cf. Fig. 1). Appelons C_2 l'axe de symétrie d'ordre 2, d et h les axes principaux d'inertie passant par le centre de gravité de la molécule et qui sont perpendiculaires à C_2 et contenus dans D et \mathcal{R} respectivement. Un calcul élémentaire montre que si l'on pose $I_a < I_b < I_c$, alors :

l'axe C₂ correspond au moment d'inertie $I_{\rm b}$, l'axe d correspond au moment d'inertie $I_{\rm a}$, l'axe h correspond au moment d'inertie $I_{\rm c}$.

Si nous choisissons les axes selon les recommandations officielles [4] nous avons x, y, z pour respectivement h, d, C₂. Nous sommes alors dans la représentation II^r telle qu'elle est définie par King *et al.* [5]. Dans ce cas, nous voyons immédiatement que des niveaux de vibration de symétrie A_1 , B_1 , B_2 donneront des bandes de type *B*, *C*, *A* respectivement. C'est dans ce cadre qu'on obtient la numérotation des vibrations qui est utilisée ici. Le tableau *I* permet de faire la correspondance entre cette numérotation déjà employée par Olson [2] et la numérotation de la référence [6] qui rattache les vibrations de tous les dérivés isotopiques du méthane aux vibrations de la molécule CH₄.

3.1 SYMÉTRIE DES NIVEAUX VIBRATIONNELS. — Pour pouvoir utiliser la théorie de Watson [7], [8] dont l'usage s'est généralisé, nous nous placerons dans la représentation I^r dans laquelle cette théorie est utilisée. Dans ce cas à x, y, z, correspondent respectivement C₂, h, d (cf. Fig. 1). Nous aurons alors pour CH_2D_2 la table de caractères suivante :

C_{2v}	E	C _{2(x)}	$\sigma_{v(xy)}$	$\sigma_{\rm v(zx)}$		
	<u> </u>					
A_1	1	1	1	1	T_x	$\alpha_{xx}, \alpha_{yy}, \alpha_{zz}$
$\dot{A_2}$	1	1	- 1	- 1	R _x	α_{yz}
$\bar{B_1}$	1	- 1	1	- 1	T_y, R_z	α_{xy}
B_2	1	- 1	- 1	1	T_z, R_y	α_{zx}

Il faut remarquer que la relation que nous avons écrite entre les symétries A_1 , B_1 , B_2 des niveaux de vibration et les types B, C, A des bandes infrarouges est encore valable. Une vibration de type A_2 sera inactive en infrarouge et toutes les vibrations seront actives en Raman. 3.2 POIDS STATISTIQUES DE SPIN ET SYMÉTRIE DES NIVEAUX ROTATIONNELS. — Pour un rotateur asymétrique, le sous-groupe rotationnel est le groupe V. Pour distinguer les niveaux ayant même nombre quantique rotationnel principal, on peut indiquer ces niveaux par la valeur que prendrait le nombre quantique rotationnel K dans le cas limite $\kappa = -1$ (rotateur symétrique allongé), et la valeur qu'il prendrait dans le cas limite $\kappa = +1$ (rotateur symétrique aplati).

Si on désigne la symétrie d'un niveau par la parité des indices K_{-1} et K_1 (e = pair, o = impair), on a toujours les types de symétrie A, B_a, B_b, B_c du groupe V pour les niveaux e e, e o, o o, o e respectivement et ceci indépendamment de tout choix d'axe (cf. Allen et Cross [9]).

Pour la molécule CH_2D_2 dont les spins nucléaires des noyaux qui s'échangent sont 1 pour les noyaux D et $\frac{1}{2}$ pour les noyaux H, on a les poids statistiques 15 pour les niveaux de rotation symétriques et 21 pour les niveaux de rotation antisymétriques. Dans notre cas c'est l'axe b qui est aligné sur l'axe C_2 de la molécule, les niveaux o o sont donc symétriques. On a donc en définitive les poids statistiques de spin.

15 pour les niveaux e e et o o

et 21 pour les niveaux e o et o e.

3.3 ENERGIE DU ROTATEUR. — Pour calculer l'énergie du rotateur asymétrique non rigide nous avons utilisé l'hamiltonien réduit de Watson [7], [8]

$$\mathbf{H} = \mathbf{H}_{0} - d_{J} (\mathbf{J}^{2})^{2} - d_{JK} \mathbf{J}^{2} \mathbf{J}^{2}_{z} - d_{K} \mathbf{J}^{4}_{z} - d_{WJ} \mathbf{H}_{0} \mathbf{J}^{2} - \frac{1}{2} d_{WK} (\mathbf{H}_{0} \mathbf{J}^{2}_{z} + \mathbf{J}^{2}_{z} \mathbf{H}_{0})$$

avec

$$H_0 = \frac{1}{2}(X + Y) J^2 + [Z - \frac{1}{2}(X + Y)] J_z^2 + \frac{1}{2}(X - Y) (J_x^2 - J_y^2) .$$

Dans la représentation I^r, nous définirons les constantes rotationnelles A, B, C de telle sorte que

$$\mathbf{H}_{0} = \frac{1}{2}(B+C)\mathbf{J}^{2} + [A - \frac{1}{2}(B+C)]\mathbf{J}^{2}_{z} + \frac{1}{2}(B-C)(\mathbf{J}^{2}_{x} - \mathbf{J}^{2}_{y}).$$

Dans la base des fonctions d'onde du rotateur symétrique, la première partie de H_0 n'a que des éléments diagonaux non nuls, alors que la seconde n'a que des éléments $\langle K | K \pm 2 \rangle$ différents de zéro.

Si E et $| \phi >$ sont une valeur propre de H et son vecteur propre associé $H | \phi > = E | \phi >$ alors l'énergie E est donnée par

$$E = E_0 - d_J J^2 (J+1)^2 - d_{JK} J (J+1) < \mathbf{J}_z^2 > - \\ -d_K < \mathbf{J}_z^4 > -d_{WJ} E_0 J (J+1) - d_{WK} E_0 < \mathbf{J}_z^2 >$$

où les crochets indiquent les valeurs moyennes des opérateurs

$$\langle \mathbf{A} \rangle = \langle \varphi \mid \mathbf{A} \mid \varphi \rangle.$$

4. Analyse de la bande v_9 . — La bande v_9 est une bande de type A, c'est-à-dire que les règles de sélection pour les raies les plus intenses sont $\Delta J = 0, \pm 1, \Delta K_{-1} = 0, \Delta K_1 = \pm 1$. On observe au centre du spectre, vers 1 236 cm⁻¹, une accumulation de toutes les transitions Q ($\Delta J = 0$). Dans la branche Q nous avons pu repérer des transitions $\Delta K_{-1} = -2, \Delta K_1 = -1$. Du côté des basses fréquences se trouvent les transitions P ($\Delta J = -1$); pour les J compris entre 4 et 8, les transitions de même J et de K_{-1} , K_1 différents sont groupées en amas très denses non résolus, ces transitions sont donc très difficiles à analyser. D'autre part, pour les valeurs de J supérieures à 13, les raies sont de faible intensité et noyées dans les nombreuses transitions de la bande v_7 voisine. En effet, en dessous de 1 172 cm⁻¹ il y a recouvrement des deux bandes. Ceci explique le peu d'information amenée par les transitions P. Du côté des hautes fréquences, les transitions R $(\Delta J = +1)$ sont très séparées et donc plus facilement identifiables. Dans la branche R nous avons mesuré une raie $\Delta K_{-1} = -2$, $\Delta K_1 = +3$ à 1 277, 917 cm⁻¹. Des raies résiduelles de la vapeur d'eau apparaissent à partir de 1 271 cm⁻¹ mais ne sont vraiment gênantes qu'au-dessus de 1 310 cm⁻¹. La figure 2 présente un enregistrement rapide de v_9 . Entre 1 229 et 1 333 cm⁻¹, on repère une accumulation de raies qui correspond à la bande de vibration v_5 de type A_2 théoriquement inactive en infrarouge et qui a été étudiée en Raman par Mc Wood et Urey [10].

Nous avons identifié et mesuré 215 raies de la bande v_9 entre 1 142 et 1 322 cm⁻¹. Dans un premier travail [11] nous avons calculé les constantes du niveau fondamental. Pour cela nous avons déterminé les combinaisons du niveau fondamental à partir des transitions R et P qui aboutissent au même niveau de l'état $v_0 = 1$. En tenant compte de nos mesures et des résultats précédemment publiés par Olson et al. [2] nous avons pu obtenir les valeurs des constantes rotationnelles du fondamental A^0 , B^0 , C^0 . Les informations en notre possession ne permettent pas de déterminer les 5 constantes de distorsion de Watson mais seulement 3 d'entre elles. Nous avons choisi le jeu des 3 constantes qui étaient statistiquement les mieux définies. Les résultats obtenus sont consignés dans la 1^{re} colonne du tableau II. Pour ces calculs nous avons utilisé un programme de moindres carrés en Fortran mis au point par T. Nakagawa [12] que nous avons adapté à l'ordinateur UNIVAC 1108 d'Orsay. Ensuite nous avons fixé les constantes du niveau fondamental aux valeurs précédentes, puis nous avons déterminé les constantes rotationnelles A^9 , B^9 , C^9 ainsi que les 3 constantes de distorsion d_{JK}^9 , d_{K}^{9} , d_{WJ}^{9} . Nous avons essayé de calculer d'autres constantes de distorsion pour l'état $v_9 = 1$ mais là encore, nos mesures ne nous permettent d'en déterminer que 3 sur 5.

Nous avons donc choisi de déterminer les mêmes

TABLEAU II

Constantes moléculaires de la bande v₉ de CH₂D₂

Niveau fondamental (^a)		Niveau $v_9 = 1$						
		Calcul sans résonance	Cal	cul avec résonance de Coriolis en z avec $v_5 = 1$				
	v ₉	$= 1236,348 \pm 0,011 \text{ cm}^{-1}$	v ₉	$= 1 236,347 \pm 0,011 \text{ cm}^{-1}$				
$A^0 = 4,307 \ 4 \pm 0,001 \ 4 \ \mathrm{cm}^{-1}$	A ⁹	$= 4,293 8 \pm 0,000 5 \text{ cm}^{-1}$	A ⁹	$= 4,320 8 \pm 0,017 0 \text{ cm}^{-1}$				
$B^0 = 3,5069 \pm 0,0005 \mathrm{cm}^{-1}$	B ⁹	$= 3,5550 \pm 0,0003 \text{ cm}^{-1}$	B ⁹	$= 3,555 0 \pm 0,000 3 \text{ cm}^{-1}$				
$C^0 = 3,051 \ 8 \pm 0,000 \ 5 \ \mathrm{cm}^{-1}$	<i>C</i> ⁹	$= 2,941 4 \pm 0,000 3 \text{ cm}^{-1}$	C ⁹	$= 2,941 1 \pm 0,000 3 \text{ cm}^{-1}$				
$d_{JK}^0 = (1,76\pm0,16) \ 10^{-4} \ \mathrm{cm}^{-1}$	d_{JK}^9	= $(4,13\pm0,08)$ 10 ⁻⁴ cm ⁻¹	d_{JK}^9	= $(4,19\pm0,09) \ 10^{-4} \ \mathrm{cm}^{-1}$				
$d_K^0 = (-1, 1 \pm 0, 4) 10^{-4} \mathrm{cm}^{-1}$	d_K^9	$= (-1,93\pm0,06)10^{-4} \text{ cm}^{-1}$	d_K^9	$= (-1,89\pm0,07) \ 10^{-4} \ \mathrm{cm}^{-1}$				
$d_{WJ}^0 = (0,143 \pm 0,09) \ 10^{-4} \ cm^{-1}$	d_{WJ}^9	$= (-0,036 \pm 0,003) 10^{-4} \mathrm{cm}^{-1}$	d_{WJ}^9	$= (-0,035 \pm 0,003) 10^{-4} \mathrm{cm}^{-1}$				
	ξ ^z 59	= 0	ξ ^z 59	$ = 1,56 \pm 0,5$				
	σ	$= 0,043 4 \text{ cm}^{-1}$	σ	$= 0,042 8 \text{ cm}^{-1}$				

Toutes les incertitudes sont des déviations standard.

(^a) Constantes déterminées par les combinaisons du niveau fondamental puis fixées.

constantes de distorsion pour l'état $v_9 = 1$ que pour l'état fondamental. Ce calcul a donné les résultats qui sont rassemblés dans la 2^e colonne du tableau II. Avec ces valeurs, les fréquences mesurées sont reproduites avec un écart standard de 0,043 cm⁻¹. Le tableau III donne les attributions et les fréquences des raies mesurées, ainsi que, les fréquences calculées, les écarts et les poids relatifs de chaque mesure. Toutes les raies sont affectées du poids 1 sauf les raies multiples non résolues pour lesquelles nous avons adopté le poids 0,25 correspondant à une incertitude expérimentale doublée.

Nous voyons que le jeu de constantes obtenu permet de rendre compte raisonnablement des fréquences mesurées. Cependant il faut remarquer que les constantes de distorsion de l'état $v_9 = 1$ sont très différentes de celles de l'état fondamental. En particulier d_{WJ} change de signe. Nous avons tenté d'expliquer ce phénomène par une résonance de Coriolis en z provoquée par le terme de l'hamiltonien $i\xi_{59}^z J_z$ avec la bande v_5 , résonance déjà suggérée par Wilmshurst et Bernstein [1]. Cette hypothèse avait l'avantage d'expliquer en même temps l'apparition de la bande v_5 .

Nous avons représenté sur la figure 3 l'enregistrement de la bande v_5 . Il faut remarquer qu'un très petit nombre de raies individuelles de v_5 peuvent être observées. Nous avons commencé par déterminer la valeur du coefficient ξ_{59}^z en faisant diverses reconstitutions du spectre. Dans le cas d'une interaction

FIG. 3. — Spectre de v_5 . Pression = 20 torr, longueur = 40 cm.

entre une bande inactive et une bande active seule la valeur absolue du terme de couplage peut être déterminée expérimentalement à partir des intensités des transitions. Nous avons obtenu $|\xi_{59}^z| = 2$ à 3. Devant l'impossibilité où nous nous trouvons d'identifier des raies individuelles de v_5 , nous avons fixé les constantes de l'état vibrationnel $v_5 = 1$ aux valeurs du fondamental. Puis nous avons effectué un calcul de moindres carrés, avec les mêmes 215 fréquences mesurées, en tenant compte de la résonance de Coriolis en z. Les résultats de ce calcul sont consignés dans la 3^e colonne du tableau I. La comparaison des résultats donnés par les deux calculs que nous

TABLEAU III

Résultats du calcul de moindres carrés sans résonance (toutes les fréquences sont en cm⁻¹)

N٥	J'	K'_{-1}	K_1'	J''	K''_{-1}	K_1''	obs.	calc.	obs. – calc.	poids
1	12	0	12	13	0	43	1142,440	1142,505	- 0,065	0,250
2	12	1	12	13	1	13	1142,440	1142,505	- 0,065	0,250
3	12	1	11	13	1	12	1144,340	1144,451	- 0,111	0,250
4	12	2	11	13	2	12	1144,340	1144,451	- 0,111	0,250
6	12	3	10	13	2	11	1146,211	1146,212	- 0,001	1,000
7	11	0	11	12	0	12	1150,687	1140,200	0,003	1,000
.8	11	1	11	12	1	12	1150,687	1150,671	0,016	1,000
9	11	1	10	12	1	11	1152,338	1152,352	- 0,014	1,000
10	11	2	10	12	2	11	1152,338	1152,352	- 0,014	1,000
11	11	2	9	12	2	10	1153,830	1153,847	- 0,017	1,000
12	11	5	9	12	3	10	1153,830	1153,838	- 0,008	1,000
14	10	0	10	12	5	11	1157,859	115/,86/	- 0,008	0,250
15	10	1	10	11	1	11	1158,655	1158,709	-0,054	1,000
16	10	1	9	11	1	10	1160,124	1160,119	0,005	1,000
17	10	2	9	11	2	10	1160,124	1160,118	0,006	1,000
18	10	2	8	11	2	9	1161,301	1161,344	- 0,043	1,000
19	10	3	8	11	3	9	1161,301	1161,322	- 0,021	1,000
20	10	9	1	11	9	2	1162,069	1162,066	0,003	1,000
21	10	9	2	11	9	3	1162,069	1162,066	0,003	1,000
23	10	3	7	11	4	8	1162,239	1162,285	-0,026	1,000
24	10	5	6	11	5	7	1162,804	1162,831	- 0,030	1,000
25	10	6	5	11	6	6	1162,804	1162,852	- 0.048	1,000
26	10	6	4	11	6	5	1163,122	1163,226	- 0,104	1,000
27	10	4	6	11	4	7	1163,717	1163,708	0,009	1,000
28	10	5	5	11	5	6	1163,924	1163,963	- 0,039	1,000
29	9	0	9	10	0	10	1166,547	1166,607	- 0,060	1,000
31	9	1	9	10	1	01	1165,547	1166,60/	- 0,060	1,000
32	9	1	8	10	1	9	1167,703	1167,735	-0,032	1,000
33	9	3	7	10	3	8	1168,663	1168,645	0,018	1,000
34	9	2	7	10	2	8	1168,663	1168,691	- 0,028	1,000
35	9	8	1	10	8	2	1168,980	1169,020	- 0,040	1,000
36	9	8	2	10	8	3	1168,980	1169,020	- 0,040	1,000
37	9	/	2	10	7	3	1169,276	1169,188	0,088	0,250
39	9	4	5	10		4	1169,276	1169,183	0,093	0.250
40	9	6	3	10	4 6	4	1169,270	1169,276	- 0,000	1,000
41	9	6	4	10	6	5	1169,391	1169,391	-0.000	1,000
42	9	5	5	10	5	6	1169,453	1169,504	- 0,051	0,250
43	9	3	6	10	3	7	1169,641	1169,616	0,025	1,000
44	9	5	4	10	5	5	1170,018	1170,028	- 0,010	1,000
45 46	9	4	5	10	4	6	1170,273	1170,240	0,033	1,000
40	8	1	8	9	1	9	1174,312	1174,350	-0,038	1,000
48	8	1	7	9	1	8	1174,312	1174,330	-0,038	1,000
49	8	2	7	9	2	8	1175,177	1175,189	-0.012	1,000
50	8	3	6	9	3	7	1175,868	1175,796	0,072	0,250
51	8	2	6	9	2	7	1175,868	1175,874	- 0,006	0,250
52	8	7	1	9	7	2	1175,868	1175,904	- 0,036	0,250
53	8	7	2	9	7	3	1175,868	1175,904	- 0,036	0,250
55	ð	ð g	0	9	8	1	1175,868	1175,846	0,022	0,250
56	8	5	4	9 9	0 5	2 5	1175,000	1176 120	0,022	0,250
57	8	4	5	9	4	6	1176.111	1176.116	- 0,020 - 0,005	1 000
58	8	6	2	9	6	3	1176,111	1176,027	0.084	1,000
59	8	6	3	9	6	4	1176,111	1176,017	0,094	1,000
60	8	5	3	9	5	4	1176,284	1176,283	0,001	1,000
61	8	3	5	9	3	6	1176,579	1176,450	0,129	0,250

JOURNAL DE PHYSIQUE

TABLEAU III (suite)

Nº	J^{\prime}	K'_{-1}	K_1'	$J^{\prime\prime}$	K''_{-1}	K_1''	obs.	calc.	obs. – calc.	poids
-				-		<u> </u>				
62	8	4	4	9	4	5	1176,680	1176,588	0,092	0,250
63	7	1	7	8	1	8	1181,885	1181,925	- 0,040	1,000
64	7	0	7	8	0	8	1181,885	1181,925	- 0,040	1,000
65	7	1	6	8	1	7	1182,452	1182,479	- 0,027	1,000
66	7	2	6	8	2	7	1182,452	1182,469	- 0,018	1,000
67	7	3	4	8	3	5	1183,095	1183,038	0,057	0,250
68	1	1	0	2	1	1	1222,862	1222,812	0,050	1,000
69 70	1	0	1	2	0	2	1223,385	1223,316	0,069	0,250
70	1	1	1	2	1	2	1223,572	1223,563	0,009	1,000
71	7	1	6	7	2	5	1224,000	1224,019	- 0,034	1,000
73	8	2	6	8	5 4	5	1225,550	1225,559	-0,001	1,000
74	9	3	7	9	4	5	1225,091	1225,005	0,008	1,000
75	7	2	6	7	2	5	1225,575	1225,004	0,091	1,000
76	7	2	5	, 7	4	4	1226,815	1226,814	0,025	1,000
77	5	0	5	5	2	4	1227,088	1227,094	- 0,006	1,000
78	6	1	5	6	3	4	1227,302	1227,341	- 0.039	1,000
79	5	1	5	5	1	4	1227,694	1227,749	- 0.055	1,000
80	4	0	4	4	2	3	1229,122	1229,193	- 0,071	0,250
81	8	3	6	8	3	5	1229,122	1229,056	0.066	0,250
82	6	2	5	6	2	4	1229,520	1229,544	- 0,024	1,000
83	0	0	0	1	0	1	1229,753	1229,789	- 0,036	1,000
84	14	14	0	14	14	1	1230,354	1230,355	- 0,001	1,000
85	14	14	1	14	14	0	1230,354	1230,355	- 0,001	1,000
86	9	4	6	9	4	5	1231,801	1231,765	0,036	1,000
87	7	3	5	7	3	4	1231,801	1231,769	0,032	1,000
88	13	12	2	13	12	1	1232,074	1232,042	0,032	1,000
89	13	12	1	13	12	2	1232,074	1232,042	0,032	1,000
90	12	10	2	12	10	3	1233,446	1233,516	- 0,070	1,000
91	12	10	3	12	10	2	1233,446	1233,516	- 0,070	1,000
92	5	3	4	6	3	3	1233,887	1233,831	0,056	1,000
93	10	5	0 2	10	5	5	1234,033	1234,028	0,005	1,000
94	6	5	2	6	5	4	1236,530	1230,597	-0,067	0,250
96	10	- - 6	4	10	4	5	1236,730	1230,540	- 0,018	1,000
97	3	2	1	3	2	2	1237 082	1237, 120	- 0.038	1,000
98	5	3	2	5	3	3	1237,367	1237,120	0,029	1,000
99	7	4	3	7	4	4	1237,648	1237,567	0,021	0.250
100	9	5	4	9	5	5	1237,857	1237.877	- 0,020	1,000
101	4	2	2	4	2	3	1238,275	1238,266	0,009	1,000
102	6	3	3	6	3	4	1238,769	1238,713	0,056	1,000
103	1	0	1	0	0	0	1242,835	1242,844	- 0,009	1,000
104	2	1	2	1	1	1	1248,530	1248,601	- 0,071	0,250
105	2	0	2	1	0	1	1248,987	1249,024	- 0,037	1,000
106	2	1	1	1	1	0	1249,981	1249,987	- 0,006	1,000
107	6	0	6	5	0	5	1270,048	1270,089	- 0,041	1,000
108	6	1	6	5	1	5	1270,048	1270,059	- 0,011	1,000
109	5	3	2	4	3	1	1270,157	1270,151	0,006	1,000
110	5	2	3	4	2	2	1270,592	1270,554	0,038	1,000
111	6	2	5	5	2	4	12/3,0//	12/3,106	- 0,029	1,000
112	6	1	5	5	1	4	12/3,661	12/3,639	0,022	1,000
113	7	1	/	6	I	6	1274,866	12/4,821	0,045	1,000
114	1	U 2	1	D E	0	0 2	1275 175	1275 000	0,035	1,000
116	6	ר ב	4	5	5	ン 1	1275 516	1275,000	0,092	1,000
117	6	5	ے 1	ך ב	ר ב	1	1275 514	1275,439	0,000	1,000
118	6	4	3	5	5 1	2	1275 604	1275,490	0,010	1,000
119	6	4	2	5	4	2 1	1276, 221	1276 224	- 0 003	1 000
			-	2	-		12109221	1210,224	0,005	.,000

TABLEAU III (suite)

N٥	J^{\prime}	K'-1	K_1'	J''	K''_{-1}	K_1''	obs.	calc.	obs. – calc.	poids
		-								
120	6	2	4	5	2	3	1276.904	1276.886	0.018	1.000
121	6	3	3	5	3	2	1277,585	1277,529	0,056	1,000
122	8	2	6	7	4	3	1277,917	1277,908	0,009	1.000
123	7	2	6	6	2	5	1278,286	1278,280	0,006	1,000
124	7	1	6	6	1	5	1278,556	1278,539	0,017	1,000
125	8	1	8	7	1	7	1279,367	1279,382	- 0,015	1,000
126	8	0	8	7	0	7	1279,367	1279,385	- 0,018	1,000
127	7	3	5	6	3	4	1280,983	1280,952	0,031	1,000
128	7	6	2	6	6	1	1281,690	1281,757	- 0,067	1,000
129	7	6	1	6	6	0	1281,690	1281,766	- 0,076	1,000
130	7	5	3	6	5	2	1282,120	1282,109	0,011	1,000
131	7	4	4	6	4	3	1282,120	1282,141	- 0,021	1,000
132	7	5	2	6	5	1	1282,280	1282,316	- 0,036	1,000
133	7	2	5	6	2	4	1282,523	1282,507	0,016	1,000
134	8	2	7	7	2	6	1283,230	1283,182	0,048	0,250
135	8	1	7	7	1	6	1283,310	1283,289	0,021	0,250
136	9	0	9	8	0	8	1283,767	1283,756	0,011	1,000
137	9	1	9	8	1	8	1283,767	1283,755	0,012	1,000
138	7	3	4	6	3	3	1284,610	1284,660	- 0,050	1,000
139	8	3	6	7	3	5	1286,508	1286,461	0,047	1,000
140	8	2	6	7	2	5	1287,527	1287,505	0,022	1,000
141	9	1	8	8	1	7	1287,874	1287,892	- 0,018	1,000
142	9	2	8	8	2	7	1287,874	1287,852	0,022	1,000
143	10	0	10	9	0	9	1287,874	1287,953	- 0,079	0,250
144	10	I	10	9	1	9	1287,874	1287,952	- 0,078	0,250
145	8	6	3	/	6	2	1288,403	1288,395	0,008	1,000
146	8	6	2	/	6	1	1288,403	1288,457	- 0,054	1,000
147	0	4	2	7	4	4	1288,403	1288,431	- 0,028	1,000
140	0	5	4	7	5	っ っ	1200,707	1288,802	- 0,015	1,000
149	0	2	5	7	2	2 /	1209,000	1209,542	0,024	1,000
150	0	5	ر ،	7	/	4	1291,1//	1291,175	0,002	1,000
152	a	4	7	8	4	5	1291,444	1291,442	- 0.046	1,000
153	11	0	11	10	0	10	1291,571	1291,017	0,040	1,000
154	11	1	11	10	1	10	1292,009	1291,905	0,024	1,000
155	9	2	7	8	2	6	1292,005	1291,505	0,024	0,250
156	10	1	, 9	ğ	1	8	1292,277	1292,170	- 0,005	1 000
157	10	2	9	9	2	8	1292,331	1292,322	0,009	1,000
158	.0	4	6	8	4	5	1294,453	1294,394	0,059	1,000
159	9	7	2	8	7	1	1294,645	1294,565	0,080	1,000
160	9	7	3	8	7	2	1294,645	1294,549	0,096	1,000
161	9	6	4	8	6	3	1295,208	1295,156	0,052	1,000
162	9	5	5	8	5	4	1295,446	1295,439	0.007	1,000
163	9	6	3	8	6	2	1295,446	1295,431	0.015	1.000
164	12	0	12	11	0	11	1295,867	1295,867	0,000	1,000
165	12	1	12	11	1	11	1295,867	1295,867	0,000	1,000
166	9	5	4	8	5	3	1297,353	1297, 329	0,024	1,000
167	9	4	5	8	4	4	1298,969	1298,947	0,022	1,000
168	13	0	13	12	0	12	1299,640	1299,612	0,028	1,000
169	13	1	13	12	1	12	1299,640	1299,612	0,028	1,000
170	10	4	7	9	4	6	1299,995	1299,962	0,033	1,000
171	10	9	1	9	9	0	1299,995	1300,006	- 0,011	1,000
172	10	9	2	9	9	1	1299,995	1300,006	- 0,011	1,000
173	12	2	11	11	2	10	1300,803	1300,741	0,062	1,000
174	12	1	11	11	1	10	1300,803	1300,742	0,060	1,000
175	11	3	9	10	3	8	1301,106	1301,067	0,039	1,000
176	11	2	9	10	2	8	1301,184	1301;168	0,016	1,000
177	10	7	4	9	7	3	1301,322	1301,298	0,024	1,000

JOURNAL DE PHYSIQUE

TABLEAU III (suite)

N٥	J^{\prime}	K'_{-1}	K_1'	$J^{''}$	K''_{-1}	K_1''	obs.	calc.	obs. – calc.	poids
								_		
178	10	7	3	9	7	2	1301,384	1301,385	- 0,001	1,000
179	10	3	7	9	3	6	1301,711	1301,697	0,014	1,000
180	10	5	6	9	5	5	1301,864	1301,878	- 0,014	1,000
181	10	6	4	9	6	3	1302,782	1302,906	- 0,124	1,000
182	14	0	14	13	0	13	1303,245	1303,235	0,010	1,000
183	14	1	14	13	1	13	1303,245	1303,235	0,010	1,000
184	13	1	12	12	1	11	1304,800	1304,721	0,079	0,250
185	13	2	12	12	2	11	1304,800	1304,721	0,079	0,250
186	11	4	8	10	4	7	1305,188	1305,134	0,054	1,000
187	11	3	8	10	3	7	1306,105	1306,137	- 0,032	1,000
188	11	9	2	10	9	1	1306,459	1306,470	- 0,011	1,000
189	11	9	3	10	9	2	1306,459	1306,469	- 0,010	1,000
190	15	0	15	14	0	14	1306,755	1306,754	0,001	0,250
191	11	8	3	10	8	2	1307,400	1307,303	0,097	0,250
192	11	8	4	10	8	3	1307,400	1307,278	0,122	0,250
193	11	5	7	10	5	6	1307,897	1307,977	- 0,080	1,000
194	11	7	5	10	7	4	1308,200	1308,217	- 0,017	0,250
195	14	1	13	13	1	12	1308,636	1308,568	0,068	1,000
196	11	6	6	10	6	5	1308,759	1308,822	- 0,063	1,000
197	13	2	11	12	2	10	1309,701	1309,699	0,002	1,000
198	13	3	11	12	3	10	1309,701	1309,687	0,014	1,000
199	12	4	9	11	4	8	1309,989	1309,960	0,029	1,000
200	16	0	16	15	0	15	1309,989	1310,186	- 0,197	0,250
201	12	3	9	11	3	8	1310,469	1310,448	0,021	1,000
202	11	4	7	10	4	6	1311,433	1311,482	- 0,049	1,000
203	15	2	14	14	2	13	1312,309	1312,298	0,011	1,000
204	15	1	14	14	1	13	1312,309	1312,298	0,011	1,000
205	12	9	3	11	9	2	1313,157	1313,112	0,045	0,250
206	12	9	4	11	9	3	1313,157	1313,105	0,052	0,250
207	17	0	17	16	0	16	1313,485	1313,552	- 0,067	0,250
208	14	2	12	13	2	11	1313,841	1313,768	0,073	1,000
209	14	3	12	13	3	11	1313,841	1313,764	0,077	1,000
210	12	8	4	11	8	3	1314,300	1314,306	- 0,006	0,250
211	12	8	5	11	8	4	1314,300	1314,189	0,111	0,250
212	13	4	10	12	4	9	1314,465	1314,513	- 0,048	1,000
213	12	7	6	11	7	5	1315,179	1315,267	- 0,088	1,000
214	16	1	15	15	1	14	1315,868	1315,928	- 0,060	1,000
215	13	7	7	12	7	6	1322,457	1322,331	0,126	0,250

avons effectués appelle dès l'abord plusieurs remarques :

— Toutes les constantes moléculaires de v_9 sauf A^9 varient dans un intervalle inférieur à un écart standard, la résonance avec v_5 n'explique donc pas la variation importante des constantes de distorsion par rapport à l'état fondamental.

— La valeur du terme d'interaction est faible et permet à peine d'expliquer l'apparition de la bande v_5 .

— Entre les deux constantes $|\xi_{59}^z|$ et A^9 il y a une corrélation très importante. Cette corrélation entre A et $|\xi_{59}^z|$ vient de ce que l'opérateur qui crée l'interaction est J_z et que l'axe z correspond au moment d'inertie I_a . Un phénomène analogue a été observé dans l'ozone par Clough et Kneizys [13]. — L'écart standard du calcul avec résonance n'est pas significativement plus petit que celui du calcul sans résonance.

Toutes ces remarques nous amènent donc à la conclusion que nos informations actuelles sur v_9 ne nous permettent pas d'envisager l'existence d'une résonance entre v_9 et v_5 .

Nous avons donc gardé les constantes obtenues sans résonance, pour faire une reconstitution du spectre entre 1 270 et 1 298 cm⁻¹ qui est la zone où les transitions de v_9 sont les mieux séparées. La figure 4 présente l'un sous l'autre le spectre expérimental et le spectre synthétique calculé avec les constantes du calcul sans résonance. **Conclusion.** — Nous avons interprété la bande v_9 de CH_2D_2 et nous avons obtenu un jeu de constantes moléculaires effectives qui permettent de prédire les fréquences des transitions de cette bande. Néanmoins il reste à expliquer le délicat problème de l'appa-

rition de la bande v_5 qui est rappelons-le, théoriquement inactive en IR. Pour être en mesure d'expliquer ce phénomène, un spectre mieux résolu serait utile car il permettrait d'isoler des transitions de v_5 et donc éventuellement de les attribuer.

Bibliographie

- [1] WILMSHURST, J. K. et BERNSTEIN, H. J., Can. J. Chem. 35 (1957) 226.
- [2] OLSON, W. B., ALLEN, H. C., PLYLER, E. K., J. Res. Nat. Bur. Stand. 67A (1963) 27.
- [3] DOWLING, J., WRAY, J. H., MEISTER, A. G., J. Phys. B 2 (1969) 499.
- [4] J. Chem. Phys. 23 (1955) 1997.
- [5] KING, G. W., HAINER, R. M., CROSS, P. C., J. Chem. Phys. 11 (1943) 27.
- [6] HERZBERG, G., Infrared and Raman Spectra (Van Nostrand, New York) 1964.
- [7] WATSON, J. K. G., J. Chem. Phys. 45 (1966) 1360.

- [8] WATSON, J. K. G., J. Chem. Phys. 46 (1967) 1935.
- [9] ALLEN, H. C. et CROSS, P. C., Molecular Vib-Rotors (John Wiley, New York) 1963.
- [10] MC Wood, G. E. et UREY, H. C., J. Chem. Phys. 4 (1936) 402.
- [11] DEROCHE, J. C. et GRANER, G., J. Mol. Spectrosc. 45 (1973) 322.
- [12] NAKAGAWA, T. et MORINO, Y., J. Mol. Spectrosc. 38 (1971) 84.
- [13] CLOUGH, S. A. et KNEIZYS, F. X., J. Chem. Phys. 44 (1966) 1855.