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« SATURATION RESONANCES BY MAGNETIC MODE CROSSING
IN OPTICAL PUMPING WITH A MULTIMODE GAS LASER »

M. DUMONT

Laboratoire de Spectroscopie Hertzienne de I’ENS, 24, rue Lhomond, Paris 5e, France

(Reçu le 17 mai 1972)

Résumé. 2014 La lumière de fluorescence émise par des atomes (Ne) pompés optiquement par un
laser multimode présente des résonances lorsque l’écart Zeeman est égal à l’écart de fréquence
entre modes. L’étude expérimentale montre que ces résonances sont sensibles à la phase relative des
modes et que leur forme est voisine de celle de l’effet Hanle. Nous en donnons ici l’interprétation
théorique à l’aide d’un calcul de perturbation. Deux effets peuvent produire des resonances :
1) Un effet de population (PE) qui est résonnant lorsque la composante 03C3+ d’un mode et la compo-
sante 03C3- d’un autre mode interagissent avec des atomes de même vitesse (croisement de « trous »).
La largeur de ces résonances est 2 0393’ab (largeur naturelle de la raie élargie par collisions). 2) Un effet
de cohérence Zeeman (ZCE) : l’action d’une paire de modes, (v, 03C3+) et (03BC, 03C3-), crée (au 2e ordre)
de 1’alignement transversal module à la fréquence 03C903BD 2014 03C903BC et résonnant quand l’écart Zeeman est
égal à cette fréquence ; par interaction avec une nouvelle paire de modes (03BB, 03C3-) et (03BA, 03C3+)
(03C903BD 2014 03C903BC + 03C903BB 2014 03C903BA = 0), cet alignement donne (au 4e ordre) des grandeurs longitudinales non
modulées, présentant en fonction du champ magnétique une résonance de largeur voisine de celle
de 1’effet Hanle (0393b(2)).
Dans les conditions de nos expériences (modes rapprochés : 0393’ab~ 039403C9 &#x3E; 0393b(2)), les résonances

du premier type ne sont pas résolues et l’on n’observe que celle du second type qui sont très sen-
sibles à la phase des modes. Nous discutons également la possibilité de mesurer des facteurs de
Landé à 1’aide de ces résonances.

Abstract. 2014 The fluorescence light emitted by atoms (Ne) optically pumped with a multimode
laser beam exhibits a resonance each time the Zeeman splitting is equal to the frequency difference
between two modes. The experimental study shows that these resonances are very sensitive to the
relative phase of modes and that their width is approximately equal to the Hanle effect width.
A theoretical interpretation is given with the help of a perturbation calculation. Two phenomena
produce resonances : 1) A Population Effect (PE) which is resonant when the 03C3+ component
of one mode and the 03C3- component of another interact with atoms of same velocity (hole
crossing). The width of these resonances is 2 0393’ab (natural width broadened by collisions).
2) A Zeeman Coherence Effect (ZCE) : the action of a pair of modes (03BD, 03C3+) and (03BC, 03C3-) produces
(at 2nd order) transverse alignment modulated at the beat frequency 03C903BD 2014 03C903BC and resonant when the
Zeeman splitting is equal to that frequency ; by interaction with a second pair of modes (03BB, 03C3-)
and (03BA, 03C3+) (03C903BD 201403C903BC + 03C903BB 2014 03C903BA = 0), this alignment produces unmodulated longitudinal quanti-
ties (4th order) which exhibit, as the magnetic field is scanned, a resonance whose width is close to
that of the Hanle curve (0393b(2)).

In our experimental conditions (close modes : 0393’ab~ 039403C9 &#x3E; 0393b(2)), the resonances of the first
kind are not resolved and the observed resonances are only of the second type’s which arevery
sensitive to the phases of modes. We also discuss the possibility of using these resonances to measure
Landé g factors.
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1. Introduction. - The study of the fluorescence

light emitted by excited atoms optically pumped by
a laser beam provides a wide field of experiments.
Many of them, dealing with atomic physics and
spectroscopy (Hanle effect [1], magnetic resonances...)
do not use the specific properties of the laser beam
which is only a convenient light source. Nevertheless,
besides some non linear effects which appears in the
above experiments (such as power broadening of the
Hanle effect), the spectral features of the laser beam

can produce characteristic phenomena : for instance,
with a monomode pumping beam, the Lamb dip
can be observed on the fluorescence light [2]. With
a multimode laser beam, the fluorescence light exhibits
modulations [3], [4] at the beat frequencies between
modes, which are resonant when their frequency
is equal to the Zeeman splitting (this effect is linear
with respect to the laser intensity). For the same
values of the magnetic field, resonances appear on
the non modulated part of the fluorescence light
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(first observed by Fork and al. [3]). These resonances
are interpreted as a non linear effect due to the

reciprocal saturation of the (j+ component of one
mode by the u- component of another (the laser

beam being linearly 6 polarized). They can be called
saturation resonances by magnetic mode crossing.
The aim of this paper is to study theoretically

these saturation resonances in order to explain some
surprising experimental observations (Fig. 1 shows

the experimental set up) : first, all resonances, except
that in zero magnetic field, are very sensitive to the
relative phase of modes. As shown on figure 2, all

FIG. 1. - Experimental apparatus : the cell, filled with an
He-Ne mixture, is put inside the laser cavity and is submitted
to an axial magnetic field. The fluorescence light, detected with
a monochromator and a photomultiplier, is recorded as a

function of the magnetic field. The laser oscillation can be
obtained on several lines (6 328 À, 3 s2 - 2 p4 ; 6 401 Â,
3 S2 - 2 P2 7 305 Â, 3 S2 - 2 p 1 ; 1. 15 g, 2 S2 - 2 P4 ; 1 - 52 g,
2 S2 - 2 PI ; 3. 39 p, 3 s2 - 3 p4, without methane). The beat
frequencies between modes are detected with the fast detector D
and measured with a spectrum analyser calibrated with a

reference oscillator. The ratio between this beat frequency and
saturation resonances spacing on the recorder provides a mea-
surement of the Landé g factors. The observation of the fine
spectrum of each beat frequency allows one to determine if
the modes are phase-locked (strong sharp monochromatic beat)
or if they are free running (many unstable little components

of slightly different frequencies).

FIG. 2. - Experimental records of the saturation signal on
the fluorescence lines. As the detection is made with a 03C0 analyser
the resonance in zero magnetic field is not the Hanle effect ;
like all lateral resonances, it can be explained only by non linear
interactions (at least fourth order in the laser field). To obtain
a spontaneously phase locked oscillation we must decrease
the laser intensity. Therefore the intensity of the phase locked
signal is much less than that of the free-running signal. Never-
theless these curves clearly demonstrate the difference of beha-
viour between the lateral resonances and the central one.

resonances are of comparable amplitude when the
modes are phaselocked ; on the contrary, when the
modes are free running the lateral resonances are

much smaller than the central one. Secondly, the
width of the resonances is of the order of magnitude
of the Hanle effect width i. e. of the relaxation rate
of alignment in the atomic levels. The intuitive inter-
pretation, the crossing of two Bennett holes [5] in
the population velocity distribution, cannot explain
these two features : indeed the holes are phase insen-
sitive and their width is much too large [6], [29].
Finally, a calculation is needed to determine the

position of resonance when both levels have a Zeeman
structure. Indeed, if it is possible to ascribe the reso-
nances to one of the levels, it is easy to measure the
Landé g factor of this level by simultaneous measure-
ment of the magnetic field for each resonance and of
the beat frequencies between modes.
To calculate the intensity and the polarization of

the fluorescence lines we have only to determine the
average density matrix

and to apply the classical formulae for the spontaneous
emission : as our detection set up does not resolve
the spectral shape of the fluorescence lines and as the
detection is perpendicular to the laser beam, it is not
necessary to take into account the frequency cor-

relations between the laser and the fluorescence

light [7], [8].
We shall express the density matrix as a perturba-

tion expansion up to fourth order in the laser electric
field. This method is very adequate to give a good
understanding of physical processes and to allow a
solution of the equation for any number of modes
and for a sophisticated relaxation model, but it
cannot give the exact shape of resonances for any
laser intensity. In fact it is demonstrated that the
fourth order is not sufficient in many experimental
cases for which a method without perturbation is

needed : this kind of calculation will be published
later [10].
As it will appear that the relaxation processes have

a major influence on the results, we shall take into
account very carefully these processes (disorienting
collisions, velocity diffusion by collisions and by
trapping of fluorescence lines...). Nevertheless it

will be necessary to make some crude approximations
such as isotropy of relaxations and the use of the
strong collisions model [11], [12] for velocity
diffusion.

II. Equations of motion. - We assume the gas
excitation by the discharge to be spatially homogeneous
and the laser beam to be a plane wave. Therefore the
density matrix depends only on the projection on the
laser axis of the position (r) and of the atomic

velocity (v). This approximation means that the
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length covered by any excited atom during its life
time is negligible compared to the beam diameter.

Among the several possible formulations for the

equation giving p(v, r, t), we shall choose the
Boltzmann like formulation [11] :

where Il expresses the excitation by the discharge,
Je is the Hamiltonian and (dpldt)relax contains all
relaxation phenomena. Let us now study all terms of
this equation and define some approximations.
(For p, JC and A the formalism is the same as in pre
vious publication [13] and will be only summarized.)

1) THE DENSITY MATRIX is restricted to the two

levels connected to the laser transition (a is the lower
level, b the upper one). It is composed of four sub-
matrices :

The non diagonal submatrices abp and ba p represent
optical macroscopic quantities, according to Cohen-
Tannoudji [14] we call them « optical coherences ».
p and bp represent the state of atoms in a and b
levels : with the standard basis JM &#x3E; their diagonal
elements are the « populations » of the Zeeman
sublevels and their off-diagonal elements are the
« Zeeman coherences ».

Due to the symmetry of relaxation processes, we

shall represent the density operator on the basis of
normalized irreducible tensors [13], [15], [16], [17]

As it is well known, 0152Pg defines the total population
of the level oc (n0152 = -v/2 J0152 + 1 ,,po), the 0152PÕ define
the three components of its orientation (magnetic
dipole) and the apQ the five components of its alignment
(electric quadrupole). apô components are called

longitudinal quantities and determine the « popu-
lations » of the Zeeman sublevels. apQ, with Q 0 0,
are transverse quantities related to the « Zeeman

Coherences ». The three operators .bPQ 1 are propor-
tional to the optical electric dipole.

2) THE EXCITATION MATRIX A(v) is assumed to be

isotropic and homogeneous and to be proportional
to a Maxwellian velocity distribution :

The isotropy of Il is not rigourous in all experimental
cases, as the trapping of some fluorescence lines can
introduce alignment along the axes of the capillary
cell [18]. This question is out of the scope of this

paper (cf. ref. [4]).
3) THE HAMILTONIAN is expressed as the sum of

the single atom part (?~o)? the Zeeman part (Rz)
and of the Hamiltonian of interaction with the laser
beam (R(r, t)) :

where Wa and Wb are the unperturbed level energies,
úJa and COb are the Zeeman splittings (úJcx = gcx PH;
ga = Landé factor ; fl = Bohr magneton). P is thé
electric dipole operator and E the laser beam electric
field. Pq and Eq are the standard components :

P has only off-diagonal optical matrix elements and
can be expressed in the form (Pab = ( - )’6 -’a P â is
the reduced matrix element) :

The laser is composed of several modes

The complex vector 6" contains the relative phase of
modes, but also all informations about the polariza-
tion (relative phases of the three components). As
all modes have the same polarization defined by the-
complex vector e we shall use the notation :

Up to the paragraph VI we consider a travelling
wave laser beam, therefore k Il is positive. In our-

experiment the laser beam is parallel to the magnetic
field (kll parallel to Oz), therefore 9 ô = 0.

4) RELAXATION. - The relaxation phenomena.
include collisions and radiative effects. In ordinary
optical pumping of a gas, with a broad line light
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source and in isotropic surroundings, the spherical
symmetry of the relaxation allows us to write

for collisional relaxation, and

for the radiative relaxation in presence of trapping
[19], [20] of the fluorescence lines fl - i. Where

1fJ = 1 /TB is the sum of all the transition probabilities
1fJb etfJ(k, i) is a coefficient tabulated [21] as a function
of k, Jp and Ji, and xi is the averaged probability
for a photon P ---&#x3E; i to be reabsorbed before leaving
the cell. Eq. (12) and (13) must be applied to the

total density matrix (p = p(v) dv and they are

valid only if the velocity distribution of pumped
atoms is isotropic (namely p(v) = p WM(v)). These
two conditions are not fullfilled by the optical pumping
with a laser beam : due to coherence and monochro-

maticity eq. (2) must be written for p(v) which is not
proportional to WM(v) (hole burning). For a given
velocity, the relaxation has only the cylindrical
symmetry and it introduces a coupling between the
different tensorial orders (the component index Q
being conserved [22]). Furthermore we must take
into account the velocity changes produced by colli-
sions and by trapping of the fluorescence lines. As
far as the Boltzmann equation (with classical descrip-
tion of the atomic motion) can be used, the most
general form of the collisional relaxation term can
be shown to be :

To avoid inextricable complications we must simplify
this expression with some crude approximations [23] :
1) We assume that for each velocity the relaxation
is isotropic enough to produce no coupling between
the different tensorial orders and to give rise to

relaxation rates independent of Q. This approximation
is valid for light perturbers (He) for which the relative
velocity is very close to the perturber velocity and
therefore isotropic. 2) Like many authors [11], [12],
we use the strong collision model for velocity
changes (no memory of the initial speed). Contrary
to the previous one, this approximation is better

with heavy perturbérs which affect more strongly
the velocity of studied atoms [24].
The trapping of fluorescence lines produces a resti-

tution of atomic quantities, the form of which is

comparable to the second term of (14). A further
coupling between different positions can be ignored

as it will be shown that p(v, r, t) varies but slowly
with r. We simplify this term with the same approxi-
mation as for collision (isotropy, no speed memory)
so that the total relaxation terms become :

In each of these expressions the first term is the rate
of decrease of the studied quantity, either by destruc-
tion, or by velocity change of the atom. The second
term expresses the arrival from any other velocity v’
of atoms bearing the quantity a TQ. For the atomic
quantities (eq. (15)) the relaxation rates are real

(impact approximation and spherical symmetry)
and given by :

with these approximations, the velocity changing
collisions and the trapping of fluorescence lines

appear to have the same effect for velocity thermali-
sation of atomic quantities. By integration over v,
(15) gives again the classical relaxation formula

(12) + (13) with the « classical relaxation rate » :

It describes the relaxation of the quantity TÉ without
any regard to the atomic velocity. It is the relaxation
rate which occurs in optical pumping with ordinary
light sources [23].

In (16) the relaxation rates of optical quantities can
be complex to take into account the frequency shift
produced by collisions :

the arrival rate gab(k) is due only to collisions. Its

imaginary part takes into account the correlations
between phase shift and velocity changes, according
to Rautian’s theory [11].

Finally we must take into account the transfer of
atomic quantities by spontaneous emission from
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the upper level b to the lower level a. According to
Ducloy [25], we write :

III. Calculation of the density matrix (J. = 0,
Jb = 1 case). - The calculation in this paragraph
follows a well known scheme. In a different form,
it is completely equivalent to the Lamb’s method [9]
(iteration, rotating wave approximation, Doppler
approximation, neglecting of the difference of the

Doppler effect between two modes...). The difference
comes from the use of irreducible tensors to take into
account the Zeeman structure and the relaxations.

1) PERTURBATION METHOD. - This method consists
in developing eq. (2) into an iterative set of equations :

The components of the density matrix on the basis
ofirreducible tensors are obtained by projecting eq. (21)
on this basis according to (4). A being scalar and R
containing only optical off-diagonal elements, it is
clear that even orders contain only atomic quantities
and odd orders optical coherences. After some

algebra [4], eq. (21) become :

where w = Wb - Wa is the atomic frequency and where the geometrical factors are defined by :

When the (2 n - 1) order has been calculated the
eq. (22b) are easy to solve since they do not couple
different tensorial orders. The solutions of (22b)
are then inserted in the transfer term of eq. (22a)
which are equally easy to solve. On the other hand
in eq. (22c) the Zeeman term introduces a coupling
between the different tensorial orders. This is due to

the fact that abpQ has no characteristic frequency,
as it is a linear superposition of all the pMaM b matrix
elements’ with Ma - Mb = Q, which correspond
to different optical frequencies. There are two simple
cases for which the coupling disappears : first, when
the Landé factor of the two levels are equal (wa = (0b)-
Secondly when J = 0 for one of the laser levels

(only k = 1 is possible for optical coherences). To

avoid complication, in the following discussion,
we shall restrict ourself to the case Ja = 0, Jb = 1.
The general case is studied in reference [4] and some
results will be summarized in paragraph VII.

2) GENERAL FORM OF THE STATIONARY SOLUTION. -
At all orders of perturbation, the equations have the
general form :
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where Q is the resonance frequency of the quantity
f and Qn are the different frequencies which appear
at the nth order. The stationary solution has the

general form :

Eq. (25), solved separately for each frequency, gives :

The physical meaning of this expression is clear :

the first term, A(v, Dn)/[ r’ - 1(Q - Qn + Kn v)],
represents atoms whose speed has not been changed.
It is the ratio of the excitation rate (for the concerned
nth order), A(v, Q.), to a resonant denominator
which depends on the total relaxation rate F’, including
probability of velocity changes. The second term

represents atoms whose speed has changed once or
more. It is proportional to y’ which is the rate of

velocity changes without destruction of the quan-

tity f.

Integrating (27) over v one obtains :

Inserting (28) into (27) one finally gets the general
form for f (v, Qn).

Approximations. - At each order of perturbation,
we shall perform the rotating wave approximation :
we shall neglect off resonance terms for which Q - Qn
is of the order of magnitude of the optical frequency 0153.
Therefore, only positive frequencies, of the order of 0153,
are to be kept for optical coherences abp (- úJ for
baP), and low frequencies, of the order of beat notes
wv- úJ/l’ for atomic quantities ,p.
At all even orders (atomic quantities), K2n v is

of the order of (kv - k.) v. As we are concerned
with a travelling wave, kv and k, are positive. There-
fore K2n v can be neglected in (27) and (28) :

(27) and (28) becomes (F = F’ - y’) :

3) RESULTS AT EVEN ORDERS. - The algebric
development, up to fourth order, is very cumbersome
to write [4], therefore we shall only give the results
for even orders in the simple case Ja = 0 ; J6 - 1.

Odd orders would provide the macroscopic optical
polarization of the medium, useful for the laser

theory, but this is beyond the scope of this paper.

At zero order the source term in (22a) and (22b)
comes from A(v) = WM(v) [Â,, . TO 0 + Ab bTO 0 1. There-

fore the only non vanishing terms are the populations.
With oc = a or b, (29) and (30) give

This expression depends only on the classical relaxation
rate 17(0) = T§(0) - y’(0). Indeed at zero order

velocity diffusion is not observable since this process
does not affect the Maxwellian distribution introduced

by A(v).

At second order, we obtain :
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where is the population inversion. Using (30) we have :

where the subscript t means corrected values taking
into account the transfer by spontaneous emission
according to

In (34) and (35), the first term is the contribution
of atoms whose velocity has not changed ; the second
one expresses the survival of a part of atomic quanti-
ties during velocity diffusion processes. The source
term, from the first order is given by :

The denominators express the optical resonance of
mode v (or Il) and the factors at the form

express the partial conservation of optical quantities
(at first order) during velocity changes. In these
factors W is defined by

where Z is the plasma dispersion function [26] and
Av = ku is the Doppler width.

In (37) and in all the following discussion, the

imaginary part of Gab has been included in Q) which
is now the atomic optical frequency shifted by colli-

sions. Integrating Aq q2(v) over v with the help of
(38), we find :

In zero magnetic field, this is exactly the optical line
shape obtained by Rautian [11].
To obtain the expression of the fluorescent light

we need the total density matrix

and a similar expression for the a level. Eq. (40)
allows us to calculate the modulations of the fluo-
rescence lines which are resonant for úJv - úJIL = Q(ob
and the Hanle effect which is provided by the unmo-
dulated terms (v = /1). It is important to notice that
(40) depends only on the classical relaxation rate

1-b(k) (cf. (18)). It differs from the results of the theory
without velocity changes [13] by the rather insensitive

optical factor f A",,(v) dv. In particular the shape

of the Hanle effect is not modified, and the measure-
ment of the Hanle effect width still yields the classical
relaxation rate [27].

Fourth order gives the first non linear correction

to the linear atomic response obtained at second

order. (4)-2 provides a correction to the Hanle

effect shape (radiative broadening), but, as explained
n the introduction, fourth order is quite insufficient
to give the curve shape for any laser intensity [10].
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Therefore we shall focus our interest only on longi-
tudinal quantities, Po@ which will give us (at least
qualitatively) an interpretation of observed saturation
phenomena. Furthermore, as we will not observe
the modulations of fluorescence light, we keep only
unmodulated terms for which the four interacting
modes are such as cvv - coiu + coÂ + oB == 0. For
the present, we assume the modes to be equidistant
with a frequency spacing Aco.
To avoid algebric complications, we shall write

formulae only for the studied experimental case for
which the laser beam is Q linearly polarized.

In that case there is no orientation (so long as the
Zeeman splitting Wb is small compared to the Doppler
width Av) and all other longitudinal quantities are
proportional to each other (this is true only for

Ja - 0, Jb = 1). We obtain the saturation signal :

a(v, v - ,u) and bQ(v, v - J.1) express the contribution
of the second order atomic quantities modulated at
frequency Wv - wJl and demodulated by interaction
with modes K and (cw - wJl = Wk - w03BB). The
denominator rab - i(w + q4 Wb - W" + kx v) arises
from third order ; it is resonant when the Doppler
shifted third order frequency,

is equal to the atomic frequency W + q4 (Ob. Finally
the denominator 1 - gab W( ) arises from velocity
changes at third order, exactly as it did at first order
in (37). All possible combinations of thé values,
with their physical meaning, are shown in Table 1.

4) DOPPLER LIMIT APPROXIMATION. - To perform
the integration over v, in (41), we assume that :

As a first consequence of (42), gpb W( ) N gabl dv
is much less than one and can be neglected in (37)
and (41). This means that the distortion by velocity
changes of the optical Doppler line shape is negligible.

In (41), let us first estimate the contribution of atoms
whose velocity has not changed. This contribution is
obtained by keeping the first term in the expres-
sion (34) and (35) of bQ(v, v - Jl) and a(v, v - y). The
velocity of the atoms produces a correlated Doppler
shift of the resonant denominators from first and from
third orders. Therefore we get expressions of the form
(as an example we write here the part arising from bk Q

Table 1

To obtain all possible combinations one must, for each of the 3 lines, take into accound the symmetric cases where Q+ and
are exchanged and the signs of the qi and Q are inverted. As the laser beam is linearly 03C3 polarized each mode has 2 components,
and a- : in all cases, we indicate which is used for each mode.
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In this expression we have neglected the differences
between wave vectors and we have set

The first term of (43) has the form of a derivative of
W : it is of the order of A. v - 2 and it can be neglected
in comparison with the second term which is of the
order of (I,,b AV) . In this second term W varies

only slowly over the range of values where the deno-
minator is resonant. Finally one gets approximately :

With the approximation (42), XC!?) which has
been defined in (38), is simply the Gaussian Doppler
line shape B/7r exp(Q/A.v)2.
The contribution of atoms which have experienced

velocity changes at second order is obtained from the

second term of bQ(v, v - /1) and a(v, v - /1) ((34)
and (35) reported in (41)). As in our model there is no
correlation between the velocity before and after
a diffusion process, the denominators from first and
from third orders are integrated separately over v.

We get the product of two simple integrals of the
form (38) :

The first factor is resonant when co, + q, (Ob - Com - q, COb, therefore the last factors can be written approximately

Furthermore it is possible to show that the imaginary part of the last W cancels in the summation over

v, Jl, K and À. Thus (45) reduces to :

Each of the terms (46) is of the order of y’1(1-b 1-b’ A.v2)
and is small compared to (44) at resonance. However
we must keep these terms because they are numerous
and their sum may be important. Indeed for a given
pair of modes v, Il we must sum over the N - 1 v - III 1
possible values off which provide terms of the same
order of magnitude. On the other hand, the main
term (44) is resonant only for one value Of K if

Acv &#x3E; r,,b, or for n - -r,,b/Aco values if Tab &#x3E; Acv

(far from resonance, the real part of (43), which will
remain alone in the following, is as small as rab A.v-3).
Therefore, if the N modes cover all the Doppler
width (N Acv - Av) the ratio E (46)/03A3 (44) is of theK / K

order of y§ rab/(tb A0153) if Tâb  Acv or of yb/Tb if
Tab &#x3E; A.w. Thus £ (46) is not negligible.

K

Before giving the developed expression of (41),
we introduce some new notation to name the modes
which are assumed to be equidistant (cf. Fig. 3) :

p and s are integers. P is the modulation frequency
of the second order term involved in the studied
fourth order one. With the help of (44) and (46) we
can split (41) according to the three cases of Table 1 :
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with the « optical coincidence factors »

and with the « Zeeman factors » :

e = 1 or 2 refers to cases a or b of Table I. Je(p) and
3(p) are obtained from £’(p) and 3’(p) by using raCk)
instead of 1"’(k). Notice that

In (48) the factorization of :Re(8v* e03BC 8;’* 8K) and
the form used for X functions have been obtained by
applying some symmetry properties of the summa-
tion over v, p, s and over qi’s.

FIG. 3. - Modes in the frequency scale : definition of the nota-
tion. The condition cw - OJIL + OJÂ, 2013 wk = 0 insures the fourth
order terms to be un-modulated. Modes are assumed bo be

equidistant.

IV. Physical interprétation of the results. -

1) THE CONTRIBUTION OF ATOMS WHOSE VELOCITY
HAS NOT CHANGED (TERMS LIKE (44)). - The first

factor [1-b(k) + i(wv - wJL + QWb)] -1 expresses the
ability of modes v and y to produce, at second order,
the tensorial quantity bTQ, modulated at frequency
P = Wv - wJL. Therefore this factor is resonant

when the Zeeman splitting is equal to the beat fre-
quency and we call it the « Zeeman factor » (cf. (50)
and (51)). As we are concerned only with atoms
whose velocity has not changed, the width of the

resonance is r¿(k).
The second factor in (44),

is resonant when the - q2 polarized component of
mode J1 and the - q4 polarized component of mode K
interact with atoms of the same velocity :

It expresses the need of an optical coincidence, for
the same class of atomic velocity, between the first

pair of modes (v, Il) and the second one (K, Â). The
condition C0y "- roJL + rol - ro" = 0 imposes the

frequency of the fourth mode A, and insures the
second pair to have the exact beat frequency to

demodulate (2 &#x3E;P,Q(co, - 0152Jl). Finally, the third factor
in (44), X( ), is the Doppler distribution of atomic
frequencies : it expresses the proportion of atoms
which have the correct velocity to interact with the
four modes.

It is now interesting to discuss separately the three
cases of Table I, as they have been developed in (48).

Case a : the Resonant Population Effect (PE). -
This case, and the symmetric on (all q of opposite
sign and the names of modes being exchanged :
v - A, Il H x) represent the interaction of modes
(v, 0"+), (y, 0"+), (Â, 0"-) and (K, 0"-). In (48) the corres-
ponding term has the form

Included inf1(p), the « Zeeman factors » [r#(k) + if] -1
do not depend on the magnetic field : the second order
is composed of longitudinal quantities (Q = 0)
or, in other words, of populations of the Zeeman
sublevels. It is produced by beating of the two u+
modes (v and 1À). fi(p) is resonant for p = 0

(v = 11 ; K = 2) : most often Tb (k) is smaller than the
mode spacing Aw and one can neglect fl’(p) for p # 0.
Therefore (52) becomes

The Lorentzian resonance arising from the « optical
coincidence factor », CR(p - s), expresses the fact
that there is a maximum of saturation when the

(03BC, a+) and the (K, Q-) modes interact with atoms of
the same velocity. The scanning of the resonance
corresponds to the crossing of holes burned [5]
by these modes in the Doppler distribution (Fig. 4a).
The width of the resonance is two times the width F,,b
of holes. This phenomenon is the intuitive magnetic
mode crossing effect.
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FIG. 4. - Interpretation of the different kind of saturation terms :

4a. - The saturation by « Population Effect ». Holes represent the effect of each mode if it were alone (effect at

second order of perturbation). The overlapping of two holes gives an idea of the magnitude of the non linear interaction.
The arrows indicate the sense of displacement of holes when the magnetic field increases. The PE resonance is due to the

crossing of (K, Q-) and (,u, 03C3+) holes.

4b. - Velocity distribution, at second order, of the transverse alignment modulated at frequencies (cw - w,) and

(cva - cvx) = cvp - co,. This drawing corresponds to exact resonance of the Zeeman factor. The overlapping of the two distri-
butions is related to the magnitude of the fourth order term which contributes to the « Zeeman Coherence Effect ».

4c. - Saturation arising from atoms whose velocity has changed at second order : this drawing is concerned with the
special case of population at second order (v = ,u ; ql = - q2 ; K = À ; q3 = - q4). The diminution of population, primitively
produced by modes and v as a narrow dip, is then distributed all over the Doppler profile. The dashed part shows the pro-
portion of atoms (among those which have first interact with ,u and v) which can interact with a given second pair of modes

(K, À) at third and fourth order.

Case b : the Non Resonant Population Effect. -
This case produces terms of the form

It depends on the magnetic field only by the slowly
varying Doppler function X( ). It corresponds to

the interaction of four (1- (or four (03C3+) components.
For P = 0 (the most important terms) it can be inter-
preted by the overlapping of holes (03BC, (1 +) and

(K, (03C3+) or of (y, (1-) and (K, (1-) on figure 4a.

Case c : the « Zeeman Coherence Effect » (ZCE). -
This case and the symmetric one (Table I) produce
terms of the form :
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As appears from the denominator

the first term of (55) arises from the transverse align-
ment (2 1 2modulated at frequency úJv - co by the
action at the two first orders, of

Thereafter the fourth order is obtained by applying

which remove the modulation. In the second terms
of (55), the second order quantity ’21’10’ 2, modulated
at w03BB - WK = - (w" - WIL) by prior action of (î, 6+)
and (K, u-), is demodulated by (v, (03C3-) and (K, 03C3+).
When v = 03BC and K = Â the resonance in zero magnetic
field of the Zeeman factor is simply the Hanle effect
due to unmodulated transverse alignment at second
order. The optical coincidence factor, CR( p - s),
which expresses the possibility for the two pairs to
interact with the same atoms, is difficult to interpret
graphically. It is necessary to replace the idea of
holes burned in the velocity distribution of popu-
lations, by the idea of velocity distribution of atoms
which carry transverse alignment modulated at

cw - w03BC. When the Zeeman factor is exactly resonant
(wv - w03BC = - 2 Wb) this velocity distribution is

Lorentzian with a width Tâb exactly like holes in the
previous case. Then the optical coincidence factor

expresses the overlapping of the velocity distributions of

When the magnetic field is scanned it is not easy
to follow graphically the evolution of the velocity
distribution which are distorted and which acquire
an imaginary part.

2) THE CONTRIBUTION OF ATOMS WHOSE VELOCITY
HAS CHANGED AT SECOND ORDER. - Like (44), (46)
contains a first factor which expresses the resonances
of atomic quantities at second order (Zeeman factor),
but this factor is more complicated ; it can be written
(for b level) :

The last factor expresses the evolution of bPQ(v - /1)
before the last velocity diffusion process : as the

initial velocity does not matter, the width is Fb(k)
(insensitive to velocity changes). y’(k) is the probabi-
lity that this last process leaves the atom in the consi-
dered velocity class. Finally, the factor with r; (k)

(relaxation rate including velocity changes) expresses
the evolution after the last diffusion process up to
a new interaction with the laser beam. In the a level
the corresponding expression is complicated by
spontaneous emission from b level.
On the contrary to (44), (46) contains no resonant

optical factor of width 2 hâb : it is replaced by a
second X factor. This is easy to understand with the
model used for velocity diffusion processes : atoms
lose all memory of their initial velocity, therefore the
first pair of modes (v, /1) and the second one (K, À)
have no need to interact with the same class of velo-
cities. When the Zeeman factor is resonant, modes
(v, ql) and (/1, - q2) interact with atoms, located in
a 2 Tâb frequency width band, whose number is

n(-r.’blAv) X (c5v + ql (Ob). Due to collisions or trapping
of lines, some of these atoms (probability y’(k»
are randomly distributed according to Maxwellian
distribution (Fig. 4c). Among them the proportion
(r:b/A.v) X(bK - q4 (Ob) gets a final velocity which
allows them to interact with modes (À, q3) and

(K, - q4)’ It is easy to understand why the contri-
bution of atoms whose speed has changed becomes
important when the modes are numerous enough
(N Aoe z Av) and close enough (Tab &#x3E; Acv) to cover
all the Doppler line shape : every atom which has
interacted with modes v and y is certain, whatever
its final velocity is, to find a second pair (K, À) to
interact again.

V. Relative amplitude of saturation résonances. -
The eq. (48) shows that the saturation signal, obser-
vable on the fluorescent light detected with a x ana-
lyser, exhibits resonances when the magnetic field
is scanned (Wb = Pgb H). We shall study the behaviour
of these resonances for different structures of modes.

1) LARGE MODE SPACING. - Many simplifications
occur when the mode spacing is much larger than
the hole width, i. e. when

First we can neglect the effect of velocity diffusion
which is of the order of Fab/Aco as explained in para-
graph 111.4. Secondly, in the first term of (48) (ZCE,
cf. eq. (55)) we keep only the value s = 0 (v = K,
Il = î) for which the two denominators are simul-
taneously resonant. This means, on figure 4b, that
the two distributions do not overlap, except if they
exactly coincide. Third, for the resonant population
effect (terms like (52)), we must choose p = 0 and
keep expressions of the form (53). Finally, omitting
non resonant terms (54), we get
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where r is put or p in the first term and for - s in

the second. It is interesting to notice that :

Each resonance (arising for r Acv = - 2 COb)
is composed of two terms : one is Lorentzian of

2 r:b width and comes from the PE. The other which
has a more complicated shape, is due to the ZCE ;
when Tb (2)  Tâb, as it is usually, its width is almost
the relaxation rate of alignment Tb (2) (including
velocity changes).
0 (58) depends only on the intensity of modes

(Iv =  Ev 12): as the only important terms involve
no more than two different modes, the phases are
cancelled out. If modes frequencies are not equidis-
tant each resonance is split, but in general this

splitting (few kHz) is negligible in comparison with the
width (few MHz).

e The amplitude of the rth resonance is propor-
tional to 03A3 Iv Iv_r : it decreases regularly from the

v

zero field resonance (r = 0) to the high field reso-
nances.

e (58) is valid for a monomode laser (only one

resonance for rob = 0) provided that the model used
for relaxation is still valid.

It appears that (58) cannot explain the experimental
behaviour of resonances when the modes are not

phase locked.

2) MODE SPACING OF THE ORDER OF IIOLES WIDTH.
- We consider now the case

This is the usual conditions in our experiments
(Aco - 80 MHz, pressure of the order of a few torr).
It is no longer possible to neglect terms arising from
velocity diffusion nor those which contain two deno-
minators which are resonant in different magnetic
fields.

Let us first study terms arising from ZCE, without
velocity change (eq. (55)). For each value of p it is
now necessary to sum over all possible values of s.
As the Zeeman factor (width Tb (2)) is narrower than
the optical one (width 2 Tab) it imposes the position of
resonances. Therefore the resonance near p Aco = 2 (Ob
can be written in the symmetrical form (by permuta-
tion of modes indexes) :

In this form it is easy to see that the resonances remain

symmetric with respect to the center p A.w = - 2 (Ob
and that terms with s # 0 decrease only slowly
when s increases :

amplitude at résonance , 

The resonance in zero magnetic field is obtained
for p = 0, i. e. for v = y and x = À. As each term
involves only two modes, it depends only upon the
intensity of modes and the amplitude of the resonance
is of the order of (if we assume N modes of approxi-
mately equal intensity) :

On the contrary, for resonances in non zero magnetic
field (p i= 0), all terms with s # 0 involve more than
two modes and they are sensitive to the relative phases
of modes :

When modes are free running, their phases are ran-
domly distributed. Moreover, modes are in general
not exactly equidistant and the relative phases can
be regarded as slowly varying (we can write

Therefore, except for s = 0, (62) cancels when ave-
raged (sum over v and average over time). Therefore,
the amplitude of the pth resonance is of the order of :

Res (p * 0) (free running) -

When modes are phase locked in such a manner that
they are all in phase at regular times intervals (the
laser is then modulated in short repetitive pulses),
it is easy to show that all relative phases are equal for
a correct choice of the origin of time. Therefore the
cosine of (62) is equal to one in every case, and the
amplitude of the resonance is of the order of :

Res(p # 0) (phase locked)
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It appears that, when the mode spacing A.w is of the
order of the optical line width Tâb, the resonances due
to the ZCE are much more important when the
modes are phase locked than when they are free run-
ning. Only the resonance in zero magnetic field is
unaffected and remains always important. The conclu-
sion is the same for the terms arising from ZCE
with velocity changes at second order.

Finally the resonances of the form (52), arising
from population effects, are not observable since they
all overlap, due to their broad width 2 râb. Further-

more the terms sensitive to the phase of modes (terms
p # 0) remain small as long as raCk) is smaller than
Aa.

It is interesting to notice that, when Tab "-1 Aw,
the saturation resonances observed are due only to
the Zeeman coherence effect and no longer to the
intuitive population effect.

Numerical calculation. - To illustrate these results,
we have performed a computer calculation of the
ZCE resonances (including velocity changes) :

and of the resonant PE

The used numerical values correspond approximately
to the 7 305 Á laser line (3 s2 - 2 p,) with a neon
pressure of 1.5 torr (cf. Fig. 5 caption). The 3 s2
relaxation rates are deduced from Hanle effect expe-
riments [1], assuming that velocity diffusion is due

only to trapping of the fluorescence line connecting
the 3 s2 level to the ground state. The estimated relaxa-
tion rate (ra = 15 MHz) of the 2 pl level appears
overestimated when compared with very new measu-
rements [28] but this is of little importance for the
final result. The order of magnitude of the optical

width (r:b = 100 MHz) has been estimated by compa-
rison with Cordover’s experiments [29] on the 6 328 A
laser line.
When modes are free running only terms with p

or s = 0 are to be kept, as they involve only two modes.
Figure 5a shows a computer drawing of the different
resonant terms and of the resulting total signal

FIG. 5. - Computer calculation of saturation resonances pro-
duced by 11 modes (Iv F2 v = 3 for - 3  v  3, g2 v = 2
for v = :!: 4, e2v = 1 for v 5). The Doppler width is
Aw = 800 MHz. The mode spacing Aco = 80 MHz and the
relaxation rates are (in MHz) : Tab = 100 ; Tb (0) = 9.6 ;
rb(1) = 11 ; rb(2) = 11.5 ; rb(2) = 7,5 ; râ = 15. These condi-
tions correspond approximately to the laser line 7 305 Á with

1.5 torr of Neon (see Ref. [1]).
5a. - Modes free running : resonances from Zeeman

Coherence Effects and from Population Effects are compared.
ZCE resonances are narrow and resolved ; the resonance in

zero magnetic field (y A(O, s) is mush higher than the otherss /

(A(p, 0)). PE resonances (B(0, 0) and B(0, 1)) are not resolved
as it is shown by the curve E B(0, s). Off resonances terms

B(p, 0) are negligible. is the

resulting signal.

5b. - Modes phase-locked : ZCE resonance for p = 1

has the same order of magnitude than that in zero magnetic
field. is the total signal.
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On the other hand, when modes are phase locked all
values of s and p are possible. As shown on figure 5b
the terms A(p, s) produce an increase of the non zero
magnetic field resonances. The total signal is then

FIG. 6. - Computation of the ZCE resonance for p = 1 :

(1) contribution of atoms whose velocity has not changed ;
2) contribution of atoms whose velocity has changed. Numerical
values are the same as those used on figure 5. In the phase-locked
case the width of (1) appears to be very close to Tb(2) =11.5 MHz
and the width of the total resonance (1) + (2) is close to

Tb(2) = 7.5 MHz (cf. eq. (71) and (74)).

Figure 6 shows separately the contribution to ZCE
of atoms whose speed has changed (more precisely
the effect of restitution of alignment by trapping of
the fluorescence light).

Conclusion. - The comparison between figures 5a
and Sb illustrates clearly the conclusions of the pre-
vious calculation on the ef’ect of the phase of modes.
These conclusions appear to be in good agreement
with the experimental behaviour of resonances as

they have been described in the introduction.

3) ANALYTICAL APPROXIMATION FOR VERY CLOSE

MODES. - Let us consider the limiting case where
modes are very close (many modes in one optical
width) and very numerous (mode distribution width
of the order of Doppler width), namely :

In this case it is possible to use integrals instead of
some of the summations, I, being considered as a
continuous function of 03B4v = wv 2013 w, such as

I(bv) = I,. Replacing

the resonance at p 0394w = 2 (wb becomes (phase locked
modes) :

If l( £5) is a slowly varying function, like X(b), they
both may be taken out of the integral over S in the
first term, with the values they take for the peak of

factor is resonant for p + 2 Wb = 0). Then we obtain
the p resonance shape (reintroducing all factors)

with the Lorentzian curves :

When the modes are free running (71) is valid only for the central resonance p = 0. For other resonances
there is no integration over s ; we obtain :
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We find again the conclusion of the previous para-
graph with some new results :
- When modes are free running the contribution

of atoms whose velocity has changed appears clearly
negligible (by a factor 2 Tab/dv).
- For the main term, the p resonance amplitude

is higher in (71) than (73) by a factor 2 nr:b/A.w. This
factor can be understood as the number of neighbour
modes interacting with a given one, or in other words,
the number of modes in the same « hole ». For

Aco = 80 MHz and Tab = 100 MHz, one finds

2 nr:b A.w -1 8. With the same values, figure 6

gives only 5 as the conditions (69) are not perfectly
satisfied in this realistic case.

- The resonances (71) (mode locked case) no
longer depend on the optical width r:b. They involve
only Lorentzian curves of width Tb (2) and Ib(2). Fur-
thermore if we assume 1(b) = I, to be a constant over
the wole Doppler line shape the integrals are easily

calculated Ov-1 X(ô) db = 7r) and (71) becomes :

The conditions needed for the validity of (74) are

somewhat extreme but it is interesting to see that,
at the limit of a great number of phase-locked modes,
the resonances tend to be Lorentzian curves of width

Fb(2). That is to say that they tend to have exactly
the shape of the Hanle effect [30] and to be insen-
sitive to velocity changes. On figure 6 it is easy to
see that these conclusions are verified within a few

percent even with realistic numerical values.
On the other hand, for free running modes, reso-

nances p # 0 are not exactly Lorentzian (73) and
their width, which is near Tb (2) (if Tb &#x3E; 7(2)), is

sensitive to velocity changes. Notice that (73) has
exactly the shape of resonances for large mode spac-
ing if we assume the second term of (54) to be flat

enough.
The analytical method applied to B(p, s) shows that

the population effect produces no resonances as

explained intuitively in the previous paragraph.

Remark. - It is interesting to notice that a strong
classical light source modulated in repetitive pulses
would produce the same resonances as the phase-
locked laser beam : for each frequency of the source
side bands appear with spectrum and phases compa-
rable to that of the multimode laser. The summations
over the incoherent spectrum of the source (summa-
tion over S and ô in (70)) do not modify the Zeeman
coherence effect resonances.

VI. Standing wave. - All our experiments have
been performed with the cell inside the laser cavity.
Therefore it was necessary to study the effect of using

a standing wave instead of a travelling wave. Here
we shall only summarize the interesting results (for
more details, see [4]).

All along the calculation we must take into account
two waves of opposite k for each mode. As we are
concerned with terms of slow spatial modulation

(j kv - ku + kÂ - kK 1 « kv 1), at fourth order we
have to consider the three cases of Table II. The
case A corresponds to twice the previously studied
travelling wave problem. The case C, which introduces
v dependence in the Zeeman factor (terms like

fortunately disappears when the integration over v
is performed with the Doppler approximation. The
physical interpretation is that case C corresponds,
at second order, to terms spatially modulated by
cos ((kv + k,) r) and which are averaged to zero by
atomic motion (mean free path &#x3E; A/2).

TABLE II

The 6 possible choices for the propagation directions
of waves form 3 symmetrical pairs.

The case B produces interesting new terms which
all have the spatial dependance

They can be deduced from the travelling wave result (44)
by substituting

to the factors

This substitution in the optical coincidence factor
means that the first pair of modes (vRl, ll-q2) and the
second pair (Àq3’ ll-q4)’ shifted by Zeeman effect, must
be symmetric with respect to the atomic central

frequency, in order to interact with atoms of the same



987

velocity (the Doppler shift are of opposite sign). There-
fore the optical coincidence factor depends on the
absolute frequency of modes. On the other hand, the
Zeeman factor (Ib(2) + i(co, - cv, + QCOB» - 1 is the
same in cases A and B : this is obvious, as these two
cases do not differ up to the second order (Table II).
Finally, the contribution of atoms whose velocity
has changed is exactly the same in cases A and B
(except the factor cos 2(kv - k,,) r). This is evident
with the model used, as one atom whose velocity
has changed has exactly the same probability to have
the final velocities v or - v.
When the laser is (1 linearly polarized, the popula-

tion effect (case b in Table 1) produces resonances of
the form (2 r§b + 1(ôv + bK + 2 (Ob» - 1, each time
the Zeeman splitting is such as the (1+ (or 6-) central
frequency is at equal distance between two modes : the
position of these resonances depends on the mode fre-
quency. For a monomode laser, this term produces a
magnetically scanned « Lamp dip ». The case a of
Table 1 produces terms of the form

which depends only on modes frequency. When modes
are very close and numerous (F,,b k Aco, N Acv - Av)
all P. E. resonances overlap and disappear exactly
as for a travelling wave.
The ZCE terms (case c in Table I) have two deno-

minators,

which cannot be simultaneously resonant, except if
modes are symmetrical with respect to the atomic

frequency ce. When modes are close (1-,,b ;; Aco) the
resonance of the optical factor are not very sharp and
the result is comparable to that of the travelling wave
case. If it is possible to apply the analytical approxi-
mation (condition (69)), it is easy to show that cases A
and B give the same result when the modes are phase
locked : then the formula (71) has only to be multi-
ply by (1 + cos 2 npr/L). If the cell is put near the
mirror (cos 2 npr/L l’V 1) all resonances are multi-

plied by 2, but resonances p # 0 cancel in some

positions in the laser cavity [31].
On the other hand, when modes are free running,

the contribution of case B is very small, except for
the p = 0 resonance which is unaf’ected, so that (73)
can be kept. Indeed as the phase relation imposes
v = K; (and p = À), only a few modes can fulfill the
two resonances conditions : 2 ô, L--- - 2 (Ob = Ô, - Ô".

Therefore with a standing wave, the contrast between
the p = 0 resonance and the others is twice that obtain-
ed with a travelling wave.

VII. Général case (Ja and J, 96 0). Measurement of
Landé g factors. - When Ja = 0 and Jb = 1, it is

easy to measure the Landé factor of the b level by
simultaneously measuring the position of resonances
in magnetic field scale, and the frequency of the beat
notes between modes (Fig. 1). In the general case, it
is not possible to say, without calculation, to what
level the observed resonances must be attributed.
As has been seen in paragraphe 111.1, the general

case is not easy to solve due to the coupling between
eq. (22c). The approximation made in reference [131,,
(neglecting Wa - Wb in (22c)) allows us to calculate
second order terms such as Hanle effect ; it allows.
too the interpretation of saturation behaviour of the
previous paragraphs, but it is a priori bad to deter-
mine the exact position of resonances, as the approxi-
mation is made on the Zeeman splitting itself. On the
other hand, with the assumption that all relaxation
rates of optical quantities are equal (Gab(k) = G),.
it is possible to take into account the exact Zeeman
structure of the laser line, by using the basis Ja Ma &#x3E;
instead of the tensorial operators abTQ for optical
coherence abp (and keeping aTQ for atomic quanti-
ties ap) : with this basis, each matrix element

 Ja Ma 1 P Jb Mb &#x3E; has its own frequency

and odd order eq. (22c) are not coupled. We shall
just give some results of this rather involved calcula-
tion [4].
As is suggested intuitively, each optical coincidence

factor in the previous calculation must be replaced by
a sum of several terms resonant for different magnetic
fields. Indeed each coincidence in a normal Zeeman

pattern (say for instance (/1, J + ) ++ (K, u-» is replac-
ed by several coincidences (each (/1, 6n ) component
with each (K, o7m». On the other hand, the Zeeman
factors keep the same form, but new terms appear,
containing [raCk) + i(wv - ce, + QWa)]-1, to take
into account tensorial quantities in the a level.
When modes are close (T’ab &#x3E; Acv) PE resonances.

disappear exactly as in the Ja = 0 case, and similarly
the Zeeman factors completely determine position
and shape of the ZCE resonances. Finally, in that case,
the two methods of calculation give the same result,
which is composed only of two sets of resonances cor-
responding to the two levels. The observed saturation
signal is given (for very close modes) by :
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where Cb(p) and £’(p) b are the Lorentzian resonances from the b level (72) and r.(P) and £’(p) à are the reso-
nances from the a level distorted by spontaneous emission from b level :

The transfer coefficient A and the relative height of
resonances, Ca and Cb, are given in appendix as a
function of the J values of the levels. It is important
to notice that Ca and Cb depend on the fluorescence
lines which are used to observe the resonances, and
on their polarization. This is due to the fact that
the observed signal is a linear combination of the

longitudinal quantites (4) PO k which are not proportio-
nal to each other in the general case : the coefficients
of the combination are determined by the method of
detection.

In many cases the resonances from a and b are not
resolved well enough to allow separate measurement of
the g-factors. Nevertheless, comparing the values of
Cal ra(2) and CbII’b(2), it is possible to show that, in
some cases, the set of resonances from one of the
levels has a negligible amplitude, compared to the
resonances from the other level. Therefore, it is pos-
.sible to measure the Landé factor of the dominant
level.
For a Jb = 1, Ja = 2 laser line, the Ja = 2 level

appears to be the dominant level in all experimental
cases. In fact, if ra(2) ’" Ib(2), Ca is approximately
21 times Cb (cf. Appendix). Although it has been
,demonstrated in that case [10] that fourth order per-
turbation theory rapidly diverges from the exact

solution when the laser intensity is not very small,
the above result has been clearly shown experimen-
tally [32] : the resonances spacings, observed on the
6 096 A line (2 P4 --&#x3E; 1 S4), are exactly the same with
the 6 328 À (3 S2--+2P4) or 1.15 g (2S2 - 2P4)
laser lines and correspond to the 2 p4 Landé factor
(Fig. 7). However, the upper levels have different
Landé factor (g3s2 = 1.295 ; g2s2 = 1.224). The nume-
rical estimate of Ca and Cb shows that the systematic
error on the measured value of the 2 P4 Landé factor
is less than 0.5 per cent (laser 1.15 03BC, fluorescence
6 096 A) but can be reduced to 10-4 with a correct
,choice for pressure and for the fluorescence line.

For a Ja = 1, Jb = 1 laser line the Ca and Cb
values strongly depend on the polarization of the
chosen fluorescence line and on the J9 value of the
lower level, g, of this fluorescence line (cf. Appendix).
If there is only one relaxation rate for each level

(ha(0) = ra.(2)) and if the spontaneous emission on
the laser line is negligible, it appears, in some cases,
that either Ca, either Cb, vanishes, so that it is very
.easy to measure Landé factors. These interesting cases
can be easily found graphically (Fig. 8). As there is
then only one relaxation rate for each level, there
is no coupling between Zeeman sublevels and it is

possible to discuss in the basis Ja Ma &#x3E; (instead

FIG. 7. - The two lower records show saturation resonances
obtained with the Jb = 2 +--&#x3E; J« = 1 laser lines À = 6 328 A
and = 1.15 p. : the resonance spacing is exactly the same
and corresponds to the Landé factor of their common lower
level (2 P4, J = 2). As a comparison the upper records, obtained
with the À = 1.52 p laser line (J = 1 -&#x3E; J = 0) shows the reso-
nances which correspond to the Landé factor of the 2 s2 level

(upper level of the 1.15 u line).

of the aTQ basis). Consider, for instance, the case p
in figure 8 (detection of the x component of a a -&#x3E; g
line with Jg = 0) : we detect only the population of
the Ma = 0 sublevel which is coupled only to the
coherence Mb = - 1 -+ Mb = + 1 by the J pola-
rized laser beam. Therefore saturation resonances

observed with this configuration are due only to the b
level. Let us notice that this particular result is true
at all orders of perturbation, as the three concerned
sublevels are never coupled to the three others for
any number of interactions with the laser. On the
other hand, when ra(2) =1= ra(0), the destruction of
alignment by relaxation processes introduces a cou-
pling between Zeeman sublevels and the previous
discussion fails.

FIG. 8. - Ja = 1, Jb = 1 : graphical illustration of the three
cases for which it is possible to attribute the observed saturation
resonances to only one level, if there is no coupling between
the Zeeman sublevels by relaxation processes. Dots represent
the Zeeman sublevels, full lines the laser interaction (Q+ or a-),
arrows the fluorescence lines and the waved lines represent the
Zeeman coherence which is detected on the saturation signal.
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An experimental verification of these results has
been performed with the 6 401 Á laser line of Ne
(3 s2, Jb = 1 - 2 P2, Ja = 1). In a first experi-
ment we have used the fluorescence lines 6 351 A
(3S2, Jb = 1-2p3, J,=O) and 5 434 A (3 s2,
Jb = 1 - 2 Pl0, Jg = 1) both detected with a 7c ana-
lyser. According to the diagrams of figure 8, the 6 351 A
is assumed to provide the 2 p2 Landé factor and the
5 434 A the 3 s2 Landé factor. Actually these experi-
ments were performed with pure Neon at a pressure
of 1.5 torr so that Ib(2) (7.75 MHz) was approximately
twice Tb(0) (3.85 MHz) due to collisions and trapping
of the resonance line 3 s2 i 1 po. Therefore the cal-
culated values of Ca and Cb show a considerable mixing
of both kinds of resonances on each fluorescence line.
This conclusion is well verified : 1) The spacing
between resonances on the 5 434 A lines does not cor-
respond exactly to the 3 s2 level (33.15 +0.1 mm
instead of 33.56 + 0.1 mm with the 7 305 A laser
line - 3 s2, J = 1 -+ 2 pl, J = 0 - with the same
apparatus and the same mode spacing). 2) The mea-
sured ratio g3pz/g3s2 is smaller than the expected one
from tables [33] (1.028 5 + 0.001 8 instead of
1.034 8 ± 0.006).

In a second set of measurements the 6 163 A

(2P2,J.= 1 -IS3, J,=O) and the 6 599 A (2P2’
Ja = 1 -+ 1 s2, Jg = 1) fluorescence lines were used

(x polarization) with a cell containing 1 torr of a 9 :

1, He : Ne mixture (Fig. 9). As in those conditions
l’a(0) (9.45 MHz) and Fa(2) (10.6 MHz) are not very
different from each other and as the spontaneous emis-
sion on the 6 401 Â line is weak, the calculation of Ca
and Cb shows that the diagrams of figure 8 can be used
with a good précision : the 6 163 A line (J9 = 0) gives the
3 s2 Landé factor (estimated residual shift : + 3 x 10-4)
and the 6 599 A line (J. = 1) gives the 2 p2 Landé
factor (estimated shift - 2 x 10-3). The measured

FIG. 9. - Laser 6 401Â (3 s2, J == 1 -&#x3E; 2 p2, J = 1). The two
curves are simultaneously record with two different fluorescence
lines (7r polarization). The 6 163 Á line (2 p2, J = 1 --&#x3E; 1 s3,
J = 0) gives the Landé factor of the 3 s2 level (case fl on Fig. 8).
The 6 599 À line (2 p2, J = 1 -&#x3E; 1 s2, J = 1) gives the 2 p2
Landé factor (case y on Fig. 8). These records are obtained
with Acv = 166 MHz and with experimental conditions for

which r2p2(o) N TZ p2(2) (within 10 %).

g2P2/g3s2 ratio (1.035 7 ± 0.001 6) is in good agree-
ment with table data (1.034 8 + 0.006). In spite of
a very poor magnetic field calibration in this last

experiment the measured absolute g values are in

good agreement with tables (g3s2 = 1.290 ± 0.014
instead of 1.295 ± 0.005 ; g2 p2 = 1.336 ± 0.016 ins-
tead of 1.340 ± 0.003).
On the basis of the above discussion we have per-

formed measurement of Landé g factors for many
Neon levels [4], [32] (2 P4 with 6 328 A laser,
3 s2 with 7 305 À, 2 s2 with 1.52 u, 3 p4 with 3.39 u,
2 P2 with 6 401 A). The values obtained are all in

good agreement with other authors’ results but the

precision (_ 10-2) is limited by the magnetic field
calibration (our coils are too small to be calibrated
with proton resonances). On the contrary, as the
distance between resonances on the recorder can be
measured with a good precision (3 x 10-3) we had
used this method to calibrate more accurately our
magnetic field for other experiments such as Hanle
effect (a direct calibration of the recorder in MHz,
for each level, allows the measurement of relaxation
times from Hanle effect without any need of the
Landé factor).
With coils specially built for high homogeneity,

one can expect a precision of 3 x 10-3 on Landé g
factor measurements, with the above self mode

locking method. Further improvement could be
achieved by using an intra cavity modulator to pro-
duce mode-locking with higher laser intensity (better
signal to noise ratio, higher number of modes). The
ultimate precision, determined by the resonances

width can be expected to be better than 10-’ as for
magnetic resonance experiments, but at this extreme
precision the mixing of the two levels must be stu-
died more carefully.

VIII. Conclusion. - The relative magnitude of the
mode spacing A0153 and of the hole width (or optical rela-
xation rate 1",,b) appears to be of great importance in
determining the behaviour and the shape of satura-
tion resonances. We have shown that the condition

tab &#x3E; 0394w which allows several modes to interact
with the same atoms permits us to understand our
experimental observations and particularly the effect
of the relative phase of modes on the resonances in
non-zero magnetic field. The resonances of saturation
are due to the Zeeman cohérence ; they are the mani-
festation of the Hanle effect and of the modulation
resonances observed on the linear response. When the
modes are numerous enough, the shape of resonances
tends to the Hanle effect shape. On the other hand
all resonances due to hole burning (or population
effects) overlap and disappear.
The influence of atomic velocity diffusion has been

shown to disappear when the modes are numerous
and phase locked. In other cases the experimental
investigation of the shape of resonances would be
of interest to study these velocity diffusion processes.
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Finally we have demonstrated the possibility of
measuring Landé g factors in some cases.
We did not try to verify experimentally the calcu-

lated shape of resonances as our perturbation method

is valid only for vanishing laser intensities. Ducloy [10]
has succeeded to solve this problem for the resonance
in zero magnetic field in some special cases

APPENDIX

In (75) the relative height of resonances from a and b levels is determined by the coefficients Ca and Cb
defined by

where k’ is the tensorial order of optical quantities at third order of perturbation. If the detection is

made with a b - g line, a(k’) is :

If the detection is made with a a - g line a(k’) is :

in (79) and (80) ce = 1 for a n-detection and a = - 1/2 for a Q-detection. The transfer coefficient A which
also occurs in (76) is given by

Finally we express Ca and Cb in two useful cases :

Fluorescence line b - g :

with fl = 1, - 1/2 or 1/10 respectively for

b) Fluorescence line a - g :

with
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with j 
If Fb(O) = Tb(2), for J9 = 0, Cb(b --&#x3E; g) = 0 with a 7r detection and Ca,(b ---&#x3E; g) = 0 with a Q detection.

For J9 = 1 and a x detection Ca(b. --&#x3E; g) = 0. If Fa(O) = Fa(2) and if the spontaneous emission on the laser
line is negligible (ybp N 0) we obtain the symmetrical cases which correspond to the figure 8.
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