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THEORY OF MOTT TRANSITION :
APPLICATION S TO TRANSITION METAL OXIDES

M. CYROT

Institut Laue-Langevin, Cédex 156, 38-Grenoble-Gare, France

(Reçu le 22 juin 1971, révisé le 26 août 1971)

Résumé. 2014 En utilisant le modèle de Hubbard, nous étudions la transition métal-isolant due aux
corrélations entre électrons. Nous ne tenons pas compte des fluctuations de charge mais seulement
des fluctuations de spin qui créent sur chaque site un moment magnétique. Cette simplification per-
met une analogie avec les alliages binaires. A température nulle, nous obtenons successivement un
métal non magnétique, un métal antiferromagnétique et un isolant antiferromagnétique lorsque le
rapport U/W croît (U interaction entre électrons, W largeur de la bande). Ceci est dû, en accord avec
les idées de Slater, à la partie dépendante du spin du potentiel self consistent. De la même manière
qu’il est possible à température nulle d’obtenir une solution antiferromagnétique de plus basse
énergie, nous obtenons au-dessus de la température de Néel une solution avec des moments désor-
donnés sur chaque site. Pour de grande valeur du rapport U/W le système reste isolant au-dessus de
la température de Néel. Pour des valeurs intermédiaires de U/W, la frontière entre métal et isolant
paramagnétique montre que la phase isolante est favorisée à hautes températures a cause de l’entrc-
pie de désordre. Nous donnons un diagramme de phase schématique pour le modèle de Hubbard et
nous discutons l’application de la théorie aux oxydes de métaux de transition.

Abstract. 2014 We study the metal-insulator transition due to correlations between electrons using a
Hubbard model. Neglecting fluctuations in charge, we only take into account fluctuations in spin
density which build up magnetic moments on each site. A close analogy with binary alloys follows
from this. At zero temperature, with increasing value of the ratio of the interaction between electrons
U to the bandwidth W, we obtain successively a non magnetic metal, an antiferromagnetic one and an
antiferromagnetic insulator. This is due, as in Slater’s idea, to the exchange part of the self consis-
tent potential which cannot have the full periodicity of the lattice. As it is possible to find a solution
with lower energy and with antiferromagnetism to Hubbard hamiltonian, one can construct a self
consistent solution with random but non zero moments on each site. The alloy analog of the metal
insulator transition is band splitting. For large values of the ratio U/W, the material remains insulat-
ing through the Néel temperature. For intermediate values, the line boundary between a Pauli metal
and a paramagnetic insulator shows that the insulating phase is favoured at high temperature because
of the entropy disorder. We draw a general schematic phase diagram for the Hubbard model and we
discuss the relevance of the theory to transition metal oxides. The main qualitative features are
consistent with our theory.
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Insulator metal transitions are a phenomenon
which have been known for quite a while in a wide
variety of systems : metal vapour liquid system (mer-
cury) metal ammonia solutions, disordered systems
(impurity bands), transition metal chalcogenides. In
the last few years there has been considerable interest

in transition metal oxides. These oxides form a very

interesting class of materials [1]. Their electrical

properties range from very good insulator to very
good metal. Some of them have an intermediate
behaviour and can exhibit a metal-insulator transition
with temperature, pressure, or doping.

Besides pratical interest due to possible applica-
tions to switches these oxides are of fundamental

interest. This stems from the fact they prove to be a
striking failure for the elementary Bloch-Wilson

theory. It is well known that a metal whose band are
either completely full or entirely empty must be an

insulator. While it is possible on the basis of the
Bloch-Wilson theory to account for metallic behaviour
in systems with an even number of electrons per unit
cell through band overlap, it is not possible to explain
an insulating behaviour when the number of electrons
per unit cell is odd. Among the insulating oxides are
compounds which on these basis should be metallic.
Mott [2] was the first to observe these facts on nickel
oxide. For these materials he proposed to abandon
Bloch model. The starting point would be a localized
ground state wave function or Heitler London one
which has the immediate advantage of explaining the
insulating behaviour. The reason lies on the fact that
if the band is very narrow you do not lose a lot of
kinetic energy by localizing the electrons, so an insu-
lating ground state is then favourable. However, as
the atoms are brought together the cost in kinetic

energy in confining electrons to the atomic sites
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becomes larger until it starts to exceed the repulsion
energy gained. At this point the metallic state has
lower energy and an insulator metal transition occurs.
A particularly interesting feature of the insulating

materials which are not explained in a Bloch-Wilson
theory is that they appear to be magnetic. For instance,
this is the case of many mono-oxides of transition
metal. The insulating behaviour of these materials
seems to be strongly connected with magnetism. At
this point it seems worth while to define what we
shall call a Mott insulator and a Mott transition
because a large number of materials exhibit a metal
insulator transition although some of them are non-
magnetic in the insulating phase. In general these non-
magnetic materials undergo a lattice phase change
which is associated with the insulating behaviour.
Although one can argue about the nature of the driving
force which induces the lattice phase change, we will
not label it a Mott transition. We reserve the word
Mott insulator for insulating materials which are

not explained by a usual Bloch-Wilson theory and, we
believe, are always magnetic. A Mott transition is a
transition from a metallic state to a Mott insulator.

Although it is now some twenty years since Mott’s
original proposal, and there exists a considerable
amount of theoretical work, there is, as yet, no satis-
factory microscopic theory of the Mott transition. In
his original article Mott argued that the transition is due
to correlations between electrons. We shall restrict our-
selves to this point of view although other mechanisms
[1] can be thought of. The occurrence of antiferro-
magnetism in these insulators is a sign that correla-
tions are probably primarily responsible for the observed
facts. So the only articles we will refer to, will discuss
this point of view. In this frame, most of the theoreti-
cal analysis has started with a model hamiltonian
introduced by Hubbard [3]. In this model a localized
or Wannier representation is chosen for the electronic
wave function. The hamiltonian consists of two terms,
one represents the tunelling of electrons from one
site to its neighbours and the other the repulsion
energy U when two electrons are on the same site.

Ci: is the creation operator for an electron of spin Q
in the atomic state at the ith lattice site. Tij is the
matrix element of the electron transfer between the

states at the ith site and jth site and nia = Ci: Ciu.
In the atomic limit, i. e. for large value of UlTij

and for a single half filled band, there will be an elec-
tron localized on each site and the system will be a
Mott insulator. In this limit there is an antiferroma-

gnetic coupling energy between the local moments due
to Anderson kinetic exchange. Thus at low tempera-
ture the system is antiferromagnetic with a Néel

temperature kTN N zTijlU. However, the system is

insulating both above and below TN. As TijlU is

increased, the hamiltonian becomes very difficult to

solve and there are no exact results. Considerable
amount of work has been done and we shall not quote
all of them [4]. The main result is due to Hubbard [3]
who used a Green function decoupling scheme and
completely neglected magnetic ordering. Within his
approximation an insulator to metal transition with
no discontinuity in the number of free carriers, occurs
as zTi,IU goes through a critical value of 1.15. Many
improvements of this solution [4] have been tried and
many discussions appear. Nonetheless it is not clear
that this is the correct result for the Hubbard hamil-
tonian.

In any case there are some problems linked with
Hubbard’s solution. First it does not take into account

magnetism. Secondly it certainly is incorrect for the
metallic phase since it does not properly describe the
Fermi surface [5], [6]. Further a temperature induced
transition is a rare accident since only change in
lattice parameter can drive a phase transition as in
Mott’s original idea.
Here it is worthwhile to mention Brinkman and

Rice’s approach [7] to the metal non-metal transition,
which used Gutzwiller’s variational method [8] of

treating the Hubbard Hamiltonian to obtain a non
magnetic solution which properly describes the metallic
state. The results obtained are to be contrasted with
those found by Hubbard : The effective masse becomes
large as the correlation increases when Hubbard’s

approximation leads to a density of states at the Fermi
level approaching zero.

In parallel to this line of work following Hubbard
there exists another important one following Slater’s
idea. Slater [9] first pointed out that if a metallic
material is antiferromagnetic the effective self consis-
tent Hartree-Fock potential which acts on an electron
cannot have the full translational symmetry of the
lattice. The exchange part of the potential must have
the double periodicity of the sublattice. The first
Brillouin zone of the lattice is divided in half and the

exchange energy introduces band splitting at the new
faces of the reduced subzone. If the exchange energy is
large or if the original non magnetic band is narrow
this splitting could introduce a real gap in the density
of states and thus produce an insulator instead of a
metal. We must emphasize that we obtain an insulator
only in the ordered magnetic phase. Above the Néel
temperature the material becomes metallic. This transi-
tion, that we shall call a Slater transition, lies interme-
diate to a usual Bloch-Wilson one and a Mott one.
The insulating behaviour is explained in a Bloch-Wilson
theory if one takes into account Hartree-Fock poten-
tial. Des Cloizeaux [10] made a particularly detailed
study of this transition. Let us emphasize that there is
not one Hartree-Fock solution. There exists an infi-
nite number of solutions to the Hartree-Fock equa-
tion which are non linear. Des Cloizeaux studied a
particular set of Hartree-Fock solutions and deter-
mined that at T = 0 the antiferromagnetic state lies
lower than the paramagnetic state.
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Just in the same way that it was possible to find a lower
energy solution to the Hartree-Fock equations for an
antiferromagnet it should be possible to have a self
consistent solution with random but non zero moments
on each site above the Néel temperature. Depending
on the strength of these moments the material could
be metallic or insulating. In the following we will
show that such a solution is in fact possible. In the
metallic phase such moments can build up giving
for instance deviation to Pauli susceptibility. For a
critical value of these moments the band is not stable
and electrons localize on each site. The material

undergoes a metal insulator transition. We will develop
the theory of this new type of insulator. Essentially
it is a magnetic insulator and its properties are

connected with magnetic disorder.
Our theory is based on a Hubbard hamiltonian

which we believe to contain all the general physical
features of the problem. Interactions between electrons
can lead to fluctuations in charge density and fluctua-
tions in spin density ; we will completely neglect the
former and take into account only the latter. So inter-
actions can build up only magnetic moments on each
site. Our approach is a self consistent one and develops
a close analogy with the theory of alloys. The results
are summarized by the general phase diagram of the
figure given in part VI. For increasing value of U/W
( W band width), we obtain at zero temperature the
succession of three phases : non magnetic métal,
antiferromagnetic metal and antiferromagnetic insu-
lator. At finite temperature, for large U/W the phase
remains insulating after becoming paramagnetic. The
phase boundary, in the temperature versus U/ W
plane, between the metallic and the paramagnetic
insulating phases presents a negative slope and ends
at the critical point for decreasing value of the ratio
U/W.
. In part 1 we develop the general theory and an
analogy with alloys. Part II is devoted to the very
low temperature region. In part III we study the

metallic state and particularly discuss the appearance
of magnetism. Part IV is concerned with the insulating
phase. The results are summed up in part V and we
draw the general phase diagram that one expects for
the Hubbard hamiltonian. The relevance of the theory
to transition metal compounds is finally discussed in
the last part.

I. General formulation. - As we emphasized above
it seems likely that correlations between electrons play
the important part in the transition. So we completely
neglect the former and use a Hubbard hamiltonian
which rests on the following two hypotheses - intra-
correlation effects only are effective between electrons
sitting at the same time on the same atom - one can
define an average effective correlation energy U which

gives the average energy difference between pairs of
such electrons with parallel or antiparallel spins. It

favours parallel spins. These statements recover of

course some difhculties arising from the degeneracy
of the d band but as a start we will use the simple
Hubbard hamiltonian.
Here we will restrict the analyses to thermodynamic

properties and calculate the free energy. We want to
show that within this band hamiltonian the free energy
can have the behaviour of bound electrons : i. e.

gives a Heitler-London behaviour. So our main pro-
blem is to calculate the partition function defined by

Let us now set up our approximation. Correlations
between electrons can lead to fluctuations in charge
and fluctuations in spin. A particularly interesting
way [11] to separate both effects is to rewrite the last
term of the hamiltonian

In our model we will completely neglect fluctuations
of charges. In the metallic case, this seems reasonable
as Coulomb repulsion inhibits fluctuations. In the

insulating phase the number of electrons on a site is
essentially constant. So we will assume that the last
term of equation (3) equals U/4 and we will take
into account only fluctuations in spin.

In appendix A we recall how the partition function
can be written in a functional integral form as first

pointed out by Hubbard [12]. The main interest of
this formulation is to eliminate the two-body potential
and to replace it by a time dependent localized field
acting on any site i. The drawback of this simplifica-
tion which permit us to treat a simple hamiltonian is
that we have to average over all these fields weighted
by a gaussian factor.

Where T, is the ordering operator for the time « s ».

2 mi, is a kind of effective magnetic moment on site i.
(Cf. appendix B.)
At this point we introduce the second important

approximation of this paper. We neglect the « time
dependence of these effective moments, i. e. we are

dealing only with Schrieffer’s static approximation [13].
This approximation gives the exact result in the two
limiting cases, U = 0 and 7 = 0 and gives a smooth
interpolation between them. We think that the physical
results are contained within this approximation which
is valid any time fluctuations are unimportant. We
believe this is the case in the following except perhaps
when we discuss the properties of the metallic phase.
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Now we have to solve essentially the same hamil-
tonian as Anderson proposed in his study of localiza-
tion in a random system [14].
The hamiltonian is for one spin direction (with a

slight change of zero energy).

Ili is a random potential. The only difference is that
electrons of spin up and down do not see the same
potential but an opposite one.
To calculate the partition function we introduce in

the usual manner a coupling constant

 ni,, &#x3E; is given by the one electron thermal green
function at equal time in the presence of the whole

In the absence of the random moments Mi we have

Introducting the explicit notation : Gij(e),, ; p i , M2, - - -, lln)
it is straight forward to show that

The partition function in presence of the set { /li } can
be written.

We transform the sum to an integral in the usual way
and obtain the partition function in the form

n (a) ; fl1, ..., Mi = 0, ..., y.) is the local density of states
at point i when Mi = 0. It is interesting for the following
to introduce the phase shift [15] tl’,(co) due to the
localized potential - 2 U,u i in presence of the other
moments yj j 0 i

Ami is the change in energy due to the perturbation
- 2 U,ui. In general it is impossible to calculate the
functional integral. If F({ jui )) is strongly peaked for
some value of the set f J.li } we can approximate the
free energy of the system by the free energy for this
particular set. This approximation is equivalent to the
usual self consistent approximation. This particular
set is determined by minimization of F({ J.li )) with
respect to the effective moment

Where we used the fact

i. e.

These equations 16 are the self consistent equations of
our problem. Of course  ni, &#x3E; is a function of the
whole set {J1i } but in principle this set of equations
determines J1i i = 1, 2, ... The procedure we used is the
usual one which gives a self consistent approximation.
Equation 16 could have been deduced at once from
equations 1 and 3 using a Hartree-Fock factorization.
We preferred to use a relatively more complicated

formalism which has the advantage of leading directly
to the thermodynamical quantities that a study of
phase transitions require. In particular the entropy
term comes out of the theory contrary to a simple
Hartree-Fock’s one.
From equation 12 we see that F is an even function

of all J1i. So if we have a particular set which mini-
mizes F all sets where we change the sign of one
moment minimize F. When all the sites can be
considered as equivalent J1i is independent of site i
and we have J1i = ± J1. As a result our problem
reduces to an alloy one. The only difference is that

J1 must be determined self consistently but we can
rest very heavily on known results for alloys [16].
Many general conclusions can be drawn at this

point. At low temperature when J1 is different from
zero there is magnetic order. This happens as we will
show for not too small value of U/W (W band width).
For one electron per atom the phase is antiferroma-
gnetic and our problem reduced to an ordered alloy
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one. Our results are essentially similar to Slater’s
ones [9]. When Up is large enough the band splits
and we obtain an insulator. This will be discussed in
Part III.
The most interesting possibility of this model lies

on the fact that we can also describe a magnetically
disordered insulator. In our analogy a split band
limit can occur in a disordered alloy. This rests on
the well known localization theorem [16] for alloys.
For a binary alloy of the type considered, the energy
levels lie within the energy bands of the pure metals.
For the disordered alloy the density of states is zero
in no interval within these bands. In our case the split
band limit is equivalent to an insulator. We will
show that for large ratio U/W the entropy disorder
favours large Up which leads to band splitting. So
whatever the temperature, i. e. in the ordered or disor-
dered state we obtain an insulator for large U/W.

If we associate band splitting and appearance of an
insulating phase our criterion for the transition to a
disordered insulating phase is MU = W. However if
for the ordered phase this assimilation is certainly
true, for the disordered phase the possible existence of
localized states within the band makes this criterium
an upper limit. We will discuss this possibility in the
theory of the insulating phase (part V).

II. Very low température région. - At zero tempe-
rature many simplifications occur. One can always
assume perfect ordering if magnetism exists and the
hamiltonian becomes periodic. Thus the interest of a
detailed study of this case stems from the exact calcu-
lations that one can perform. Some studies have been
done [10]-[17] under assumptions which are equivalent
to ours at zero temperature. So our results are formally
similar to those of these authors. However we give
there another range of validity. The hamiltonian for
one spin direction is :

Il must be determined by the self consistent equation 16.
In equation 17 we have assumed an antiferromagnetic
order and p is half a reciprocal lattice vector. Except
in special case we obtain two critical values for the
ratio U/W. Below the first one no magnetism occurs,
i. e. the self consistent solution of equation 16 is

Il = 0. For intermediate value of this ratio, one obtains
an antiferromagnetic metal and for large value an
antiferromagnetic insulator because a gap opens up
in the density of states [16].

Hamiltonian [17] is easily diagonalized using a

pairing of states k and k + p

and we obtain the eigen energy

the self consistent equation which determines y
becomes

n is the Fermi function at zero temperature.
The sum is performed on the magnetic Brillouin

zone i. e. a reduced zone. Equations 18 and 19 are
similar to those of reference [17]. In reference [17]
and [8] the energy associated with this solution has
been calculated in one dimension to compare it with
the exact solution of Lieb and Wu [19] on the Hubbard
hamiltonian in this case. One finds a reasonable

agreement and this result justifies somewhat our

assumption of neglecting density fluctuations.
Let us remark that one has to be careful when using

a simple tight binding approximation for ek. For a

band in a simple cubic or body centered cubic one
has :

Equation 19 shows that the insulating behaviour
appears with magnetism. As the right hand si de of

equation 20 diverges for J1 = 0, we find that the ground
state is antiferromagnetic and insulating even for U
infinitesimally small. In general a finite value of U
is required to obtain antiferromagnetism. U must be
equal to 2 J1jxp where X, is the susceptibility for wave
vector p. When the ratio Uj W is larger than a second
critical value a gap opens up in the density of states.
For F. C. C. crystal with ferromagnetic III plane
stacked antiferromagnetically this happens for

We also notice that this description permits in a band
model localized magnetic moments with non integral
spin even in the insulating phase. From equation 20
one can verify that y is equal to the atomic magnetic
moment only in the limit

Formula 20 can be easily generalized at finite

temperature. For a simple cubic we have :

But we must emphasize that we have assumed at
the beginning an antiferromagnetic order. So this

equation is only valid at low temperature when the
long range order is not destroyed i. e. for temperature
smaller than the Néel temperature. Even in this case

equation 21 is approximate because some electrons are
excited and we obtain disorder. It is not possible,
within this simple calculation, to deduce from equa-
tion 21 a Néel temperature or a temperature for a
metal insulator transition. The coupling between

moments must be calculated in order to obtain the
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Néel temperature. We will do this, both in the metallic
and insulating phase, and will compare the free energy
of the different phase. It is our main difference with
the quoted reference. In particular we will not find

any metal insulator transition for large value of U/W ;
the system is always insulating in an antiferromagnetic
or paramagnetic phase.

III. Theory of metallic phase. - In this part we
want to investigate the magnetic properties of the
metallic phase. This is particularly important for

drawing the general phase diagram and calculating
the Néel temperature. We have just shown that the
metallic phase can be magnetic or non magnetic at
low temperature. For low value of U/ W the phase is
non magnetic. This remains true at all temperature
and the phase has the usual Pauli susceptibility. When
the low temperature phase is magnetic and metallic
there are two possibilities for the apperarance of

magnetism with decreasing temperature. In the first
one the non magnetic phase becomes antiferromagne-
tic below a temperature TN. In the second one loca-
lized moments appear in the non magnetic phase.
These moments interact through a Ruderman-Kittel
interaction which make them ordered at a critical

temperature TN. We calculate that these localized
moments are stable only below a temperature TL
(TL&#x3E; TN).
We get successively these two different behaviours

for increasing value of U/ W. They correspond to a
first and to a second order transition. We have already
applied this theory [21] to discuss transition metal
and to emphasize that a Heisenberg behaviour can
stem from a band model much of the discussion is
still valid.

To illustrate these different behaviours let us go
back to equation 12 and assume for the moment that
we can neglect all term which connect the local field
on different sites that is :

M(û)) is the density of state of hamiltonian (6) when
the whole set { Mi 1 is equal to zero. We evaluate the
functional integral (11) by means of the saddle point
method if there is a deep minimum for the function
Fl. This function is even and for large value of T,
Fl(p,) has a single minimum at the origin so that state
/li = 0 is most heavily weighted. For T smaller than
TL there rise two symmetrical minimum ± po corres-
ponding to spin up and spin down. The susceptibility
corresponding to these two regimes gives from a Pauli
law to a Curie law with a temperature dependant
moment [13]. The temperature TL is given by

One can see that TL is zero for U/ W smaller than a
critical value which depends on the shape of the band.
We recall that this formula is only valid in the metallic
state i. e. for not too large value of the ratio U/W.
Within the static approximation the validity of

this one site approximation can be discussed by consi-
dering coupling between localized moments. The next
approximation to equation 10 is [13] :

In fact it is easy to show that one can write :

where the ratio of two successive terms is small.
When Fl(p,) hast wo symmetric minimum ± po we
can approximate Mi and pj, in the smaller quantity
F2 by po ui and lio uj with u, = ± 1, uj = ± 1 and

neglect all interactions of order greater than two.
One can write

The Fourier transform of J,j is given by

We obtain a Ruderman-Kittel like interaction between
localized moments. Thank to it we will get a transition
to a magnetic ordered state in decreasing temperature.
When the ratio Ul W is not large enough it is unfa-

vorable to create localized moments in a magnetically
disordered state. However it can be worthwhile to
create ordered localized moments because of the

energy gained by magnetic ordering. That is T, equal
the transition temperature to the ordered magnetic
phase TN.
To show this possibility we always neglect interac-

tion of order greater than two and we restrict, in the
calculation of the partition function, to value Pk = YUk,
uk = ± 1. Then we look at minimum of F, + F, as
a function of y. The sum over Uk leads to the free

energy of an Ising model Y(p) with interaction given
by equation 27.

This integral can be done by a saddle point method.
One obtain a non zero value of J1 if the energy needed
to create a localized moment is less than the energy
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gained by magnetic ordering. In creating directly
ordered moments we obtain magnetism for a lower
value of U/ W than that given by equation (23).
For the special case of a parabolic density of states

we can apply our results. Equation 23 gives for the
existence of localized moments in a disordered state
a minimum ratio of U/ W of 3 nl 16 = 0.59. Taking
into account the energy gained by magnetic ordering
this ratio becomes of the order of 0.24. So we obtain
the qualitative diagram of figure 1.

FIG. 1. - Schematic phase diagram for the metallic phase. The
dashed curve does not represent a phase transition but the

temperature below which localized moments are stable.

IV. The insulating phase. - In the usual theory
an insulator is a material whose band are either com-

pletely full or entirely empty. Mott was the first to

point out that another type of insulator can exist.
It is typified by an array of hydrogen atoms in the
atomic limit. Electrons are localized on each site

although in a Bloch theory one obtains a half filled
band. So this type of insulator is only due to correla-
tion and is magnetic.

In the ordered phase agreement between these two
types occurs because the superimposed exchange field
due to antiferromagnetism splits the first Brillouin
zone. Slater’s description with Bloch wave functions
is equivalent to Mott’s with a Heitler-London ground
state. Our results of part II illustrate this point. Slater’s
idea seems simpler to deal with and to explain non
integral spin in the insulating phase but is misleading
in the sense that it suggest incorrectly that the crystal
will show metallic conductivity above the Néel tempe-
rature.

Mott description has the advantage of permitting a
paramagnetic insulator but is very difficult to set up
mathematically. We will show that our formalism,
which developed an analogy with an alloy and which
gave physically the same result as Slater’s idea in the

ordered phase, can be extended to deal with the

paramagnetic case. The formulation is different from
Mott’s but it lies on the same physic and permits
effective calculation.

In part 1 we developed an analogy with alloys
because the magnetic moment on each site acts as a
local potential. So we can applied known results on
this problem. As we quoted above the localization
theorem for binary alloy gives an exact criterium for
a split band which is equivalent to insulating behaviour.
We obtain the split band if

This important inequality means that we get insu-
lating behaviour for a given moment when U is large
enough. As y has a maximum value which is given by
Hund’s rule, there is a minimum value of U below
which no insulating phase can appear. This remark
will be used in the following.
Up to now we have associated band splitting and

appearance of an insulating phase. This is certainly
true for the ordered phase but probably wrong in the
disordered one. This stems from the fact that it is
now generally believed that a continuous density of
localized states can exist in a disordered system. If the
Fermi level lies within these states it does not define
a metal but rather an insulator. In our case the loca-
lization theorem does not say anything about the
nature of the states localized or extended throughout
the lattice. Before band splitting, the states at the
minimum of the density of states which occurs in the
middle of the band may be localized. So we would

get an insulating behaviour with a Fermi level located
in the middle of the band. Anderson [22] was the first
to give strong arguments in favour of a continuous
density of localized states. Later Mott [23] introduced
the concept of a critical energy separation in a band
localized from non localized states. So in our magneti-
cally disordered case, band splitting is not the exact
criterion for the metal insulator transition. One must
rather know the nature of the states at the Fermi level.
Anderson [14] gave a definition of the concept of

localization : if one put an electron on a particular
site at time zero, it has a finite probability to be on
the same site at infinite time. To study this problem
he emphazised [22] that it is wrong to study averages
but instead all quantities must be characterised by
their probability distribution functions. We have
seen in part II that a natural quantity one has to
introduce is the local density of states on site i without
the perturbation on this site. This is easily seen from
equation 12.

If the self consistent magnetic moment yi is large
enough to create a bound state of energy EB out of
the local density of states n(w ; pi , ..., Mi = 0, ..., Iln)
the free energy has an extra contribution



132

this state corresponds to a localized one in Anderson’s
sense because the phase shift has a discontinuity of rc.
So the free energy shows two contributions one due
to bounds electrons and the other to itinerant ones.

This criterium must replace equation 29. Unhappily
it is not an explicit one because it lies on the unknown
quantity, the local density of states which one has to
approximate. However our derivation has the imme-
diate advantage to prove Mott assumption about the
critical energy separating localized from non localized
states.

The general theory we described would tend to

divide the insulators in two differents types : The first
one described an insulator due to band splitting where
the concept of filled or empty bands exist. The second
type is analogous to amorphous semiconductors [23] :
there is no gap in the density of states but it exists a
« mobility gap ».

THE ATOMIC LIMIT. - We will now do some explicit
calculations and derive some known results in this
limit.
To calculate a possible bound state on site i we

have to solve the equation

where n is the local density of states if co is out of the
band we have the well known expansion :

Mp is the pth moment of the local density of states
and is defined by

H is the hamiltonian with ,ui = 0 and &#x3E; is the
Wannier function on site i. The first few moments are

easily calculated if one take into account only non
zero value of Ty for nearest neighbours.

In the atomic limit Tij = 0 one gets

i. e. the atomic level. For spin down electrons the hamil-
tonian is identical. The level is the same and there is a

complete degeneracy between spin up and down. Let
us now investigate the small Tij value. If we restrict
to second moment we just obtain a shift of the atomic
level for both spins up and spins down

If we take into account the third moment, spins up
and spins down become inequivalent and we obtain
difference between both level given by

The degeneracy is raised at low temperature and the
material is antiferromagnetic with a Néel temperature
of the order of TijlU. Both results are well known but
this show how one can obtain an insulating phase
and what is the magnetism of this phase. The phase is
still insulating above the Néel temperature. The

coupling between moments could have been also
deduced from equation 23 with as zero order the
atomic green function and calculating Gij to second
order in T,,.

In the general case the local density of states is
made up of extended states surrounded by localized
states which represent the contribution of the loca-
lized electrons on site near by the particular site we
consider. In a first approximation valid for small
value of Tij we can neglect the contribution of the
localized states and take into account only extended
ones. The reason is that the contribution on site i of a

localized state on site j is proportional to Gt. In this
limit this is a small quantity. Roughly speaking the
width of the band of extended states is T ’/2 and
to extract a bound state from this band we get the
same kind of criterium as equation 28 but the band
width is smaller because the tail is made up of loca-
lized states which do not contribute to the local den-

sity of states.
It is interesting to note that in this description the

gap measured by optical absorption does not equal
the gap measured by conductivity due to the possible
existence of localized states. This property is due to
disorder and an analogy can be drawn between this
insulating phase and amorphous material. The only
difference is that in the latter case the ,u’s are proper-
ties of the system and in the former it has to be deter-
mined self consistently. However it seems likely that
some of the predictions about amorphous systems
could be extended to explain properties of magnetic
insulators in the disordered phase.

V. Schematic phase diagram. - We want now to
sum up our results and to draw a schematic phase
diagram for the Hubbard model. At zero temperature
we obtain with increasing value of the ratio U/W a
metallic Pauli region up to U/W = 0.2 then a magnetic
metallic one which is antiferromagnetic for a half filled
band. At a critical value of 0.6 the material becomes

insulating. We will investigate in the following the
influence of temperature. We already discuss the

disappearance of the magnetic ordered state both in
the metallic and insulating region. So we will now calcu-
late the phase boundary between the paramagnetic
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insulator and the Pauli metal. Our main result is that
the high temperature phase is insulating due to the
large entropy disorder of this phase [25]. This boun-
dary terminates at a critical point for the low value
of U/ W because of the inequalities that we derive
above.

For this purpose we have to compare the free

,energy of the metallic phase and of the insulator. The
first one is [24]

and the second one

Due to the entropy disorder In 2 the insulator is
more stable at high temperature for relatively low
value of U we get

The temperature of the metal non metal transition
increases with decreasing U. As we know that we
cannot obtain an insulating phase if U  W, we get
a critical point where the first order phase transition
ends [26]. On the other limit for large value of the
ratio Ul W this line terminates at the intersection with
the phase boundary of the antiferromagnetic insu-
lator. So we can draw the schematic diagram of
figure 2.

FIG. 2. - General schematic phase diagram.

VI. Possible applications to transition métal oxides.
- Our theory describes the effect of correlation in
narrow bands and transition from a band metal to a
localized magnetic insulator. Transition metal oxides
are good candidates for the relevance of the theory to
experiments. The d functions form a relatively narrow d
band which is responsible for both the electrical
and the magnetic properties of the material [1].
V203 is a typical case which presents this transition

and has been particularly studied [25], [27]. The general
phase diagram of reference 20 for (V.,Cr, -,,)2 03
has qualitative features of our figure 2. The main
difference with the predicted schematic phase diagram
is the absence of the antiferromagnetic metallic

phase. This can be viewed as an effect of the lattice
phase change which occurs at the metal-antiferro-

magnetic insulator in this compound. With the tran-
sition is associated a sharp volume increase [25], [27].
There is a discontinuity in the U/W ratio which is
illustrated in figure 36 of reference [28], by an invi-
sible region where this antiferromagnetic metallic

phase should have occurred. A detailed discussion
of the lattice instability linked with the Mott transi-
tion will be discussed in a forthcoming paper.

Appendix A. - As a start we have Hubbard Hamil-
tonian (eq. 1) that we rewrite :

We want to calculate the partition function

Stratonovich [29] then Hubbard [12] developed a
functional integral method for calculating Z which
uses the identity valid for any bounded operator a.

We want to apply it to the last term of the hamilto-
nian. As this term does not commute with the first

two, we first use the Feynman time ordering trick.

Where s is a fictious time, TS is a chronological ordering
which order products. The A, and B$ can be treated
as commuting operators so long as they are acted on
by the T, operator in the end. Using this trick and
the identity just above we obtain equation 5 and 6.
Here we have neglected fluctuations in charge : i. e..

we replaced the second term of the hamiltonian by
U/4. We believe that self consistence and links with
other works are better taken into account through
Hamman [11 ] way of line - arizing (using equation 3)
than through Schrieffer approach [13].

Appendix B. - We want to calculate the magnetic
susceptibility which is given by

One can easily see from equation 5 that the applied
field h enters Z additively with the local moment.
One has to do the replacement
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Therefore we have

the only h dependence is displayed explicitely in the
Gaussian weight factor. In the limit where one can
neglect interactions between moments we get the

simple result

The brackets represent a thermal average.
In the metallic phase xo is the band susceptibility.

This result shows that ,ui is a kind of effective moment
on site i, which if Pi is temperature independant give
rise to a Curie law.
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