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Abstract

The numerical simulations of convection inside the mantle of the Earth or of

terrestrial planets have been based on approximate equations of fluid dynamics. A

common approximation is the neglect of the inertia term which is certainly reason-

able as the Reynolds number of silicate mantles, or their inverse Prandtl number,

are infinitesimally small. However various other simplifications are made which we

discuss in this paper. The crudest approximation that can be done is the Boussinesq

approximation (BA) where the various parameters are constant and the variations

of density are only included in the buoyancy term and assumed to be proportional

to temperature with a constant thermal expansivity. The variations of density with

pressure and the related physical consequences (mostly the presence of an adia-

batic temperature gradient and of dissipation) are usually accounted for by using

an anelastic approximation (AA) initially developed for astrophysical and atmo-

spheric situations. The BA and AA cases provide simplified but self-consistent
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systems of differential equations. Intermediate approximations are also common in

the geophysical literature although they are invariably associated with theoretical

inconsistencies (non conservation of total energy, non conservation of statistically

steady state heat flow with depth, momentum and entropy equations implying in-

consistent dissipations). We show that, in the infinite Prandtl number case, solving

the fully compressible (FC) equations of convection with a realistic equation of state

(EoS) is however not much more difficult or numerically challenging than solving

the approximate cases. We compare various statistical properties of the Boussinesq,

AA and FC simulations in 2D simulations. We point to an inconsistency of the

AA approximation when the two heat capacities are assumed constant. We suggest

that at high Rayleigh number, the profile of dissipation in a convective mantle can

be directly related to the surface heat flux. Our results are mostly discussed in the

framework of mantle convection but the EoS we used is flexible enough to be applied

for convection in icy planets or in the inner core.

1 Introduction

The equations of fluid dynamics that control the fully compressible convection (FC)

are also the same equations that control the propagation of sound waves. In most geo-

physical cases, the huge difference of timescales between convection velocities and sound

celerity makes an exact numerical simulation impracticable. Various levels of approx-

imations are therefore usually considered. The earliest, most extreme and well known

approximation is the Oberbeck-Boussinesq approximation (BA), where the density of

the fluid is uniform except in the buoyancy term (Oberbeck, 1879; Boussinesq, 1903).

Some parameters of the equations are sometimes varied (i.e., the thermal expansivity, the

thermal conductivity, the viscosity...) while the density is still assumed uniform in the

mass and energy conservation equations. We will call these approximations as quasi-

Boussinesq, QB (sometimes called Extended Boussinesq, (King et al., 2010)). These

approximations, BA or QB, are not thermodynamically consistent as the density cannot
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not be uniform if the buoyancy is variable. Furthermore, the thermodynamic Maxwell

relations imply that compressibility should be accounted for when thermal expansivity

is considered. In geophysical and astrophysical situations (interiors of stars and planets,

oceans and atmospheres), compressibility is an essential ingredient and the variations of

density are rather controlled by pressure than by temperature. To avoid the propagation

of sound waves in the convective medium, the anelastic approximation (AA) has been

introduced. The approximation was initially proposed for situations with large Reynolds

numbers such as the atmosphere (Ogura and Phillips, 1962), the liquid core (Braginsky

and Roberts, 1995) or the stars (Lantz and Fan, 1999), and was later applied to low

Reynolds number situations. The rich bibliography of numerical studies of convection

applied to planetary interiors is based on Boussinesq models (e.g., Blankenbach et al.,

1989; Busse et al., 1994; Bunge et al., 1997; Parmentier and Sotin, 2000; Choblet et al.,

2007; Zhong et al., 2008) or Anelastic models (e.g., Jarvis and McKenzie, 1980; Glatz-

maier, 1988; Bercovici et al., 1989, 1992; Tackley, 2008; Rolf et al., 2012; Kameyama and

Yamamoto, 2018). A comprehensive presentation of the fluid dynamic equations and

their approximations when they are applied to planetary interiors is found in Schubert

et al. (2001).

The basic assumption of the AA, is that the bulk of the convective fluid is well mixed

and in a thermodynamic state close to isentropy. The equations are thus expressed

as an expansion of the thermodynamic variables around the isentropic state (usually

coined as the ”adiabatic state”). The AA can itself be subdivided into various levels

of approximations depending on the terms kept in the expansion (Schubert et al., 2001;

Anufriev et al., 2005). The thermodynamic consistency of these AA equations has been

discussed in several papers (e.g., Leng and Zhong, 2008; King et al., 2010; Trubitsyn

and Trubitsyn, 2015; Verhoeven et al., 2015; Yoshida, 2017; Gassmoller et al., 2020),

and below, we will come back to this point in more details. However, we think that the

papers on AA convection applied to the mantle have used assumptions on the equation
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of state or on the thermodynamic parameters that are not entirely appropriate for a

terrestrial planet. For example, a well-known ingredient of compressible convection is the

presence of an adiabatic temperature gradient; a fluid parcel entrained in a descending

flow undergoes a temperature increase during adiabatic compression, and a temperature

decrease in upwellings. However the adiabatic gradient is expected to decrease with

pressure (hence with depth) for any equation of state appropriate for a planetary interior

while assumptions on the constancy of some parameters made in the available simulations

imply rather an increase of the adiabatic gradient with depth (this is the case for all the

simulations of the benchmark paper of King et al., 2010). This may become problematic

particularly when considering large exoplanets in which the pressure is very large. In

addition, it remains very difficult to know exactly what are the aspects of convection

that may be missed when the AA equations are used instead of the FC formalism.

In this paper we consider convection in silicate planetary mantles. However some

of our results would also apply in liquid or solid metallic layers (core or inner core)

and icy satellites and their possible inner oceans (with the appropriate addition of their

specific characteristics such as the presence of Coriolis and magnetic forces). Starting

from a realistic equation of state for the mantle, which seems to be flexible enough to be

applied to metallic or icy layers, we show that solving the equations of fully compressible

convection (FC) at infinite Prandtl number, is feasible and not much more difficult than

solving the approximate equations. Moreover, it allows us to assess the appropriateness

of approximate models, to discuss the mechanisms of heat transfer and to suggest a

profile of dissipation at high Rayleigh number.
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2 Murnaghan equation of state for planetary interiors

2.1 Basic thermodynamics

A very important quantity in the thermodynamics of planetary materials is the Grüneisen

parameter

Γ =
αKT

ρCV
=

1

ρCV

(
∂P

∂T

)
V

, (1)

where P , T , α, KT , ρ and CV are the pressure, temperature, thermal expansivity, isother-

mal incompressibility, density and heat capacity at constant volume. The Grüneisen

parameter is dimensionless and can reasonably be considered as independent of the tem-

perature at first order (Anderson, 2000). An empirical law (Anderson, 1979) relates Γ

to density,

Γ = Γ0

(
ρ0

ρ

)q
, (2)

where q is around 1, ρ0 is a reference density and Γ0 is the Grüneisen parameter at stan-

dard conditions. On average, the Grüneisen parameter is between 1 and 2 in the mantle

(e.g. Stacey and Davis, 2004) or in the core (Alfe et al., 2002). The Grüneisen parameter

can also be related to the microscopic vibrational properties of crystals (Stacey, 1977).

At high temperature, above the Debye temperature, all solids have more or less the same

heat capacity at constant volume CV m = 3R per mole of atoms, independent of the na-

ture of the material (R is the gas constant). This approximated rule was proposed by

Petit and Dulong (1819). From the typical mole per unit mass of the mantle, CV = 1247

J K−1kg−1 (the 3R rule seems also to hold approximately for the liquid core, Gubbins

et al. (2003)). The approximate constancy of CV and the fact that Γ is only a function

of ρ allow us to integrate (1) as

P = F (ρ) + α0K
0
T (T − T0)

(
ρ

ρ0

)1−q
, (3)
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where α0 and K0
T are the thermal expansivity and incompressibility at standard con-

ditions (that we choose to be P0 = 0 Pa, T0 = 273 K) and where F (ρ) is a density

dependent integration constant. A rather simple but acceptable choice for the function

F (ρ), is the Murnaghan equation of state (EoS) (Murnaghan, 1951) at constant T that

allows us to write an EoS for solids of the form

P =
K0
T

n

[(
ρ

ρ0

)n
− 1

]
+ α0K

0
T (T − T0)

(
ρ

ρ0

)1−q
. (4)

The exponent n expresses the variations of KT with pressure at reference temperature T0

as KT (P, T0) = K0
T +nP . The value of n (also sometimes referred to as K ′0) is ≈ 3−4 for

most mantle materials (Stixrude and Lithgow-Bertelloni, 2005). Equation (4) has been

used implicitly in various models of mantle convection (e.g., Glatzmaier, 1988; Bercovici

et al., 1989, 1992; Bunge et al., 1997). It can easily be used to derive any thermodynamic

property like the thermal expansion coefficient α(P, T ) or the incompressibilityKT (P, T ).

Mayer’s relation between the two heat capacities CP −CV = T (∂P/∂T )V (∂V/∂T )P

will be useful later. It can be straightforwardly deduced from the definitions of the

heat capacities using the chain rule for partial derivatives. Introducing the Grüneisen

parameter, this relation writes

CP = CV (1 + ΓαT ). (5)

Since Γ ≈ 1 and αT � 1, the two heat capacities are very close together although we

will argue that this difference should not be neglected (see also Alboussière and Ricard,

2013).

2.2 The adiabatic profiles

When convection is vigorous, the motion of fluid parcels is fast enough so that heat

diffusion becomes negligible. In the absence of local sources of entropy (when the pres-
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ence of radiogenic sources and the viscous dissipation are ignored) the temperature of an

ascending or descending parcel is only changed by adiabatic expansion or compression.

This hypothetic isentropic state is classically called the hydrostatic adiabatic state. In

this situation, the thermodynamic variables denoted with a subscript a are solutions of

the following equations

d ln ρa
dz

+
αag

ΓaCaP
= 0, (6a)

d lnTa
dz

+
αag

CaP
= 0, (6b)

dPa
dz

+ ρag = 0, (6c)

z being the vertical coordinate (directed against gravity g = −gez).

Since the Grüneisen parameter (2) is only density-dependent, by combination of (6a)

and (6b), one gets

Ta = T 0
a exp

{
Γ0

q

[(
ρ0

ρ0
a

)q
−
(
ρ0

ρa

)q]}
, (7)

(or Ta = T 0
a (ρ/ρ0

a)
Γ0 in the specific case q = 0) where T 0

a is the surface adiabatic

temperature, also called the foot of the adiabat, and ρ0
a the surface adiabatic density

(i.e. the density at T 0
a and zero pressure). As αa can be obtained from the EoS (4) as a

function of Ta and ρa, as CaP is then given by (5), the three adiabatic profiles, solutions of

(6a)-(6b)-(6c), can be obtained numerically as soon as a surface adiabatic temperature

is chosen.

If we apply equation (7) to the whole Earth mantle from the surface to the core

mantle boundary (CMB) with e.g., Γ0 = q = 1, ρ0 ≈ ρ0
a = 3200 kg m−3, ρCMB

a = 5500

kg m−3 and a surface adiabatic temperature T 0
a = 1600 K, we predict a mantle adiabatic

temperature increasing by a factor 1.52 from the surface to the core-mantle boundary

(i.e., TCMB
a = 2432 K). Of course the actual CMB temperature is obtained by adding

to this adiabatic estimate the non adiabatic temperature increase through the bottom
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boundary layer of the mantle, likely ≥ 1300 K, (see e.g. Boehler, 1993), indicating a

temperature for the top of the core of about 4000 K.

2.3 Validity of the Murnaghan EoS based on the comparison with

seismic observations

The different convecting layers of the Earth, mantle, core, or inner core are not strictly

adiabatic (see e.g. Bunge et al., 2001) but should not be far from it. We can therefore

check that the EoS (4) is in agreement with the seismologic profile inside the Earth, in

both cases where the temperature follows the adiabatic profile (7) computed with q = 0

or with q = 1. The fit to the Preliminary Reference Earth Model (PREM) is tested

for the lower mantle in Figure 1 and is very precise. We have assumed an adiabatic

temperature on top of the lower mantle of 1970 K (Katsura et al., 2010). Notice that

the same EoS is flexible enough to also give an accurate fit to the pressure-density

relations in the fluid core or the inner core (Figure 2a). The corresponding adiabatic

temperatures (Figure 2b) are also in agreement with what is commonly accepted from

mineralogical experiments at 670 km depth (Katsura et al., 2010), at the CMB (Boehler,

1993) or at the core/inner core phase change (Anzellini et al., 2013).

Although the pressure-density of PREM can be obtained with either q = 0 or q = 1

in (4), the choice of q has a stronger effect on the thermal expansivity (see Figure 3).

However the experimentalists do not provide a very stringent criterion to prefer one

of the two values as shown by the various observations reported in Figure 3 (Anderson

et al., 1992; Brown and Shankland, 1981; Chopelas and Boehler, 1992; Duffy and Ahrens,

1993; Funamori et al., 1996; Wolf et al., 2015). In the following we will therefore use

q = 1 which is a reasonable assumption that simplifies the equations (although for a

modest increase in the algebra complexity, q 6= 1 could be considered). The pressure is

therefore given by

P =
K0
T

n

[(
ρ

ρ0

)n
− 1

]
+ α0K

0
T (T − T0), (8)
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Figure 1: Density as a function of pressure in the lower mantle. The three curves, PREM
(thick black) and the predictions using (4) and (7) with q = 0 (green) or q = 1 (red)
are all superimposed. When q = 1 we use ρ0 = 4180 kg m−3, K0 = 256 GPa, n = 3.29,
T 0
a = 1849 K, Γ0 = 1.22. When q = 0 we use ρ0 = 4173 kg m−3, K0 = 244 GPa,
n = 3.26, T 0

a = 1847 K, Γ0 = 1.17.
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Figure 2: Density as a function of pressure in the Earth according to PREM (thick grey
line, panel a). Very accurate adiabatic fits can be obtained using (4) and (11) with
q = 1. For the lower mantle (thin black) the EoS uses the values of Figure 1, for the
liquid core (red) we use ρ0 = 7900 kg m−3, K0 = 210 GPa, n = 4.2, Γ0 = 1.5 and for
the inner core (green) ρ0 = 7913 kg m−3, K0 = 175 GPa, n = 4.0, Γ0 = 1.25. The
adiabatic temperatures extrapolated at zero pressure are 1970 K, 3150 K and 3450 K,
respectively. The corresponding adiabatic temperatures (panel b) correspond to what
has been suggested by mineralogical experiments.
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which allows us to express the density with the simple equation,

ρ = ρ0

[
1 + n

(
P

K0
T

− α0(T − T0)

)] 1
n

. (9)

From this EoS, the incompressibility and thermal expansivity coefficients are easily de-

duced

KT = K0
T

(
ρ

ρ0

)n
, (10a)

α = α0

(
ρ0

ρ

)n
, (10b)

and therefore αKT = α0K
0
T is a constant. The adiabatic temperature (7) expressed as

a function of density, becomes

Ta = T 0
a exp

[
Γ0

(
ρ0

ρ0
a

− ρ0

ρa

)]
, (11)

where the adiabatic density at the surface ρ0
a, from (9), is

ρ0
a = ρ0

(
1− nα0(T 0

a − T0)
)1/n

. (12)

The surface density is of the same order but smaller than ρ0 as the surface adiabatic

temperature is larger than T0.

The EoS also implies simple expressions for the entropy S and the enthalpy H, ex-

pressions that we will need in discussing the convection equations. Using the differentials

TdS = CV dT − αKTTdρ/ρ
2 (see e.g., Ricard, 2015) and dH = TdS + dP/ρ, we obtain

S = AS + CV lnT +
α0K

0
T

ρ
, (13a)

H = AH +

(
CV +

α0K
0
T

ρ

)
T +

K0
T

(n− 1)

ρn−1

ρn0
, (13b)
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Figure 3: Thermal expansivity αa as a function of density in the Earth mantle using the
parameters of Figure 1. The predictions are with q = 1 (solid red) and q = 0 (green).
Various experimental observations with conditions appropriate for the top of the lower
mantle or for the CMB are indicated by dots or vertical ranges.

where AS and AH are two integration constants that will be discussed later.

2.4 Approximate expressions of the adiabatic profiles

In the simulations (see below), we compute the adiabatic profiles from the exact ex-

pressions (6a)-(6b)-(6c). However, it is useful to derive approximate forms of these

profiles, in particular to discuss implications when considering planets with thicker,

hotter or colder mantles than the Earth. As CaP and CaV only differ by a few %, (as

(CaP − CaV )/CaV = Γ0α0Ta (ρ0/ρa)
n+1 � 1, see (5)) adiabatic profiles can be obtained

analytically by identifying the two heat capacities and assuming that g is uniform which

is roughly the case for the Earth mantle. The approximate solution of (6a) becomes

ρa = ρ0
a

(
1 +

H − z
h

)1/(n−1)

, (14)
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where z is measured from the bottom of the mantle z = 0 to the surface z = H, and

h =
1

n− 1

K0
T

ρ0g

(
ρ0
a

ρ0

)n−1

. (15)

For the Earth, h ≈ 2500 km.

The pressure deduced from (6c) is then

Pa =
n− 1

n
ρ0
agh

[(
ρa
ρ0
a

)n
− 1

]
, (16)

and the temperature remains given by (11) so that both pressure and temperature are

direct functions of ρa (14).

Assuming that the adiabatic density is given by (14), the ρa, Pa and Ta profiles,for

a mantle of arbitrary thickness of 3500 km and a uniform gravity comparable to that at

Earth’s surface, are shown in Figure 4 using the numerical values of Figure 1. Although

the choice of the EoS parameters is in perfect agreement with the lower mantle of PREM,

these depth dependent profiles are not exactly similar to the Earth profiles deduced from

seismology (black thick lines of Figure 4) as the EoS does not account for the upper

mantle phase transitions. The profiles of Figure 4 correspond therefore to a planet

where a mineralogical phase similar to that of the Earth’s lower mantle is also present

in the lighter shallow layers. These models have therefore a slightly larger density and

pressure than PREM.

In Figure 5, adiabatic profiles of density (using the approximation (14), bottom row)

and temperature (top row) are depicted for different possible planets (gravity is assumed

uniform, proportional to the thickness of the mantle and equal to Earth’s value for a

mantle thickness of 3000 km). We choose a surface top temperature Tt arbitrarily equal

to T0 = 273 K although in general, the reference temperature T0 of the EoS and the

surface temperature of the planet Tt are not identical (and are also different from the

surface adiabatic temperature T 0
a ). The situation for the Earth is roughly comparable to
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that depicted by the red curves. In the left column, the mantle thickness H changes from

2000 km (black), to 3000 km (red) and 4000 km (green) (and gravity increases from 6.5,

to 9.8 and 13.1 m s−2) and the bottom temperature Tb is kept fixed at 3000 K. All the

geotherms (panel a) cross at mid-mantle by an arbitrary choice of the reference adiabatic

temperature (Ta(H/2) = (Tt + Tb)/2). The density increases with the mantle thickness

(bottom left). In the right column, the mantle thickness is constant (3000 km) and the

bottom temperature is increased (2000, 3000, and 4000 K for black, red, green curves,

respectively). Increasing the bottom temperature slightly decreases the densities. Notice

that all the different adiabatic profiles are very different from exponentials increasing

with depth which are often assumed in numerical simulations using (6a)-(6b)-(6c) with

constant αa, g, Γ0 and CP (e.g., King et al., 2010).

Although the difference of CP and CV may not seem to have a major effect as we

want to be as rigorous as possible we will account for their differences in our numerical

methods. Furthermore the variations of the heat capacities with pressure and tempera-

ture are not negligible when global balance of energy is discussed. Assuming a uniform

CP would lead to the conclusion that the volume-averaged work done against gravity by

the perturbed density exactly balances the volume-averaged viscous dissipation (Hewitt

et al., 1975). This has been assumed true in many other papers although it is incorrect

as pointed out by Alboussière and Ricard (2013). In the following, CP will be computed

from (5) and the adiabatic density and temperature from (6a) (assuming g uniform) and

(7).

2.5 Dimensionless EoS and reference profiles

In the next section, where we write the fully compressible convection equations for a

fluid obeying a Murnaghan EoS, we work with dimensionless quantities. We use the

mantle thickness H, the surface temperature and density, T0 and ρ0 to define length,

temperature and density units (see Table 1). We introduce several dimensionless num-
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Figure 4: Adiabatic density (a), pressure (b) and temperature (c) as a function of depth
using for the EoS the numerical values obtained by fitting the Earth lower mantle and
assuming CP = CV . The density and pressure of PREM are shown in black. Since this
model assumes a unique EoS for the upper and lower mantle, using values of Figure 1
(red line) fitted to the lower mantle and disregarding the different phases of the upper
mantle, the predictions have a higher density and consequently, a higher pressure than
PREM.
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bers in addition to the Grüneisen parameter (see Table 2), among which the dissipation

number D = α0gH/CV (notice that our hypothesis of a constant CV leads us to define

D with CV while classical papers rather use CP ), the thermal density factor ε = α0T0

and a number R = ρ0gH
3/ηκ (the viscosity η and the thermal diffusivity κ = k/(ρ0CV )

are used to scale the pressure with ηκ/H2). With the fit of the EoS using the PREM

profile, we get D ≈ 0.57, ε ≈ 6.7× 10−3, Γ0 ≈ 1.22. The introduction of the R number

closely related to the Rayleigh number will become obvious when we will introduce the

convection equations. With these units and definitions, the dimensionless EoS writes,

from (9)

ρ =

[
1 + n

(
P
D
RΓ0

− ε(T − 1)

)] 1
n

(17)

or

P =
RΓ0

D

(
ρn − 1

n
+ ε(T − 1)

)
, (18)

and the adiabatic conditions (6a)-(6b) are

dTa
dz

= −DTa
ρnaγa

, (19a)

dρa
dz

= − D
Γ0γaρ

n−2
a

, (19b)

where γa is CP /CV on the adiabat

γa = 1 + Γ0ερ
−n−1
a Ta. (20)

We emphasize that both CP and CV are necessary for a correct thermodynamic descrip-

tion: assuming a uniform CP instead of a uniform CV , and using CP in the definition of

the dissipation D would remove γa from (19a)-(19b), but it would reappear in the EoS

(γa would divide the D/RΓ0 factor present in (17)-(18)).

Before writing the entropy and enthalpy in dimensionless variables, we choose their
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integration constants. For the enthalpy, the constant AH will never appear in our con-

clusions and can be taken equal to zero. For the entropy, we know that convection at

high Rayleigh number leads to an isentropic mean state. We can choose the entropy to

be zero along the adiabat (Ta, ρa). We have not yet explained how the surface adiabatic

temperature T 0
a which defines the temperature and density reference profiles is chosen

but let us assume here that this choice is made. In that case, we therefore write in

dimensionless form,

H =

(
1 +

Γ0

ρ

)
T +

Γ0

(n− 1)ε
ρn−1, (21)

S = ln
T

Ta
+ Γ0

(
1

ρ
− 1

ρa

)
. (22)

In Table 2, we indicate the range of values that the dimensionless parameters can

reach in planetary mantles. Notice that R is different from the Rayleigh number which

is classically defined in the Boussinesq case by Ra = Rε∆T where ∆T = Tb − Tt is

the difference between the bottom and top temperatures, or in the compressible case

by Ra = Rε(∆T − ∆Ta) where ∆Ta is the adiabatic temperature jump across the

layer. The vigor of convection in the simulations discussed in the next paragraphs

corresponds to Rayleigh numbers Ra about 14 times smaller than R as we use ε ≈ 10−2,

∆T − ∆Ta ≈ 7T0. With the fully compressible equations and the EoS (17), using Ra

instead of R would not have led to simpler expressions.

The dissipation number D = α0gH/CV is perhaps a quantity which might be less

known to non specialists. Of course, as α0 and CV are constants in our model, and mantle

thickness and gravity roughly scale with the planetary radius, very large dissipation

numbers could be obtained for massive exo-planets. However this might be misleading.

One can argue that the compressible effects in convection are related to an average

dissipation number

〈D〉 =
〈α〉gH
CV

(23)
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(assuming like for Earth’s mantle, that g is mostly uniform and CV constant). As α

decreases with density (see (10b)) and therefore pressure, 〈α〉 decreases with the size

of the planet, the average dissipation number can never reach very large values. More

precisely, using the expression of α, (14) and computing the density from (10b) assuming

h ∝ 1/g ∝ 1/H (see (15)), one can express 〈α〉 and show that

〈D〉 ≤ Γ0, (24)

(we have assumed a uniform g but the fact that 〈D〉 is bounded by a quantity that cannot

be much larger than Γ0 is also valid if g is linearly increasing with the radius). Although

near the surface, the compressibility effects are very important and the dissipation num-

ber can be huge, the fact that the mantle becomes more and more incompressible as

pressure increases (i.e. as g or H increases) makes the average dissipation at most of

order of the Grüneisen parameter.

Table 1: Scaling of the equations

quantity generic symbol scaling

length x, z, h... H
temperature T T0

density ρ ρ0

time t H2

κ
velocity u κ

H
thermal expansivity α α0

pressure or stress P or τ ηκ
H2

heat capacity CV or CP CV
entropy S CV
enthalpy H CV T0

17



0 0.2 0.4 0.6 0.8 1

1000

1500

2000

2500

A
di
ab

at
ic
	T
em

pe
ra
tu
re
	K

H=2000	km		

H=3000	km		

H=4000	km

0 0.2 0.4 0.6 0.8 1

1000

1500

2000

2500
TB=2000	K

TB=3000	K

TB=4000	K

0 0.2 0.4 0.6 0.8 1
Normalized	Depth

4000

4500

5000

5500

6000

6500

A
di
ab

at
ic
	d
en

si
ty
	k
g	
m

-3 H=2000	km

H=3000	km

H=4000	km

0 0.2 0.4 0.6 0.8 1
Normalized	Depth

4000

4500

5000

5500

6000

6500 TB=2000	K

TB=3000	K

TB=4000	K

H=3000	km

H=3000	kmTB=3000	K

TB=3000	K

(a) (b)

(c) (d)

Figure 5: Possible density (using (14), bottom panels c and d) and temperature (top
panels a and b) adiabatic profiles in various planets. In the left column, the mantle
thickness is increased with a constant bottom temperature. Gravity scales with the
mantle thickness. In the right column, the temperature is increased at constant mantle
thickness. The Earth conditions are roughly similar to the intermediate case depicted
in red.
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Table 2: Dimensionless numbers

name expression typical values values used
in the paper

Grun̈eisen parameter Γ0 =
α0K0

T
ρ0CV

1–2 1

Dissipation number D = α0gH
CV

0.3–2 1

Thermal density variations ε = α0T0 10−3–2×10−2 10−2

Top temperature Tt
T0

0.1–3 1

Bottom temperature r = Tb
Tt

1–20 10

R number R = ρ0gH3

ηκ 103–1010 105–109

3 Equations of compressible convection under different lev-

els of simplification

3.1 Starting set of equations of compressible convection

The fully compressible (FC) equations of convection with infinite Prandtl number (no

inertia) and uniform dynamic viscosity η, thermal conductivity k, and gravity g, are in

dimensional variables

Dρ

Dt
+ ρ∇ · u = 0, (25a)

η∇2u +
η

3
∇∇ · u−∇P + ρg = 0, (25b)

ρT
DS
Dt

= ε̇ : τ+∇2T, (25c)

where u is the velocity, ε̇ij = 1/2(∂jui + ∂iuj) is the strain rate tensor and τij =

2ηε̇ij − (2/3)η δij∇ · u the stress tensor with zero bulk viscosity. In addition to the

quantities already discussed (see Table 1), we non-dimensionalize time and velocities

with H2/κ and κ/H. Finally, using the chosen EoS and the entropy expression (13a),
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we get, without dimensions,

Dρ

Dt
+ ρ∇ · u = 0, (26a)

∇2u +
1

3
∇∇ · u−∇P −Rρez = 0, (26b)

ρ
DT

Dt
+ Γ0T∇ · u =

D
Rε ε̇ : τ+∇2T. (26c)

This system is supplemented by the EoS, i.e, by the pressure definition (18). Finally,

the non dimensional top and bottom temperatures must be defined. We choose indeed

to define their ratio r = Tb/Tt, and the top dimensionless temperature Tt/T0.

3.2 Derivation of fully compressible (FC) equations in terms of density

and temperature variables

Let us replace all variables X by Xa + X ′ where Xa are the values on the adiabatic

profiles, and the new variables X ′ are now the differences with the adiabatic case. How-

ever contrary to the usual anelastic approximation we do not assume that the X ′ are

necessarily small. As we have a differential system with time evolution equations for

density and temperature, we also use the EoS to express the pressure and write the

whole system in ρ′-T ′ variables, with w being the velocity component against gravity:

Dρ

Dt

′
+ ρa∇ · u + w

dρa
dz

+ ρ′∇ · u = 0, (27a)

∇2u +
1

3
∇∇ · u− RΓ0

D
[
(ρa + ρ′)n−1∇ρ′ + ε∇T ′

]
−{RΓ0

D
[
(ρa + ρ′)n−1 − ρn−1

a

] dρa
dz

+Rρ′
}

e3 = 0, (27b)

(ρa + ρ′)
DT ′

Dt
+ wρa

dTa
dz

+ wρ′
dTa
dz

+ Γ0(Ta + T ′)∇ · u =

D
Rε ε̇ : τ +∇2(Ta + T ′). (27c)

As we later solve the system of equations with the software Dedalus (Burns et al.,
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2020), which handles differential equations of the form

M
∂X

∂t
+ LX = F, (28)

where the matrices M and L must be linear on the problem variables, all non-linear

quantities above are written as the sum of their first order expansion that will be ac-

counted for by the matrices M and L, and a non linear correction that will be accounted

for by F . For example in the term containing the density gradient of (27b), we use

(ρa + ρ′)n−1∇ρ′ = ρn−1
a ∇ρ′ +

(
(ρa + ρ′)n−1 − ρn−1

a

)
∇ρ′, (29)

the first term of the right hand side being linear in ρ′ is included in L, the second, non

linear, is included in F (the first term of its Taylor expansion is (1/2)(n− 1)ρn−2
a ∇ρ′2).

We also define the scale height of the adiabatic density change, m, which is depth-

dependent

m =
1

ρa

dρa
dz

= − D
Γ0γaρ

n−1
a

. (30)

With this method and definition, the left-hand side (LHS) of the convection equations

(27a)-(27c) becomes

∂tρ
′ + ρa(∇ · u +mw) = F1, (31a)

∇2u+
1

3
∂x∇ · u−

RΓ0

D
(
ρn−1
a ∂xρ

′ + ε∂xT
′) = F2, (31b)

∇2w +
1

3
∂z∇ · u−

RΓ0

D
(
ρn−1
a ∂zρ

′ + ε∂zT
′)−Rρ′(1− n− 1

γa

)
= F3, (31c)

∂tT
′ − ∇

2T ′

ρa
= F4, (31d)
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with the right-hand side (RHS) terms

F1 = −∇ · (ρ′u), (32a)

F2 =
RΓ0

D
[
(ρa + ρ′)n−1 − ρn−1

a

]
∂xρ
′, (32b)

F3 =
RΓ0

D
[
(ρa + ρ′)n−1 − ρn−1

a

]
∂zρ
′+

RΓ0

D

[
(ρa + ρ′)n−1 − ρn−1

a − (n− 1)ρn−2
a ρ′

]
dzρa, (32c)

F4 = −u ·∇T ′ − mwΓ0

ρa

ρ′Ta − ρaT ′
ρa + ρ′

− Γ0
Ta + T ′

ρa + ρ′
(∇ · u +mw)

+
D
Rε

ε̇ : τ

ρa + ρ′
− ρ′

ρa

∇2T ′

ρa + ρ′
+

1

ρa + ρ′
d2
zzTa. (32d)

The diffusion d2
zzTa along the adiabat can be expressed analytically using (19a)-(19b)

d2
zzTa =

D2Ta
γ2
aρ

2n
a

(
1− nρa

Γ0

)
− D

2T 2
a εΓ0

γ3
aρ

3n+1
a

(
1− (n+ 1)

ρa
Γ0

)
. (33)

This writing allows us to easily identify the usual anelastic terms (Ogura and Phillips,

1962; Jarvis and McKenzie, 1980; Braginsky and Roberts, 1995; Lantz and Fan, 1999)

and the additional terms necessary for the FC set of equations.

3.3 Notes on various anelastic approximations in literature

The anelastic approximation has been mostly introduced to avoid the propagation of

sound waves in a convective medium, that would lead to impractically small timesteps in

numerical models to be properly solved. The approximation was made in situations with

large Reynolds numbers such as the atmosphere (Ogura and Phillips, 1962), the liquid

core (Braginsky and Roberts, 1995) or the stars (Lantz and Fan, 1999). It starts with

removing the ∂ρ′/∂t′ from the mass conservation. However the situation is very different

in mantle convection with infinite Prandtl number, where the generation of sound waves

is already impossible by the absence of inertia in the Stokes equation (see e.g., Schubert
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et al. (2001); Ricard (2015) for a discussion focussed on planetary mantle, or Curbelo

et al. (2019)). Once ∂ρ′/∂t′ is removed, mass conservation becomes ∇ ·(ρu) = 0 which is

implemented as ∇ · (ρau) = 0. The AA then proceeds by using the first order expansion

of the EoS, which in our case would be

ρ′ =
1

ρn−1
a

( D
RΓ0

P ′ − εT ′
)

(34)

and by considering that all prime variables are small perturbations around the adiabatic

profiles.

The first order expression of the entropy time derivative (25c) is ρaTaDS ′/Dt as Sa is

constant along the adiabatic profile (and is even zero according to (22)). However, from

this point on, several paths have been followed in expressing S ′ as a function of any couple

of variables among T ′, P ′ or ρ′ (most previous papers are also written using temperature

and pressure variables, T ′, P ′ contrary to our approach using T ′, ρ′). In particular the

approximations on the constancy or the variability of the various parameters, CV , CP ,

α, KT , Γ... are rarely discussed and sometimes inadvertently made.

Earlier authors use both αT = 1 (which would be valid for an ideal gas) and constant

α and CP (Jarvis and McKenzie, 1980; Machetel and Yuen, 1989; Solheim and Peltier,

1990). In the classic book on mantle convection (Schubert et al., 2001), S ′ is effectively

replaced by CPT
′/Ta which constitutes the anelastic liquid approximation (ALA) where

the entropy is only related to temperature (see also Curbelo et al., 2019). Schubert et al.

(2001) also uses constant and identical heat capacities. This ALA approximation leads

to

ρaTa
DS ′
Dt

= ρaCP
DT ′

Dt
− ρaCP

T ′

Ta
w
∂Ta
∂z

= ρaCP
DT ′

Dt
+ ρaαagwT

′. (35)

The expression (35) has been implemented in many subsequent codes used in solid Earth

geophysics to solve the heat equation in the AA formalism (in addition to the conduction

and dissipation terms of (25c)) (e.g. Tackley, 2008; King et al., 2010). With our EoS, the
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term ρaαagwT
′ of the previous equation writesDwT ′/γaρn−1

a in dimensionless quantities.

Notice that although CP does not vary much, the contribution of its variations to

the entropy changes is not totally negligible. With the Murnaghan EoS, and neglecting

the pressure dependence of entropy (ALA) like in Schubert et al. (2001), the term

ρaT
′DCP
Dt

= ρaT
′CV w

∂(ΓaαaTa)

∂z
(36)

should be added to (35). After non dimensionalisation, this omitted term amounts to

−(Γ0εTa/ρ
n+1
a )(1−(n+1)ρa/Γ0) times the term which has been included, DwT ′/γaρn−1

a .

The scale of temperature variation ε is indeed small, ≈ 2 × 10−2, but with n ≈ 3 − 4,

Ta ≈ 5 and Γ0 ≈ 1, the term that has been neglected is about 30% of the term kept in

(35). Both CP and CV appear in the equations so that considering CP as a constant

as was previously done, would not make the problem disappear as CV would then be

variable. Although γa = CP /CV ≈ 1, its depth derivative appears in the energy equation

and does not vary much less than the derivatives of ρa or of Ta.

Bercovici et al. (1992) keep the pressure dependence of the entropy (i.e., use S ′ =

CPT
′/Ta − αaP ′/ρa) but they also consider constant thermodynamics parameters (CP ,

α...). In the astrophysical literature, the researchers work directly in term of entropy (e.g.

Currie and Browning, 2017) which removes some problems but replaces the diffusion of

temperature by a diffusion of entropy which is another approximation (Lecoanet et al.,

2014). Of course the high Reynolds number and ideal gas of astrophysics simulations

make the applicability of their approximations remote from the mantle situation.

In the solid Earth community, other approximations are sometimes made with the AA

Stokes equation like removing the pressure dependence of density in the truncated anelas-

tic liquid approximation TALA (see e.g., Tan and Gurnis, 2007) or keeping ∇ · u = 0

as a mass conservation equation (which is sometimes called Extended Boussinesq Ap-

proximation EBA, see King et al. (2010) for an overall discussion). They systematically
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lead to thermodynamic inconsistencies (see e.g., Leng and Zhong, 2008). We think that

these are suppressed by our approach where all variables are rigorously defined from the

EoS.

3.4 Proposed equations of anelastic approximation (AA) convection

In this section we write our own version of the AA equation, since we do not want

to identify CV and CP and since we use ρ′ − T ′variables instead of the more common

P ′-T ′ variables. We start in agreement with earlier attempts, by replacing the mass

conservation by

∇ · (ρau) = ρa(∇ · u +mw) = 0 (37)

and we express the momentum equations at first order (e.g. Schubert et al., 2001). This

simply means cancelling the RHS terms F2 and F3 of the FC Stokes equation.

More attention is deserved for the heat equation (27c) with a RHS containing 6 terms

in FC expression (32d). We obviously keep the first advection term. We can remove the

ρ′ from the denominator of the 2nd, 3rd, 4th and 6th terms (associated with 2nd order

effects) and neglect the 5th term (already 2nd order). In the 3rd term we should not

remove the ∇ ·u+mw term on the argument that we use ∇ ·(ρau) = ρa(∇ ·u+mw) = 0

as a proxy for mass conservation. Thermodynamics rules cannot be true unless P , T

and ρ are exactly related by the EoS. The ∇ · u +mw in (32d) must be replaced by its

true value according to (31a), i.e., ∇ · u + mw = − (∂ρ′/∂t+ ∇ · (ρ′u)) /ρa, which is a

first order term, otherwise various basic thermodynamic equalities become wrong. For

example, thermodynamics requires that the exchanges of heat verify

CV
DT

Dt
− αKT

ρ2

Dρ

Dt
= CP

DT

Dt
− αT DP

Dt
, (38)

and this equality will not be verified if Dρ/Dt = −ρ∇ · u is replaced by ρmw.

To sum up, in addition to the approximate mass conservation (37), the RHS of the
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other equations (32) becomes in the anelastic formulation

F2 = 0, (39a)

F3 = 0, (39b)

F4 = −u ·∇T ′ − Γ0mw

ρ2
a

(ρ′Ta − ρaT ′)

+ Γ0
Ta
ρ2
a

(
∂ρ′

∂t
+ ∇ · (ρ′u)

)
+

1

ρa

D

Rε ε̇ : τ +
d2
zzTa
ρa

, (39c)

(the ∂ρ′/∂t term can also be moved to the LHS). Notice that the ALA approximation

with constant CP would make the F4 term equal to

F 0
4 = −u ·∇T ′ +

Γ0mw

ρa
T ′ +

1

ρa

D

Rε ε̇ : τ +
d2
zzTa
ρa

. (40)

We will use this expression in one of our simulations.

3.5 The quasi-Boussinesq equations (QB)

The Boussinesq approximation consists in using D = 0 in the AA equations. This

cancels all depth dependence for the adiabatic profiles. Assuming that the background

density is uniform implicitly implies that ρ′/ρa is also neglected. However this does not

prohibit the assumption that the thermal expansivity in the Stokes equation is depth

dependent (see e.g. Schmeling et al., 2003) (the thermal diffusivity could also be depth

dependent as in Dubuffet et al. (1999)). We call this a quasi-Boussinesq model (QB) as

the strict Boussinesq model is with a constant thermal expansivity. In the solid Earth

community, it is common, as a first order estimate, to run Boussinesq or QB models to

get a temperature model on which the adiabatic gradient is added a posteriori. This

clearly challenges the rules of thermodynamics. However we think it may be useful to
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add this QB approach to the AA and FC models, in which case we solve

∇ · u = 0, (41a)

∇2u−∇P − Rε
ρn−1
a

Tez = 0 (41b)

DT

Dt
−∇2T = 0 (41c)

In this equation set based on shaky foundations we have implicitly considered that

the background density is ρ0 but used ρ′ = −ρaαaT = −T/ρn−1
a in (41b) (i.e., α ∝

ρ1−n
a ). One might argue that the Boussinesq model with variable expansivity mimicking

a compressible convection should rather consider a background density related to the

average of ρa and should use ρ′ = −αaT = −T/ρna (i.e., α ∝ ρ−na ). This alternate choice

and our own choice are truly arbitrary as there is indeed no rigorous way to simulate

compressible convection with a quasi-Boussinesq formalism.

3.6 Boundary conditions

We will use the previous FC, AA and QB systems of equations to perform numerical

simulations of convection in a 2D fixed volume. The horizontal variable is x and the

flow is assumed periodic in a box of aspect ratio 4. In the FC and AA cases, the T ′

temperature (i.e. the total temperature minus the adiabat) is imposed on top, T ′(1) =

1 − Ta(1), and at the bottom, T ′(0) = r − Ta(0) where r is the dimensionless bottom

temperature (see Table 2). In the QB case, the temperature difference is the same non

adiabatic quantity ∆Tna = r − 1− (Ta(0)− Ta(1)).

In the QB case, the other boundary conditions usually adopted for mantle convection

are free slip boundary conditions on top and bottom. To avoid a global horizontal

translation of the system that constitutes a trivial solution, a zero average horizontal

velocity at the top can also be imposed. In the QB case, only the pressure gradient

appears in the equations and, for example, the average pressure value at the surface can
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be chosen if the pressure field is needed. These boundary conditions are implemented in

our incompressible QB cases.

For the FC and AA cases, these conditions are unfortunately incompatible with the

compressible nature of the fluid when the simulations are performed in a fixed volume.

The total mass M of the convective layer

M =

∫
(ρa + ρ′) dV, (42)

can indeed be chosen arbitrarily and that choice affects the final pressure needed to

squeeze or expand this mass into the convecting volume. The EoS depending of the

pressure, we should also monitor the surface pressure so that its time averaged value is

reasonable. For instance, applying our model to the Earth, we would like the surface

pressure to be close to zero (or 1 atm) and not, say, close to 20 GPa which would be

the pressure in the transition zone. The mass M should therefore be chosen so that it

ultimately leads to the correct surface pressure. However without running the convection

code until statistical steady state we have no possibility to know the surface pressure. Of

course this problem arises from using a fixed volume. In a simulation using a deformable

volume, the thickness of the convective layer would increase or decrease to contain the

mass introduced in the simulation and the difficulty would be to choose the initial mass

such that the final mantle thickness is reasonably close to H.

In the FC case, the conservative nature of the mass conservation equation (26a),

ensures that the total mass is conserved. We can therefore start our FC simulations

with a uniform ρ′ = 0 so that the total mass remains that computed from the adiabatic

density, i.e.,

M =

∫
ρa dV. (43)

This mass is in fact directly related to the surface adiabatic density or adiabatic temper-

ature which is chosen (and even directly proportional to the surface adiabatic density
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according to the approximated equation (14)). The problem is therefore to choose the

correct appropriate surface adiabatic temperature (the foot of the adiabatic), so that the

statistical steady-state surface pressure Pa + P ′(1) = P ′(1) is zero (or another chosen

value) and the surface density ρa + ρ′(1) is ρ0 (overlined quantities represent statistically

steady state quantities, averaged in time and horizontally). Notice that the instanta-

neous average surface pressure (and furthermore the instantaneous local normal stress

at the surface) is not necessarily zero and this is usually interpreted as equivalent to a

weak dynamic topography forced by the internal convection (e.g., Ricard et al., 2014).

Our strategy for the FC case, is therefore the following

• we start from an adiabatic temperature profile such that the temperature at mid

depth is T
1/2
a = (1 + r)/2 + β, where β is initially zero.

• we run the convection code using the corresponding adiabatic density and temper-

ature profiles and compute the surface pressure P ′(1) at stationary steady state

• if P ′(1) 6= 0, we modify the adiabatic profile by shifting the adiabatic temperature

by β (see also Curbelo et al., 2019)

• we run again the convection code with the new adiabatic profile until P ′(1) = 0.

This strategy is not numerically too heavy: the relation between P
′
(1) and β appears to

be quasi-linear; when simulations with two different β are performed, the two computed

surface densities are generally enough to guess by interpolation the correct temperature

shift that leads closely to an average zero pressure at the surface. We illustrate our

method in Figure 6. Convection simulations have been computed for R = 107 and the

values β = 0.5 (black) and -0.5 (red). We plot the relative difference in % of the average

surface density (ρ(1) − ρ0)/ρ0 ≈ P (1)D/RΓ0, (see (17)). When the adiabatic profile

is too cold (red curve), a too large mass is assumed in the convecting box implying

a surface excess pressure and a density larger than the assumed surface density ρ0 by
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≈ 0.6%. By contrast a too hot adiabatic profile (black) would lead to a ≈ 0.3% too light

surface density. By interpolation, we guess that the appropriate adiabatic temperature

reaches at mid depth the temperature T
1/2
a = (1 + r)/2 + β, where β ≈ 0.08 (green

line). Shifting the adiabatic profile from -0.5 to 0.5 changes the surface density and the

statistically steady state density profile by around 1% and the steady state temperature

profiles by around 3%. This value of β ≈ 0.08 seems to bring the surface pressure close

to zero for all R numbers. In other words the adiabatic temperature at mid-depth is

slightly larger than the average of the top and bottom temperatures.

The adiabatic profiles selected for the FC case are also used for the corresponding

AA simulations. However the anelastic mass conservation (37) does not imply

∫
ρ′ dV = Constant (44)

and therefore does not imply that the total mass is conserved (see (42)). Surprisingly we

have not found in the literature an indication on how the various compressible codes that

have been used and benchmarked (e.g., in King et al., 2010) have kept the total mass of

their convective volume constant. Here we enforce mass conservation by imposing the

average values of P ′ on the top and bottom boundaries to be equal. The Stokes equation

integrated over the total volume when horizontal periodic conditions are imposed (see

Alboussière et al., 2022), implies indeed that

∫ [
P ′(x, 1, t)− P ′(x, 0, t)

]
dx = 0 =⇒

∫
ρ′ dV = 0. (45)

To summarize, all our simulations use free slip boundary conditions on top and

bottom. The time-average surface pressure is exactly zero (QB case) or very close to zero

(FC case). This is obtained by choosing the appropriate surface adiabatic temperature

(which is equivalent to choosing the total mass in the convective layer). The same

adiabatic profile is used in the AA case where mass conservation is enforced by (45).

30



0 0.05 0.1 0.15 0.2

Time

-0.4

-0.2

0

0.2

0.4

0.6

Δρ
/ρ
	%

β	=	0.5
β	=	-0.5
β	=	0.08

Figure 6: The average surface density in a FC convection model withR = 107 (in percent
with respect to ρ0) is computed as a function of time for various a priori adiabatic profiles
with β = −0.5, 0.5 and 0.08 (red, black, and green line, respectively). For β = 0.08,
a surface density close to ρ0 is obtained. To estimate the correct adiabatic profile, we
perform two simulations (i.e., for β = −0.5, 0.5), compute the average surface density
when a steady state situation is reached (thin dotted lines) and correct the adiabat by
linear interpolation.

4 Numerical simulations

4.1 Numerical setup

We can now perform various simulations to compare the approximated simulations (QB

and AA) to the FC case. The simulations are performed in a domain of aspect ratio

4. The Dedalus software is used (Burns et al., 2020, www.dedalus-project.org), whose

resolution is based on Fourier Transform for the horizontal direction and Chebyshev

polynomials for the vertical direction. We choose the number of points so that the top

and bottom thermal boundary layers are described by at least 10 Chebyshev collocation

nodes by using from 64×256 to 256×1024 nodes. The variables are advanced in time by

a Runge-Kutta scheme of four-stage and order 3 (RK443, Ascher et al. (1997)). Dedalus

uses MPI and we distribute the computation so that each computer node handles 8-10

rows of our computation grid. The duration of a numerical run is around 3-4 times
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larger for FC than for QB. The AA simulation is somewhat in between (2 times larger

than for QB) and we have not tried to optimize the code which computes and records

more ancillary quantities than needed. All the simulations are performed by varying R

from 105 to 109 and keeping constant the values D = 1, ε = 10−2, Γ0 = 1, n = 3.3 and

r = 10 which are in the range of parameters expected for the Earth mantle (see Table

2; as Tt = 273 K, the bottom temperature is Tb = 2730 K).

4.2 Examples of temperature fields

The subject of this paper will mostly be on the differences between the statistical steady-

state and depth-dependent average quantities in the different approximations. However

Figure 7 depicts snapshots of QB, AA and FC simulations for R = 109. The maps

have characteristics that are shared with previous publications. The decrease of thermal

expansivity with depth tends to broaden the thermal structures at depth (Hansen et al.,

1993). As the hot instabilities gain buoyancy as they rise in the mantle (i.e. αaρa

increases with height), they are stronger and more stationary than the cold instabilities

that lose buoyancy with depth. This is particularly visible in the QB computation where

the decrease of thermal expansivity is the only addition to the well-known and up-down

symmetric Boussinesq case. The AA and FC simulations are richer in short wavelengths

than the QB simulations. They also predict a larger average temperature of the bulk

as will be discussed below. The larger average temperature in the AA and FC cases,

by decreasing the buoyancy of hot plumes and increasing that of cold plumes, reinforces

the downwellings (this mitigates the effect of expansivity predicted from QB models).

Visually and qualitatively the characteristics of convection in the AA and FC cases look

very similar.

Various quantities could be compared between the different simulations but we will

focus here on the average profiles of temperature, pressure, heat flow and dissipation.

When the differences between the QB, AA and FC profiles are small, we plot the FC
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Figure 7: Snapshots of the non-adiabatic temperature field at R = 109 using the QB,
AA and FC approximations. The temperature color scales are slightly different in the
three cases but over the same imposed non-adiabatic range. The QB temperature is
clearly lower than in both other cases.

profiles and the differences between the approximated profiles and the FC ones. In

addition to the figures discussed in the core of this paper, a complete set of figures is

available in the supplementary material, from R = 105 to R = 109.

4.3 Temperature and density profiles

Figure 8 depicts in blue the temperature (left columns, panels a and c) and density pro-

files (right columns, panels b and d) for the FC simulations for R = 105 (top row, panels
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a and b) and R = 108 (bottom row, panels c and d). The adiabatic profiles are shown

in red. The red and blue dots indicate the vertical position of the Chebyshev collocation

points. The total temperature drop ∆T = r− 1 is 9. The adiabatic temperature drop is

2.21 reducing the driving temperature difference to ∆Tna = 6.79. The classical Rayleigh

numbers Ra = Rε∆Tna are therefore Ra ≈ 7× 103 and Ra ≈ 7× 106.

The temperature is still far from adiabatic whenR = 105 (panel a) but very close to it

atR = 108 (panel c). Increasing the vigor of convection brings the bulk of the fluid closer

to an isentropic state and the anelastic formalism becomes a better approximation of

the FC case. We do not have a clear explanation of this observation that may be related

to the specific EoS that we use. Indeed, although increasing the R number and the

fluid velocity brings each individual parcel of the fluid in a state closer to adiabaticity,

the amplitude of the temperature variations remains constant. Therefore the difference

of the local temperature to the average adiabatic temperature (assumed small in the

AA approximation) should not decrease much with R. The density profiles (panels b

and d) closely follow the adiabatic estimates except in the two thermal boundary layers.

The decrease of the thermal expansion coefficient with depth makes the boundary layers

asymmetrical in terms of densities with a top cold boundary layer more conspicuous

than the bottom boundary layer (see panel d). The pressure profiles obtained from

the convection simulation (not shown) are basically indistinguishable from the adiabatic

predictions even in the boundary layers.

The differences between the profiles are more visible in Figures 9 and 10 computed

with a R number of 105 and 108, respectively. The adiabatic profiles have been sub-

tracted from the computed ones on the left column, with the FC profile in red, the AA

and QB profiles in blue and green, respectively. The right column depicts the differences

between the approximated profiles with the FC one in percentage of the adiabatic val-

ues,(i.e. for the temperature, (TAA − TFC)/Ta in blue, (TQB − TFC)/Ta in green). In

each figure the top row represents temperature, the bottom one density.

34



1 2 3 4 5 6 7 8 9 10

Temperature
0.0

0.2

0.4

0.6

0.8

1.0

H
ei

gh
t

Fully Compressible R = 105

(a)

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7

Density
0.0

0.2

0.4

0.6

0.8

1.0

H
ei

gh
t

Fully Compressible R = 105

(b)

1 2 3 4 5 6 7 8 9 10

Temperature
0.0

0.2

0.4

0.6

0.8

1.0

H
ei

gh
t

Fully Compressible R = 108

(c)

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7

Density
0.0

0.2

0.4

0.6

0.8

1.0

H
ei

gh
t

Fully Compressible R = 108

(d)

Figure 8: Mean temperature (left column, a and c) and density (right column, b and d)
profiles across the convective layer (blue lines). The red lines correspond to the adiabatic
approximation. The dots indicate the vertical positions of the collocation points. Top
row (a and b) are for R = 105, bottom row (c and d) for R = 108.
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At R = 105, the differences between the different simulations are already small; at

most 5% differences in temperature and 0.5% in density for the QB case, and basically 5

times smaller for the AA case. Increasing the R number (R = 108 in Figure 10) brings

the AA simulation closer to the FC case. On the contrary the QB simulation does

not come closer to the FC and appears colder and therefore much denser. In a strict

Boussinesq case with a constant thermal expansivity, the average temperature would be

centered. The behavior of the quasi-Boussinesq case is easy to understand, following the

arguments of Malkus (1954). Let us define ∆Tt, αt and δt for the temperature jump,

expansivity and thickness of the top boundary layer and ∆Tb, αb and δb for the bottom

boundary layer. The conservation of energy implies ∆Tt/δt ≈ ∆Tb/δb as the conductivity

is uniform, while Malkus’ hypothesis that the Rayleigh numbers of each boundary layer is

critical requires ∆Ttαtδ
3
t ≈ ∆Tbαbδ

3
b . In the QB case, one therefore expects ∆Tb/∆Tt ≈

(αt/αb)
1/4 which is also (ρt/ρb)

(n−1)/4 = 1.35 when the adiabatic values of densities are

computed for our choice of dimensionless parameters. The corresponding increase in

thickness of the bottom boundary layer shifts the bulk temperature to colder values.

With ∆Tt + ∆Tb = 6.79 and ∆Tb/∆Tt = 1.35, this shift with respect to the average

temperature amounts to -0.51. As in addition, the choice of the adiabatic temperature

shifts the FC temperature by 0.08, the bulk QB temperatures are colder than the FC

predictions by ≈ -0.6 in good agreement with Figure 10a. This temperature difference

between QB and FC profiles does not change when R ≥ 106 but obviously, Malkus’

hypothesis does not apply too close to the critical Rayleigh number (see Figure 9a

for R = 105). The temperature jumps across the boundary layers and the average

temperature cannot be correctly estimated with QB models.
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Figure 9: On the left column mean temperature (top) and density (bottom) profiles
minus the adiabatic contribution are depicted for the FC (red), AA (blue) and QB
(green) cases for R = 105. The different profiles being close together, we plot in the
right column (b and d) the differences between the approximated set of equations and
the exact result (i.e., (TAA − TFC)/Ta in blue, (TQB − TFC)/Ta in green), in percentage
of the adiabatic temperature or density (panels c and d) expected at the same depth.
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Figure 10: Same as Figure 9 but for R = 108. The decrease of thermal expansivity
with depth thickens the bottom thermal boundary particularly in the QB case and also
decreases the bulk temperature and increases the density (green). The FC (red) and AA
(blue) cases are difficult to distinguish except maybe below the top boundary layer where
the AA predicts slightly hotter and denser conditions. We do not plot the differences
between QB and FC curves as their amplitudes are very large.
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4.4 Heat transport

4.4.1 Analytical expressions

The transport of heat takes different forms depending on the equations that are used.

In the FC case, the horizontal integration of u times the z-momentum (25b) implies, at

all depth,

u ·∇τ − u ·∇P = 0, (46)

as FC mass conservation ensures ρw = 0. When the enthalpy H is introduced in the

entropy equation (25c) (dH = TdS + dP/ρ), one gets (with dimensionless variables)

dρwH
dz

− DRεu ·∇P =
D
Rετ : ∇u +

d2T

dz2
, (47)

and by combining these last two equations,

d

dz

(
ρwH− DRεuτxz + wτzz −

dT

dz

)
= 0, (48)

which expresses the conservation of a quantity that is obviously the total heat flux QFC

QFC = ρwH− DRεuτxz + wτzz −
dT

dz
. (49)

The heat is therefore transported by the advection of enthalpy, by a work flow and a

conductive term. The enthalpy term, ρwH, involves ρCV wT present in the Boussinesq

case (where ρCV = ρCP is assumed to be constant) and additional contributions from

temperature and density, namely α0K
0
TwT and K0

T (wρn/ρn0 )/(n−1), see (13b). Besides,

CV ρwT is also CV ρwT ′ as from the FC mass conservation CV ρwTa = 0. When the flow

becomes incompressible, D → 0, the density becomes function of temperature only (see

(17)), the importance of the work flow vanishes and one also get ρwH → ρCPwT as it

should (see (21)). The conductive term can also be split into two parts, the conductive

39



transport of the non-adiabatic temperature dT ′/dz which is only important in the top

and bottom boundary layers and the conductive transport along the adiabat dTa/dz

present in the bulk of the fluid.

In the AA case, the equations are subtly different. In the momentum equation, the

anelastic mass conservation only cancels the ρaw = ρaw of the Stokes equation (26b)

but not the ρ′w term so that

u ·∇τ − u ·∇P −Rρ′w = 0. (50)

The enthalpy must then be expressed as a first order expansion of the exact expression

(13b)

H ≈ Ha +H(1), (51)

(H(1) is the first order expansion of H′ = H −Ha in terms of ρ′ and T ′, and therefore

H(1) and H′ are identified in the AA case although they are slightly different in the FC

case which contains higher order terms in temperature and density perturbations). Ha
is obtained from (21) when the temperature and density are adiabatic. Its variation with

depth is readily derived using (19a)-(19b), and leads to

dHa
dz

= −D
ε
, (52)

while the first order expansion of the enthalpy (21) writes

H(1) =

(
1 +

Γ0

ρa

)
T ′ +

Γ0

ερ2
a

(ρna − εTa) ρ′. (53)

The integration of the first order entropy equation then leads to

−D
ε
ρ′w +

dρwH(1)

dz
− DRεu ·∇P =

D
Rετ : ∇u +

d2T

dz2
, (54)

40



which differs from the FC expression (47) as the transport of enthalpy is now divided in

a transport along the adiabat and a transport due to fluctuations. The first term cancels

with the extra ρ′w term of (50), and leads similarly to the FC case

QAA = ρawH(1) − DRεuτxz + wτzz −
dT

dz
. (55)

Again the first term is different from a simple advection of temperature ρaCV wT (see

(53)) and ρaCV wT = ρaCV wT ′ as now the AA mass conservation implies ρaCV Taw = 0.

Our AA formalism leads, as it should, to a heat flow independent of depth. On the

contrary, using the ALA formalism with constant heat capacities fails satisfying this

condition as shown in section 4.4.3.

Finally, in the Quasi Boussinesq case, the horizontal integration of the heat equation

gives the well-known expression of the heat flow

QQB = wT − dT

dz
, (56)

i.e. the convective transport of temperature plus the conductive transport of temperature

is constant through the convective layer. This is the classical Boussinesq balance which

also holds for a variable expansivity (QB) that only appears in the Stokes equation, not

in the energy balance.

4.4.2 Average heat transport

Figure 11 depicts the various components of heat transport for the FC, AA and QB

cases when R = 105. In the QB case, the energy is only transported by temperature

advection (mostly in the bulk of the fluid, in dashed-dotted red line) or by temperature

conduction (mostly in the boundary layers, in blue). The sum of the two contributions

is uniform with depth (green solid line) and carries a non-dimensional total heat flow

QQB ≈ 23. Usually, the dimensionless heat flow, also known as the Nusselt number, Nu,
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is relative to the non adiabatic temperature difference ∆Tna = r − 1− (Ta(1)− Ta(0)).

Here the temperature being normalized by T0 rather than ∆Tna, the heat flows that we

compute are ∆Tna/T0 = 6.79 larger than the Nusselt numbers. Adding the conduction

along the adiabat to the convective and conductive Boussinesq heat fluxes (which is

clearly non-physical) would increase the total heat flux to the green dotted line.

The situation is different for the FC and AA cases where various transport modes

are possible. The enthalpy advection (ρwH for FC, or ρawH(1) for AA in red dashed

lines with large dots) is more intense in the bottom part of the fluid interior. This

term differs, although moderately, from the heat flux transported by identifying the

non dimensional enthalpy and temperature (ρwT or ρawT are depicted with red dotted

lines). The work-flow (green with dots) decreases the energy transport in the bottom

half layer and increases it in the top half. Finally the adiabatic conduction (solid red)

is also stronger near the surface where the adiabatic gradient is larger. The sum of

the 4 contributors (enthalpy advection, work-flow, conduction along the non-adiabatic

temperature and conduction along the adiabat) yields a uniform flow through depth

(green solid line). The total heat flow of the FC and AA simulations are very similar

(QFC ≈ QAA ≈ 28).

Figure 12 is similar to Figure 11 but R is now increased to R = 108 (the cases

R = 106, R = 107 and R = 109 are shown as supplementary figures). Convection being

much more chaotic and short wavelength than previously, it becomes difficult to compute

accurately the statistically steady-state quantities and this explains the wiggles of the

different profiles. The Nusselt number is around 185 for the FC and AA simulations,

but like previously the heat flux is slightly lower for the QB case, around 175. The

advection of enthalpy (red dashed lines with large dots for FC and AA, identified with

the temperature in the QB case) is the main contributor to the heat flow transport in

the three cases. In the FC and AA cases, this is particularly true in the deep layers.

In the compressible FC and AA cases, the difference between enthalpy and temperature
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advection (dotted lines) is noticeable in the top half of the fluid. The work-flow (green

with large dots) and the conduction along the adiabat (solid red) are minor components.

Notice that convection in the deep layers being more sluggish due to the reduced value of

the thermal expansion coefficient, the conductive transport slightly increases with depth.

This effect is balanced in the QB case by a convective transport of temperature increasing

with height, while in the FC and AA cases, the convective transport of temperature only

decreases with height (red dots) and an extra energy is transported by the total enthalpy

(dashed dotted red), work flow (green) and adiabatic conduction (red).

4.4.3 Heat flow assuming a constant CP /CV

To compare our AA equations with the ALA equations with constant CP /CV , we depict

in Figure 13 the total heat flow (see (55)) predicted when the systems of equations

(39c) (blue curves) or (40) (red curves) are used for the RHS of the energy equation.

We recall that in the latter case, the entropy and temperature variations are assumed

proportional with S ′ = CPT
′/Ta and CP and CV are identified and uniform. The

different contributions to the heat flow (not shown) are roughly similar, but it is clear

that the total heat flux is not uniform in the ALA approximation with constant heat

capacities which confirms that the implemented equations are not consistent. The heat

flow is invariably increasing with height in the bulk of the convective layer and lower

in the two boundary layers. This inaccuracy is ultimately related to the fact that the

expression of the entropy in P−T , T−ρ andH−P variables are not consistent unless the

proper behavior of CP /CV is considered. In addition, the ALA heat flow with constant

CP is larger by ≈ 4%, compared to the AA case.
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Figure 11: Different components of the heat flow profile across the convective layer. In
the QB case the energy is transported by conduction (blue) or temperature advection
(red dotted line). In the AA and FC case, we can distinguish the enthalpy advection
(dashed-dotted red lines), the work flow (green dots), the conduction along the adiabat
(solid red) and the conduction of the non adiabatic temperature (solid blue). The sum of
these components should be uniform with depth in statistical steady state (green line).
We arbitrarily figure the adiabatic transport (cyan line) on top of the QB heat flow
profile. The advection of temperature only is shown with thin dotted red lines in the
AA and FC cases.
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Figure 12: Similar to Figure 11 but for R = 108. The convection is short wavelength
and very vigorous and it becomes more difficult to get accurate statistical values. The
total heat flow (green lines) is reasonably uniform.
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Figure 13: Heat flow profiles. Notice the small range of the horizontal scales. The
classical anelastic equations (40) where the entropy is only related to temperature (ALA)
and where the heat capacity ratio CP /CV is approximated as uniform leads to the heat
flow depicted with red lines. Our formalism when the heat equation is (39c), leads
to the predictions in blue. The inconsistency in the thermodynamics leads to a non-
uniform heat flux increasing with height in the convective region and a surface heat flow
overestimated by ≈ 4% at large R number.

4.5 Dissipation

4.5.1 Total Dissipation

Another interesting quantity within the convection volume is the dissipation. Following

Hewitt et al. (1975) we define dissipation as

Diss =
D
Rε ε̇ : τ, (57)

which according to (26c) can be directly compared to the diffusive term of the entropy

equation. Dissipation appears locally as an effective heat source non-uniformly dis-

tributed (Trubitsyn and Trubitsyn, 2020). Dissipation also plays an important role in

localizing the deformation in the lithosphere (Fleitout and Froidevaux, 1980) and poten-

tially in controlling the overall rheology of the mantle by limiting the mantle grainsize

(Ricard and Bercovici, 2009). Dissipation is also a measure of the energy transported in

a convective fluid and this has been used to put bounds on core dynamos (Buffett, 2002;
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Labrosse, 2003), although in this case ohmic dissipation dominates viscous dissipation.

The total dissipation in a convective fluid can be expressed by integration of the

Stokes or entropy FC equations as

〈Diss〉 = − DRε

〈
DP

Dt

〉
=

〈
ρT

DS
Dt

〉
= −

〈
ρSDT

Dt

〉
(58)

where 〈.〉 is the statistically steady state quantities, averaged in time and integrated

over the volume (Verhoogen, 1981; Alboussière and Ricard, 2013). In the last equality,

ρSDT/Dt should be close to ρawS(dTa/dz) as S is close to zero and ρ and T close to

the adiabatic reference at high Rayleigh numbers. One therefore expects that

〈Diss〉 ≈ D
〈
TawS
ρn−1
a γa

〉
. (59)

In the QB case, the integration of u times the Stokes equation (41b) leads to a simple

exact equation

〈Diss〉 = D
〈
wT

ρn−1
a

〉
. (60)

In the classical Boussinesq case where thermal expansivity is uniform, the ρa term is

absent from (60) and 〈wT 〉 is just the convective heat flow QBA−∆T according to (56),

or, if we neglect the conductive contribution at high Rayleigh number 〈wT 〉 ≈ QBA. We

therefore expect

〈Diss〉
DQBA

≈ 1. (61)

In the absence of an exact expression relating dissipation and heat flow for the FC case,

we may guess that 〈Diss〉/(DQFC) still remains of order 1 and presumably lower due

to the presence of 1/ρn−1
a ≤ 1 in the averaging (see (60)).

No analytical results are available for the profile of dissipation with depth, Diss,

however the equations (59) suggests a fundamental relation with the entropy transport in

compressible convection that we will now emphasize. In a companion paper (Alboussière
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et al., 2022) and with very specific and different EoS, the role of entropy transport is

also discussed.

4.5.2 A conjecture for the dissipation profile?

The equations that express the heat flow transport (46)-(47) can be reformulated in a way

that we have not seen in the literature. Introducing the Gibbs free energy G = H− TS,

the total heat flow (49) is also

QFC = ρwTS +

(
ρwG − DRεuτxz + wτzz

)
− ∂T

∂z
. (62)

From basic rules of thermodynamics one has

ρ
DG
Dt

= −ρSDT

Dt
+

DP

Dt
, (63)

that leads after horizontal integration using mass conservation (and using dimensionless

variables)

dρwG
dz

= −ρSDT

Dt
+
D
Rεu ·∇P . (64)

The expression of u ·∇P derived from this equation can be introduced into (46), and

yields

Diss = ρSDT

Dt
− d

dz
(ρwG − DRεuτxz + wτzz), (65)

and finally, using the expression for the adiabatic gradient,

Diss = D wTS
ρn−1γa

+ ρS
(

DT

Dt
− DwT
ρnγa

)
− d

dz
(ρwG − DRεuτxz + wτzz). (66)

We can now compare the equations for the heat flow (62) and the viscous dissipation

(66) and discuss the order of magnitude of the different terms. The conduction (last

term of (62)) is certainly very small in the bulk, at large values of the Rayleigh number.
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The second term on the RHS of (66) is also likely small as S is small and multiplied by

a term which cancels in adiabatic conditions. Then, both expressions include the Gibbs

free energy and a work flow that is found very small in our simulations. We propose

that at large enough Rayleigh numbers, the Gibbs energy and work flow contribution

are both negligible compared to the entropy transport and that in fully compressible

convection, the heat flux and dissipation profiles become

QFC ≈ ρwTS ≈ ρaTawS, (67)

Diss ≈ D wTS
ρn−1γa

≈ D
ρn−1
a γa

TawS, (68)

where we replaced ρ and T by their adiabatic values as S is close to zero. We therefore

suggest that

Diss ≈ D
ρnaγa

QFC , (69)

meaning that at each depth, the average flux of entropy is dissipated. If this balance, that

should hold at large Rayleigh number is true, then, not only the total dissipation can be

related to the surface heat flow (59), but at each horizontal depth the average dissipation

can be related to the total flux times a function of the adiabatic properties. This depth

dependent equilibrium is also in agreement with the volume integrated condition (59).

The balance expressed by (69) assumes that g is constant, but similar results should be

expected when g is depth-dependent, and a normalized depth dependent gravity should

multiply the right hand side of (69).

Figure 14 depicts the profiles of the normalized dissipations Diss/DQ in percent,

for the QB and FC cases (the AA cases being quite similar to the FC cases) computed

for R numbers of 105, 106, 107 and 109. The volume averaged dissipations are shown

with the stars and they are smaller than 1 as expected from (59). We suggest that the

magenta curve (i.e. g/(ρnaγa) in percent) might be the limit of the dissipation profile of
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Figure 14: Normalized dissipations in percent, computed for the QB (a) and FC (b)
formalisms, at different R numbers. The stars show the average normalized dissipations
which as expected from (61) are smaller than 100%. The black, red, blue, cyan curves
are for R = 105, 106, 107, 109, respectively. The dashed magenta curve is 1/(ρnaγa) that
might be the limiting case of the dissipation profile in the bulk of the fluid, at very large
R. Its average is shown by a magenta circle.

FC convection at high Rayleigh number (panel b). This guess obviously is not valid in

the non-convective boundary layers. If this guess is true, the convergence toward this

limit is at any rate, very slow. This asymptotic estimate does not hold for the quasi-

Boussinesq case (panel a) where the dissipation is larger and seems above the magenta

line at high R numbers.

5 Discussion and conclusion

In the infinite Prandtl number convection case (convection without inertia) where the

sound waves cannot propagate, it does not appear much more difficult to compute a

simulation with the fully compressible equations than using the anelastic approxima-

tion. A choice of an appropriate EoS allows all the terms needed by the formalism to be

computed and the Murnaghan equation of state with a Grüneisen parameter varying as

the inverse of density seems a flexible and accurate choice. Although we are certainly not

the first ones to start with a Murnaghan EoS (e.g., Glatzmaier, 1988; Bercovici et al.,
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1989, 1992; Bunge et al., 1997), all previous authors seem to have added additional ap-

proximations (such as constant parameters) that were not necessary. Various ingredients

of planetary dynamics are not considered in our 2D simulations, such as 3D geometry,

sphericity, depth dependence of gravity, viscosity or conductivity but should be easily

implemented (although the computation time would largely increase). Phase transitions

that are also an important ingredient of mantle convection could also be added if they

occur in a limited range of depth so that the density jump across the interface can be

assumed constant.

The fully compressible formalism avoids a number of difficulties, the major one be-

ing the difficulty to assess properly the quality of the approximations that are done by

implementing the anelastic formalism. In addition to the inconsistencies that were pre-

viously pointed to (e.g., by Leng and Zhong, 2008), we met two other problems with the

anelastic approximation. First, we had to impose the conservation of the total mass to

avoid a drift of this quantity during the simulations (see (45)). We suppose that mass

conservation was also enforced in previous simulations although we have not seen this

subject discussed in the geophysical literature. A second problem was related to the ap-

pearance of both CV and CP in the equations. Although CP and CV have similar values,

their ratio cannot be constant and its variation with pressure and temperature should

be taken into account, something already noticed by Alboussière and Ricard (2013).

When the two heat capacities are confused, a correct interpretation of the transported

heat flow becomes impossible and the heat flow is unphysically varying with depth (see

Figure 13).

Another problem that we encountered and appears both in the FC and AA cases, is

with the choice of the adiabatic gradient. This choice constrains the total mass included

in the convective layer and as the simulations are done with fixed boundaries, one cannot

be sure before a statistically steady state surface pressure is computed, that the average

pressure at the surface, or the average density, are close to the values required by the
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boundary conditions. This problem is solved in our models by adjusting the reference

temperature in a few iterations.

The QB case is, not surprisingly, rather far away from the FC calculations. The

relative thicknesses of the boundary layers are inaccurate and adding, a posteriori, an

adiabatic profile to the non compressible simulation is incoherent. Furthermore there is

no indication on how to choose an appropriate surface adiabatic temperature. The AA

and FC simulations lead to very similar results. Notice however that our AA equations

are not those of the usual ALA formalism that we found inaccurate when the two heat

capacities are identified. The similarity of the AA and FC simulations comes from the

fact that in the bulk of the convective fluid, the departures from adiabaticity are indeed

small and in the boundary layers where these departures are very large, the behavior is

simply controlled by diffusion and compressible effects are negligible. Anelastic approx-

imations are also commonly made with convection heated from within by radiogenic

sources (e.g., Schubert et al., 2001). In this case however, the final temperatures are

known to be significantly colder and far from adiabaticity at depth (Bunge et al., 2001).

One could guess that in mantle convection where the importance of internal sources (or

of secular cooling) is large, the differences between FC and AA solutions might be larger.

During the comparisons of the heat flows profiles, we propound that the dissipation

profile may be derived directly from the total heat flow and the adiabatic profile, as both

dissipation and heat flow are related to the transport of entropy at high enough Rayleigh

number. We cannot prove this result analytically, however our FC and AA simulations

suggest that this equilibrium provides a useful proxy of the dissipation profile. This

behavior does not seem to be verified by the QB simulations.

The anelastic approximation remains necessary for the situations where inertia is

non negligible in the momentum equation, i.e., where sound waves must be filtered

out, such as in the fluid core of the Earth. Fully compressible convection with a finite

Prandlt number is not considered in this paper. Fortunately the AA and FC simulations
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give very similar values particularly with the high Rayleigh numbers of planetary fluid

layers. We suggest however that the Murnaghan EoS remains a rather accurate EoS

that should be used to properly express all the thermodynamic terms needed in the

equations. The shape of the adiabatic profiles derived from this EoS are very different

from the exponential profiles, that are often used and derived from (6a) when all the

reference adiabatic values are assumed constant (see e.g. King et al., 2010). Working

with realistic EoS and thermodynamic quantities is highly necessary when the results

are applied to extrasolar planets where the compressibility effects may be much larger

than on Earth. We however specifically show that with the Murnaghan EoS, the effective

dissipation number should never attain very large values (see (24)).
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6 Supplementary Figures

6.1 Case R = 105
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Figure 15: Quasi-Boussinesq and Anelastic approximations. Mean temperature (left
column) and density (right column) profiles for R = 105.
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6.2 R = 106
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Figure 16: Quasi-Boussinesq and Anelastic approximations, Fully Compressible case.
Mean temperature (left column) and density (right column) profiles for R = 106.
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Figure 17: Different components of the heat flow profile across the convective layer
for R = 106: for the QB case conduction (blue) and heat advection (red, dotted),
for the AA and FC cases, we plot the conduction along the adiabat (red solid), and
along the non adiabatic temperature profile (blue), the work flow (green, dotted), the
advection of enthalpy (red, dotted) is larger than when the enthalpy is identified with
the temperature.
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6.3 Case R = 107
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Figure 18: Quasi-Boussinesq and Anelastic approximations, Fully Compressible case.
Mean temperature (left column) and density (right column) profiles for R = 107.
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Figure 19: Same as Figure 11 for R = 107
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6.4 Case R = 108
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Figure 20: Quasi-Boussinesq and Anelastic approximations. Mean temperature (left
column) and density (right column) profiles for R = 108.
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6.5 Case R = 109
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Figure 21: Quasi-Boussinesq and Anelastic approximations, Fully Compressible case.
Mean temperature (left column) and density (right column) profiles for R = 109.
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Figure 22: Same as Figure 19 for R = 109
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