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Introduction

When studying the Martian surface, the composition of the materials is established on the basis of spectral
detection, unmixing, and physical modelling using images produced by hyperspectral cameras. Information
on the microtexture of surface materials such as grain size, shape, roughness and internal structure can
also be used as tracers of geological processes [1]. This information is accessible under certain conditions
thanks to hyperspectral image sequences acquired over a site of interest from eleven different angles by
the Compact Reconnaissance Imaging Spectrometer for Mars [2] (CRISM@MRO). Similar multi-angular
observations can also be realized in the laboratory with spectro-photo-goniometers, on planetary analog
materials or real extraterrestrial matter [3]. In both cases, the interpretation of the surface Bidirectional
Reflectance Distribution Factor (BRDF) extracted from these observations, in terms of composition and
microtexture, is based on the inversion of the Hapke model (see [4] for details), a semi-empirical photometric
model that relates physically meaningful parameters x to the reflectivity y of a granular material for a given
geometry of illumination and viewing.

This work presents an efficient method, based on a learning approach in a Bayesian framework, able to
invert the Hapke model on large experimental or remote sensing datasets, as illustrated on a challenging
CRISM multi-angular sequence of images.

1 Inversion characteristics

In the CRISM case, the dataset provides both spatial and spectral dimensions. More specifically, each of
the Nspatial spatial point of the scene is observed at Nspectral wavelengths, yielding Nspatial ×Nspectral yobs

vectors of reflectance values (typically of order 3000× 100 = 300000). This high number of observations
to be inverted usually makes approaches like Markov Chain Monte-Carlo simulations unacceptably slow.
The approach we propose starts with a computer intensive learning phase that builds a statistical model for
the Hapke model; it is then applied for all observables yobs.

Each observable is a vector of D reflectances, one for each geometry of measure. In the case of CRISM
data, D = 11 is moderate, but in laboratory, D may be one order of magnitude higher. The statistical
model we propose has the advantage to be able to handle high dimensional settings while remaining
computationally tractable.

The Bayesian framework offers a natural solution to propagate uncertainties on measures, which are
formalized as variance on the prior distribution, while the variance of the posterior distribution assesses the
uncertainty induced by the inversion.

The complexity of the forward radiative transfer model often makes our inverse problem ill-posed. In
practice, multiples solutions might be acceptable. More than a point estimator, our statistical model
provides a full posterior density, whose multi-modality can be assessed and interpreted.
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2 Bayesian inversion via a learning approach

From a statistical point of view, we formalize our model as couple of random variables (X,Y ), where
Y = F (X) + ε. X has a prior distribution on the physical parameters space, F is the forward model and
ε is a centered Gaussian noise accounting for measure uncertainties. The main idea is to use a two steps
approach: first, approximate this model by a parametric surrogate model, second use the surrogate model
to invert the observations.

We chose the family of the so-called Gaussian Locally-Linear Mapping (GLLiM) [5]. Such models are
expressive enough to approximate highly non-linear, complex, forward models, while remaining tractable.

The learning step is performed by generating a training dictionary composed of samples from (X,Y ), on
which the likelihood is maximized by a standard EM algorithm. Regarding the dimensionality of the problem,
the number of parameters is proportional to D, making this model suitable even for high dimensional
observables. Moreover, the computational cost of the learning phase does not scale with the number of
observations to be inverted.

The second step is performed by computing the posterior distribution of the random variable X given yobs.
The inverse of the surrogate GLLiM has an explicit formulation in the form of a Gaussian Mixture. From
this posterior density, the mean and variance are straightforward to compute. To handle a multi-solution
scenario, the mixture can be further exploited.

3 Massive inversion of spectro-images

The dataset comes from a multi-angular observation of the South Pole of Mars by CRISM [2]. The targeted
scene presents spatially segregated C02 ice, H2O frost, and mineral dust [6]. After fusion and atmospheric
correction of eleven hyperspectral images [7], the dataset provides both spatial and spectral dimensions,
totaling Nobs = 154650 = 3093×50 measurements vectors yn

obs, which makes MCMC approach unacceptably
slow. Maps of Hapke’s parameter values are generated from the results of our inversion and superposed with
transparency onto the full resolution CRISM nadir image, which serves as a geological control background
image.

The results are satisfying from the application point of view. The colour composition of Figure 1 reflects
the variation of ω at three wavelengths and corresponds well with the spatial distribution of the three previous
materials and their known spectral optical properties. The map of the roughness parameter θ̄ averaged over
the spectral dimension (Figure 2) is color coded by intervals of values whose spatial variations are correlated
with the composition and the structures of the terrains. In general, we find that all predicted parameters
preserve some spatial regularity and show meaningful correlations with the composition and the geology.

Conclusion

We propose an efficient statistical and learning method for inverting physical models on massive remote sens-
ing or experimental data. In the case of the Hapke model, the method has proved to produce satisfactory
results for CRISM multi-angular acquisitions as illustrated in this paper and for laboratory spectrophoto-
metric measurements as illustrated in Potin et al., this conference.
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Figure 1: Mars South Pole dataset. Parameter ω in synthetic colors coding 3 wavelengths.

Figure 2: Mars South Pole dataset. Parameter θ̄ averaged over spectral dimension.
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