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ABSTRACT 

 Magma degassing, characterized by changes in permeability and porosity distribution, has a 8 

crucial control on the style of eruption. During ascent, magma might develop large porosities and 

crystallise while it is subjected to shear. Shear, in turn, enhances complex fabrics that result from 10 

the reorganization of the different phases (crystals, gas, melt). Such fabrics have not yet been 

evaluated experimentally on a 3-phase system. We performed torsion experiments on a synthetic 12 

crystal-rich hydrous magma at subsolidus conditions with 11 vol.% porosity to establish a link 

between strain partitioning and porosity redistribution. Crystals induce non-Newtonian deformation, 14 

resulting in localization of the shear strain. 3-D microtomography and 2-D Scanning Electron 

Microprobe (SEM) imaging show gas accumulation in local microstructures caused by shear-16 

induced crystal fabric. Our data show that strain localization is a mechanism that could enable 

magma degassing at very low vesicularity. 18 

 

INTRODUCTION 20 

The eruption style of hydrous magmas is mainly controlled by their ability to degas (e.g. 

Eichelberger et al., 1986). During magma transfer to the surface, the decompression causes bubble 22 

exsolution. If these bubbles remain in the magma, the over-compressed gas can exceed the tensile 

strength  of magma (Zhang, 1999), causing fragmentation that may lead to catastrophic explosive 24 

eruption (Villemant and Boudon, 1998; Sparks, 2003). The most efficient mechanism for the gas to 

escape the magma is the creation of an interconnected bubble network (Eichelberger et al., 1986). 26 
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Shearing is an efficient process to stretch and coalesce bubbles, which can start at 20 to 30 % of 

porosity (Okumura et al. 2008). A connected bubble network can be generated in a sheared crystal-28 

free rhyolite with 30 vol% of bubbles (Okumura et al. 2009) by a modest shear strain (γ = 8). In 

natural felsic pumices, Wright and Weinberg (2009) recognised strain localization at microscopic 30 

scale. The three phases composing magma (bubbles, crystals and melt) can be organized by strain 

localization and associated structures, and conversely. Such structural evolutions rule the 32 

mechanical behaviour of the magmas and influence their transfer to the surface (Saar et al. 2001; 

Picard, 2009). The rheological properties of crystal-bearing magmas have been the subject of 34 

several experimental studies (Caricchi et al. 2007; Champallier et al., 2008; Cordonnier et al., 2009) 

and are closely linked to microstructures development (Arbaret et al., 2007; Lavallée et al., 2008; 36 

Picard 2009). Picard (2009) experimentally reproduced S/C’ type textures (Berthé et al. 1979) 

similar to those encountered in natural, felsic, crystal-rich magmas (Smith, 2002). Many 38 

experimental and numerical studies focused on the behaviour of two-phase systems (bubble-melt or 

crystal-melt), which left out the potential coupled effects of the crystal network on the evolution of 40 

the bubble network.  

 42 

In order to establish a link between strain-induced microstructures and magma outgassing, we 

experimentally synthesized and deformed three phase felsic magma at subsolidus conditions. The 44 

relationship between strain localization structures and bubble network geometry has been evidenced 

by 3-D microtomography and 2-D Scanning Electron Microprobe (SEM) imaging. 46 

 

SUMMARY OF EXPERIMENTAL METHODS 48 

A synthetic haplotonalitic suspension composed of plagioclases (crystal fraction Φc = 0.52, 

calculated on bubble-free assemblage), hydrated melt (Φm = 0.48) and water gas bubbles (Φg = 50 

0.11) was deformed by torsion in a Paterson gas-medium apparatus (ASI Instruments, Paterson and 

Olgaard, 2000) at pressure and temperature of 200 MPa and 600°C, respectively (see Champallier 52 

et al. 2008). Strain rate γr ranged from 3·10
-5

 to 1·10
-3

 s
-1

, and bulk finite strains reached γbulk = 1.3. 



 

 

Before and after experiments, the size, proportion and shape-preferred orientation of the bubbles 54 

have been characterized in 3D by microtomographic imaging and 2D by SEM imaging. The starting 

material has an isotropic distribution of crystals and bubbles, determined by SPO2003 software 56 

(Launeau, 2004). Crystals are 25 µm long plagioclases with a shape ration of 2.5 (see 

supplementary data for more information). Water content in the saturated melt is around 6.5 wt%. 58 

 

STRAIN LOCALISED STRUCTURES 60 

Shearing causes a pervasive deformation that affects the entire sample and a localisation of strain 

that creates normal bands, synthetic in relation to the sense of shear with varied local strain γloc 62 

visible on the jacket (Fig. 1). We identified three types of localized, planar structures (Fig. 2A). 

Types 1 and 2 consist in normal bands, synthetic with respect to the direction of shear, and along 64 

which voids accumulate. We distinguish bubbles from voids, which are gas-filled cavities that result 

from gas phase reorganization. Bubbles are local exsolution of volatiles from the melt. Type 1, 66 

roughly 400 µm thick, dips ~22°. These shear bands consist in a large cavity that forms a 

continuous open space bounded by two bubble-free zones, which are each up to 200 µm thick (Fig. 68 

2B). Type 2 shear bands dip ~60° and join Type 1 bands (Fig. 2A). They are thinner (<150 µm) 

than Type 1 bands and also feature zones where bubbles are concentrated. In some areas, such as in 70 

the vicinity of Type 1 bands, they seem dense. The Type 3 structure is composed of bubble-free 

bands (Fig. 2A) that fluctuate from flat-lying to -6° clockwise with respect to shear direction. They 72 

are synthetic reverse, therefore mainly transpressive. All planar structures are connected lengthwise. 

3-D imaging shows that, overall, these three types of structures form an anastomosing pattern of 74 

shear bands along which the porosity is clearly redistributed. Outside of these structures, vesicles 

are slightly oriented by the low pervasive deformation (Fig. A, supplementary data).  76 

 

In order to get more detailed information about the development of the structures, 2-D SEM images 78 

were selected in areas having undergone various local strains γloc (Fig. 3). At low strain (γloc ≈ 0.4, 



 

 

Fig. 3B), the gas voids cover a cumulative surface identical to that outside strained structures (Fig. 80 

3A) but with a smaller individual size (53 µm² vs. 110 µm² outside). Whereas most of the surface is 

composed of large voids, a population of numerous little voids develops. It is difficult to determine 82 

the nature of this new population from post-experiment observations. Isobaric quench excludes that 

bubbles form at the end of experiment when the temperature decreases. The small voids might be 84 

issued from the break up of large bubbles. They could also possibly come from the dehydration of 

the melt due to local underpressure in transtensive zones. At γloc ≈ 1.7, the gas phase consists only 86 

of small voids (~35 µm
2
) preferentially oriented (void long axis at 28° below the shear direction, 

Fig. 3C). The porosity (~16 %) is larger than in zones that suffered lower strain. This suggests that 88 

the initial bubbles were not only dismantled by crystal displacement, but also that they migrated 

from adjacent regions subjected to lower strains. At γloc ≈ 9.4, the gas phase covers around 29 % of 90 

the surface and voids aggregate in a large cavity oriented around +25° with the plane of shear (Fig. 

3D). These transtensive zones typify Type 1 in 3-D observations.  92 

In addition to these transtensive zones, different sets of transpressive, slightly tilted bands were 

generated by shear (Fig. 3E). These bands feature cataclasis (fragmented crystals), shape fabric 94 

(oriented crystals in a direction parallel to the shear band) and only some small voids (~6 µm²) that 

cover less than 4% of the surface. The bubbles in the vicinity of the bands suffered little 96 

deformation as they remain nearly equant, contrary to sheared zones (e.g. fig. 3C). The cataclased 

shear bands are Y-like bands, as described by Bauer et al. (2000; references therein). Crystal 98 

cataclasis establishes the transition from ductile S/C geometry to brittle behaviour where structures 

match Riedel system characterised by R shears associated with P compressive shears (Riedel 1929) 100 

which crosscut the pervasive fabric to allow for volume conservation. In addition, the bands of 

Type 2, locally bubble-free, fit R’ fracture orientations (Riedel, 1929). This is consistent with our 102 

observations showing that all these bands are connected lengthwise to form a continuous 

anastomosed shear system. 104 

 



 

 

Observations made in zones that suffered different finite local strains evidence the link between 106 

strain localization and gas phase organization. Along normal shear zones, initial bubbles are 

dislocated and then accumulate in large voids connecting the gas phase (γloc ≈ 9.4; fig. 3D). On the 108 

contrary, bubbles tend to disappear in reverse shear bands where transpressive conditions prevail.  

 110 

MAGMA RHEOLOGY AND POROSITY SEGREGATION 

 The synthetic suspension was designed to reproduce natural magmas in terms of chemical 112 

composition, relative phase proportions and textural organisation. Experimental subsolidus 

temperature, pressure and applied strain rates are consistent with conditions expected along the 114 

margins of volcanic conduits. Unlike natural systems, however, the experiments occurred over a 

limited range of finite strain because runs were stopped when strain localisation became so 116 

important that it caused a significant drop in the stress we measured, with potential risk for the 

jacket integrity. Although we evidenced porosity concentration along transtensional shear zones 118 

that lead to open fractures, associated measures of local and global permeabilities are beyond the 

scope of the present work.  120 

In dilute crystal suspensions, the shear flow is accommodated by crystal rotation, which leads to 

pervasive fabrics with a maximum density direction almost parallel to the shear direction (Arbaret 122 

et al., 2007). At a critical crystal fraction, Φ*, shear flow is prevented by the formation of a crystal 

network. The value of Φ* depends on both crystal fraction and shape; the higher the crystal aspect 124 

ratio, the lower the critical crystal fraction is (Saar et al., 2001). Our plagioclase suspension has a 

crystal fraction (Φc = 0.52) that exceeds the Φ* expected for the corresponding plagioclase shape 126 

(Φ*<38%; Picard, 2009). This implies the suspension has a non-Newtonian behaviour (e.g. Caricchi 

et al., 2007; Lavallée et al., 2008; Picard, 2009). Whereas the strain rate has been evidenced to be a 128 

possible cause of the brittle-ductile transition (Lavallée et al., 2008), our experiment shows the 

development of both brittle and ductile structures while the global stress conditions are constant. 130 

Locally, however, the strain increases in shear bands, resulting in an increase of the strain rate. As 



 

 

evoked by Caricchi et al. (2008), the presence of bubbles favours strain localization, locally 132 

reducing stress. The bulk deformation over the entire sample is complex, in spite of a simple 

mechanical stress-strain curve from rheological measurements (Supplementary data B). The stable 134 

strength measured is the sum of several different comportments resulting in various structure 

developments. The presence of discrete cataclasis means that the crystal suspension locally behaved 136 

in a brittle fashion.Outside of the bands, the strain marker (Fig. 1) and pervasive fabrics indicate a 

pseudo-plastic behaviour (Champallier et al., 2008). The mechanical transition, as revealed by these 138 

two different behaviours, has commonly been observed in ash flow tuffs (Best and Christiansen, 

1997) and reproduced experimentally (Picard, 2009). The existence of this transition has also been 140 

inferred from similar natural observations in tuffisites (Tuffen et al., 2003), in a rhyolite flow 

(Smith, 1996), and in a dacitic lava dome (Smith et al., 2001). Our results show that, even above the 142 

solidus and for relatively low bulk strain rates, crystals are largely responsible for strain 

localization, which can increase the strain rate enough to cause local brittle cataclasis.  144 

 

The redistribution of the porosity depends on the orientation and the kinematics of the bands, which 146 

is essentially controlled by crystal motion. Large voids are exclusively observed along transtensive 

bands whereas transpressive bands are almost gas-free (Fig. 3). A possible mechanism controlling 148 

gas segregation is the relative stress induced by the deformation-induced localizations. Gas moves 

away from local compressed domains to less stressed surroundings, mostly because the gas phase 150 

itself is mobile within the connected voids. Although not observed in our experiments, it can freely 

flow out of transpressive P shear bands and partly along R’ fractures, which causes porosity to 152 

vanish. The localization of the deformation enhances such transfer by displacing the gas phase from 

transpressive shear bands to other transtensive structures. In the transtensive R-like bands, bubbles 154 

concentrate and fill the band, increasing the porosity locally. The melt does not seem to be 

segregated from the crystals, at least over the strain imposed experimentally. 156 



 

 

Strain localisation has also been recognized in natural, felsic crystal-poor pumice by Wright and 

Weinberg (2009). Despite high porosity (> 60%) and high inferred strain, they do not evidence 158 

bubble coalescence. In crystal-free magmas, Okumura et al. (2009) demonstrate that the same result 

can be achieved with only 30 vol% of gas if the deformation reaches γ = 8. Although our study 160 

reveals the coalescence of bubbles by strain localization at low bulk strain and low strain rates in 

crystal-rich magmas, it does not imply individual bubble elongation as proposed by Okumura et al. 162 

(2009). We conclude that highly crystallized magmas are able to redistribute the porosity in shear 

bands by strain localization and reorganization of the crystal assemblage. 164 

 

IMPLICATION FOR SHEAR BANDING AND MAGMA OUTGASSING 166 

Local shear structures are hardly observable in place at depth. However, indirect evidences in 

eruptive products suggest the common development of such structures at high pressure. In the 168 

products from Sycamore Canyon, Arizona, Seaman et al. (2009) recognised layers with different 

water contents. They attributed this layering to a repeated fracturing which enhanced magma 170 

outgassing because of depressurisation in the fragmented zones. Another example of tuffisite from 

Mule Creek, New Mexico, presents heterogeneous permeability and may be the result of a sheared 172 

magma (Stasiuk et al., 1996). Rust et al. (2004) observed host fragments mixed with the erupted 

magma that they interpreted as the consequence of the simultaneous fragmentation of the ascending 174 

magma and the conduit walls. Banded low-porosity textures in the product of the Vulcanian 

eruptions of the Soufrière Hills, Montserrat, suggests that the bands were formed along the conduit 176 

wall (Kennedy et al., 2005). Our own sampling of the 1997 Vulcanian products at Montserrat 

(Burgisser et al., 2010) allows us to complete the possibility that the banded low porosity textures 178 

were formed during a localised sheared deformation within the magma prior to eruption. Along 

volcanic conduit walls, such a network is supposed to connect to fractures developed along the 180 

conduit margins (Fig. 4). Through torsion experiments of crystal-rich magma, we demonstrated that 

low shear strains trigger gas segregation from randomly distributed large bubbles to a connected, 182 



 

 

porous Riedel network. We thus expect the connected network to efficiently segregate the exsolved 

water from the adjacent hydrous melt and favour its migration through open fractures, thereby 184 

causing a local and heterogeneous outgassing of the magmatic plug (Fig. 4). 

 186 

Finally, our experiments evidence the significant control that shear strain localization exerts on 

porosity segregation to form open and therefore permeable fractures. Our results show that crystal-188 

rich magma outgassing along conduit margins can occur at much lower porosity and strain than 

expected from crystal-free bubbly melts (Okumura et al., 2009). Since crystal-rich situations prevail 190 

in shallow regions of conduits, where slow ascent rates promote microlite crystallisation, our 

experiments provide a likely mechanism of fast, shallow outgassing in highly viscous, three-phase 192 

magmas.  

 194 
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FIGURE CAPTIONS 

 280 

Figure 1. External appearance of the sample in its copper jacket after torsion experiment. The 

sample is situated between pistons and its extent is shown by the black line on the left of the 282 

picture. One of the strain markers is underlined in white to point out the different types of 

deformation affecting the sample. They attest shear bands are synthetic to the bulk shear sense. 284 

Numbers correspond to local strain of pervasive (italic) and localized (standard font) deformation. 

Some microscopic observations we used come from this side of the sample and are located by black 286 

rectangles. 

 288 

Figure 2. 3-D image from microtomographic analysis. A) Column showing the gas phases as shade 

of grey, which highlights the 3 types of shear bands. Crystals and melt are not separated and are 290 

transparent. B) Zoom of the main shear band, which is surrounded by bubble-free areas that 

suggests strong vesicle rearrangement.  292 

 

Figure 3. (A-D) SEM pictures showing bubble fabrics at 4 different local strains. Gas voids are 294 

black, crystals are light grey, and melt is medium grey. Rose diagrams plot the orientation of the 

voids. Φg means the porosity, and s. means the average size of the voids. E) SEM picture with 296 

crystals colored according to their orientation. A flat lying shear band (between dotted lines) shows 

crystal breackage and a preferred orientation of crystals. The scale and sense of shear is common 298 

for all pictures. 

 300 

Figure 4. Cartoon depicting the possible natural context where shear develops along the walls of a 

volcanic conduit (left), and the experimental structures observed and their relation to magma 302 

degassing (centre) and natural products from the 1997 Vulcanian eruption of Soufrière Hills, 

Montserrat, that feature the structures observed in the experiments (right). See text for discussion. 304 
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