Objective Evaluation of Multiple Sclerosis Lesion Segmentation using a Data Management and Processing Infrastructure - Archive ouverte HAL
Article Dans Une Revue Scientific Reports Année : 2018

Objective Evaluation of Multiple Sclerosis Lesion Segmentation using a Data Management and Processing Infrastructure

Tristan Glatard
Senan Doyle
  • Fonction : Auteur
  • PersonId : 896697
Michel Dojat
François Cotton

Résumé

We present a study of multiple sclerosis segmentation algorithms conducted at the international MICCAI 2016 challenge. This challenge was operated using a new open-science computing infrastructure. This allowed for the automatic and independent evaluation of a large range of algorithms in a fair and completely automatic manner. This computing infrastructure was used to evaluate thirteen methods of MS lesions segmentation, exploring a broad range of state-of-theart algorithms, against a high-quality database of 53 MS cases coming from four centers following a common definition of the acquisition protocol. Each case was annotated manually by an unprecedented number of seven different experts. Results of the challenge highlighted that automatic algorithms, including the recent machine learning methods (random forests, deep learning, …), are still trailing human expertise on both detection and delineation criteria. In addition, we demonstrate that computing a statistically robust consensus of the algorithms performs closer to human expertise on one score (segmentation) although still trailing on detection scores.
Fichier principal
Vignette du fichier
s41598-018-31911-7.pdf (4.38 Mo) Télécharger le fichier
Origine Publication financée par une institution
Loading...

Dates et versions

inserm-01847873 , version 1 (24-07-2018)
inserm-01847873 , version 2 (12-09-2018)
inserm-01847873 , version 3 (28-01-2020)

Identifiants

Citer

Olivier Commowick, Audrey Istace, Michael Kain, Baptiste Laurent, Florent Leray, et al.. Objective Evaluation of Multiple Sclerosis Lesion Segmentation using a Data Management and Processing Infrastructure. Scientific Reports, 2018, 8 (1), pp.13650. ⟨10.1038/s41598-018-31911-7⟩. ⟨inserm-01847873v3⟩
1134 Consultations
580 Téléchargements

Altmetric

Partager

More