
HAL Id: inserm-00622805
https://inserm.hal.science/inserm-00622805

Submitted on 12 Sep 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Plasmodium falciparum liver stage antigen-1 is
cross-linked by tissue transglutaminase.

William Nicoll, John Sacci, Carlo Rodolfo, Giuseppina Di Giacomo, Mauro
Piacentini, Zoe Holland, Christian Doerig, Michael Hollingdale, David Lanar

To cite this version:
William Nicoll, John Sacci, Carlo Rodolfo, Giuseppina Di Giacomo, Mauro Piacentini, et al.. Plas-
modium falciparum liver stage antigen-1 is cross-linked by tissue transglutaminase.. Malaria Journal,
2011, 10 (1), pp.14. �10.1186/1475-2875-10-14�. �inserm-00622805�

https://inserm.hal.science/inserm-00622805
https://hal.archives-ouvertes.fr


RESEARCH Open Access

Plasmodium falciparum liver stage antigen-1 is
cross-linked by tissue transglutaminase
William S Nicoll1, John B Sacci2, Carlo Rodolfo3, Giuseppina Di Giacomo3, Mauro Piacentini3, Zoe JM Holland4,

Christian Doerig4, Michael R Hollingdale5*, David E Lanar1

Abstract

Background: Plasmodium falciparum sporozoites injected by mosquitoes into the blood rapidly enter liver

hepatocytes and undergo pre-erythrocytic developmental schizogony forming tens of thousands of merozoites per

hepatocyte. Shortly after hepatocyte invasion, the parasite starts to produce Liver Stage Antigen-1 (LSA-1), which

accumulates within the parasitophorous vacuole surrounding the mass of developing merozoites. The LSA-1

protein has been described as a flocculent mass, but its role in parasite development has not been determined.

Methods: Recombinant N-terminal, C-terminal or a construct containing both the N- and C- terminal regions

flanking two 17 amino acid residue central repeat sequences (LSA-NRC) were subjected to in vitro modification by

tissue transglutaminase-2 (TG2) to determine if cross-linking occurred. In addition, tissue sections of P. falciparum-

infected human hepatocytes were probed with monoclonal antibodies to the isopeptide ε-(g-glutamyl)lysine cross-

bridge formed by TG2 enzymatic activity to determine if these antibodies co-localized with antibodies to LSA-1 in

the growing liver schizonts.

Results: This study identified a substrate motif for (TG2) and a putative casein kinase 2 phosphorylation site within

the central repeat region of LSA-1. The function of TG2 is the post-translational modification of proteins by the

formation of a unique isopeptide ε-(g-glutamyl)lysine cross-bridge between glutamine and lysine residues. When

recombinant LSA-1 protein was crosslinked in vitro by purified TG2 in a calcium dependent reaction, a flocculent

mass of protein was formed that was highly resistant to degradation. The cross-linking was not detectably affected

by phosphorylation with plasmodial CK2 in vitro. Monoclonal antibodies specific to the very unique TG2 catalyzed

ε- lysine cross-bridge co-localized with antibodies to LSA-1 in infected human hepatocytes providing visual

evidence that LSA-1 was cross-linked in vivo.

Conclusions: While the role of LSA-1 is still unknown these results suggest that it becomes highly cross-linked

which may aid in the protection of the parasite as it develops.

Background

The liver stage antigen-1 (LSA-1) is one of the few

antigens known to be specifically expressed during the

pre-erythrocytic liver stage of Plasmodium falciparum

[1]. Studies of human immunity following exposure to

radiation-attenuated sporozoites, as well as exposure to

naturally transmitted parasites, have consistently asso-

ciated protection with a specific LSA-1 immune

response, making LSA-1 an attractive vaccine candidate

[2-8]. LSA-1 has undergone several clinical trials. Firstly

the sequence of the non-repeat regions were as part of a

recombinant pox virus expressing LSA-1 and six other

candidate malaria vaccine antigens [9] that induced

LSA-1 cellular immune responses [10]. Later it was

included as one of five antigens encoded by DNA plas-

mids that induced boostable cellular responses [11].

Most recently, as a recombinant protein combined with

AS01 or AS02 adjuvant [12] it induced high titer anti-

body and CD4 + T cells that secreted IL-2 and inter-

feron-gamma although it did not induce protection

against an experimental P. falciparum sporozoite chal-

lenge model in humans [13].

Although LSA-1 was first identified in 1987 [14], elu-

cidation of the functional role of LSA-1 has yet to
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occur. Plasmodium falciparum liver-stage parasites are

difficult to study, as the only primate model uses chim-

panzees [15] and, in vivo and liver stages develop in

only a few infected hepatocytes. Full liver-stage develop-

ment of P. falciparum occurs in vitro in primary hepato-

cyte cultures from Aotus and Saimiri monkeys [16] and

a human hepatocyte cell line has recently been devel-

oped that allows P. falciparum infection and develop-

ment, but again infectivity is extremely low and

obtaining protein has thus far proven impossible [17].

This paucity of infected cells, combined with the diffi-

culty of their isolation, results in an inability to bio-

chemically study native liver-stage material.

LSA-1 is a 230 kDa protein characterized by a cen-

tral repeat region containing 86 repeats of the 17-

amino-acid sequence EQQSDLEQERLAKEKLQ or

minor variations thereof [18]. Flanking these repeats are

a non-repetitive 154 residue N- terminal region and a

280 residue C-terminal region [18,19]. The sequence of

LSA-1 repeat and non-repeat regions is highly con-

served across strains of P. falciparum [19] suggesting a

crucial role during liver schizogony [19]. Of interest is

the finding that a peptide form the LSA-1 N-terminal

region binds to hepatic cells and to HLA-DRb1*1101

[20], which is consistent with the induction of CD4 + T

cell responses in clinical trials [11,21]. Analysis of

infected primate liver sections probed with antibodies

against LSA-1 has shown that synthesis of LSA-1 begins

soon after sporozoite invasion and that the protein

accumulates throughout the liver stage development

[22,23]. From three days post infection, LSA-1 is detect-

able in the parasitophorous vacuole (PV), which is deli-

neated by the inner plasmalemma and the outer

parasitophorous vacuole membrane (PVM) of the

infected hepatocyte, and surrounds the developing mer-

ozoites as part of a “flocculent mass” [23]. A similar

flocculent mass has been observed in Plasmodium ber-

ghei and Plasmodium vivax liver stages [22,24-26], but

are not recognized by LSA-1 antibodies. At a later stage,

LSA-1 appears to infiltrate the spaces between the pseu-

docytomeres of the developing schizonts as the plasma-

lemma forms deep invaginations into the parasite

cytoplasm [22,23]. Eventually LSA-1 is localized around

the cytomeres just before individualization of the mero-

zoites. Upon hepatocyte rupture the merozoites are

released within the flocculent mass into the liver sinu-

soid where erythrocyte invasion occurs [27-30].

These observations suggest that LSA-1 is not a soluble

protein but has some sort of biochemically-induced

structure. LSA-1 central repeat amino acid sequences

contain multiple copies of the tripeptide EQQ that is a

common substrate for transglutaminases. Transglutami-

nases, enzymes found in mammals but not protozoa,

form ε-(g-glutamyl)lysine bridges between the acyl

donor side chain of glutamine and acyl acceptor side

chain of lysine, covalently cross-linking proteins as

shown in Figure 1A. Tissue transglutaminase type II

(TG2) is a multi-functional enzyme which has been

implicated in a range of biological processes including

cell death, extracellular matrix stabilization and cell

signaling [31-34]. Amongst a range of diseases, TG2

has been implicated as having a role in degenerative

conditions of the liver such as hepatitis and Budd-

Chiari syndrome [35-39]. Nardacci et al [37] demon-

strated that a TG2 knockout mouse exhibited impaired

liver regeneration after injury and that TG2 is rapidly

up-regulated after hepatitis-induced liver damage in

human patients.

As purified native protein was not available, recombi-

nant LSA-1 using LSA-NRC that contains the N- and C

terminal regions and two repeats [12] was tested as a

substrate for TG2 in vitro. The data presented here sug-

gests that native P. falciparum LSA-1 exhibits TG2-

mediated cross-linking in vivo that was confirmed by

demonstrating that LSA-1 is similarly cross-linked using

an in vivo mouse-human chimeric model in which

P. falciparum sporozoites develop into liver stages [40,41].

A physiological role for this cross-linking is proposed.

Methods

Production of recombinant LSA N-terminal (LSA-NRC-N)

and C-terminal (LSA-NRC-C) proteins

Using the recombinant LSA-1 vaccine candidate construct

LSA-NRC [12] as a template, the N- and C- terminal

regions were amplified through PCR using the

primers GTGGATCCATGGGTACCAACAGCG (N-term

fwd); GCGGCCGCAGCAGCTTTTTCTTC (N-term rev);

GTGGATCCCGCAAGGCTGACAC (C-term fwd);

GCGGCCGCAAGCTTCATAAGTATTTAG (C-term

rev). The PCR products were cloned into the pETK

expression vector using the compatible BamHI/NotI

restriction sites (underlined) [12]. Expression and purifica-

tion was performed as described for LSA-NRC [12].

Figure 1 TG2 cross-linking reaction. A. In the presence of

calcium, TG2 forms an isopeptide bond between g-carbonyl group

of a glutamine residue and the ε-amino group of a lysine residue.

Major repeat of LSA-1. B. TG2 and CK2 substrate motifs are indicated

by lines.
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Recombinant TG2 assay (PAGE analysis)

A 500 μl reaction mixture containing 100 mM Tris-HCl

pH 6.0; 500 mM NaCl; 10 mM CaCl2; 1 mM DTT; 150

μg/ml target protein (LSA-NRC full length, LSA-NRC

N-term or LSA-NRC C-term) and 100 μg/ml TG2, was

incubated at 37°C for up to 2 h. Small samples (50 μl)

were taken at appropriate timepoints. Reaction samples

were stopped by the addition of 50 μl of 4× SDS loading

dye and stored at 4°C. 25 μl protein samples were sepa-

rated on precast 4-12% gradient SDS PAGE (Invitrogen,

Carlsbad, CA) and stained with Coomassie blue.

TG2 assay (ELISA Analysis)

An assay based upon Lilley et al. [42] was developed to

test LSA-1 cross-linking in vitro. LSA-NRC was bound

to 96 well plates at a concentration of 0.20 μg/ml in

50 mM Na2CO3 at pH 9.8 for 1 h at 37°C. Wells were

then blocked for 1 h at 37°C with 200 μl of a solution

containing 0.5% boiled casein; 1% Tween 80; 50 mM

Na2CO3 pH 9.8. Wells were washed twice with 1×PBS

pH 7.4; 0.05% Tween 80 and twice with H2O. Reactions

were set up with 100 mM Tris-HCl pH 6.0; 5 mM

CaCl2; 10 mM DTT; 5 μg/ml biotinylated LSA-NRC

(produced using the EZ-link NHS-biotin labeling kit,

Pierce, Rockford, IL); and up to 2 μg/ml TG2 in a total

reaction volume of 50 μl. Reactions were incubated for

1 h at 37°C. Wells were washed twice with 1×PBS pH

7.4; 0.05% Tween 80 and twice with H2O. Plates were

then incubated with 50 μl of 1:10,000 dilution of peroxi-

dase-bound neutravidin; 100 mM Tris-HCl, pH 8.5;

0.5% boiled casein for 1 h at room temp. Wells were

washed three times with 1×PBS, pH 7.4; 0.05% Tween

80 and twice with H2O. Developing was performed

using 100 μl of KPL ABTS peroxidase substrate (KPL

Inc., Gaithersburg MD) for 60 min. Development was

stopped with 100 μl 1% SDS and samples were read at

405 nm.

Recombinant TG2 cell extract assay (Western analysis)

To assess whether LSA could act as a TG2 substrate an

in vitro assay was developed with cell extracts from both

human neuroblastoma cell lines either not expressing

(SK-N-BE-2), or over-expressing (TGA), hTG2 [43]. For

the cell free assay, 500 ng of LSA protein were incu-

bated with 250 μg of cell extracts in 50 mM Tris-HCl,

pH 8.3, 30 mM NaCl, 10 mM DTT, 15 mM CaCl2 at

37°C, in a final volume of 50 μl. Every 5 min 10 μl of

the reaction were taken and after addition of 2 mM

EGTA and NuPAGE sample buffer, samples were boiled

and separated on 4-12% NuPAGE gel (Invitrogen) prior

to analysis by Western blot. Blots were probed with

1:1,000 dilution of anti-LSA polyclonal mouse primary

antibody and 1:1,000 dilution of an HRP-conjugated

goat anti-mouse secondary antibody.

Reversed-phase HPLC analysis

RP-HPLC was performed using a Waters modular

HPLC system consisting of two Waters 510 fluid

pumps, Waters 717plus autoinjector, Waters 2487 UV

detector, Waters system interface module and a Waters

DeltaPak C18-300A column. Instrument control, data

acquisition and evaluation were performed using Waters

Millenium32 software. Buffer A comprised 0.05% (v/v)

trifluoracetic acid in H2O, whereas buffer B comprised

0.05% (v/v) trifluoroacetic acid in acetonitrile. Bound

proteins were eluted using a linear gradient of 10-100%

buffer B over 30 min at a flow rate of 1 ml/min. Peaks

were analysed by matrix-assisted laser desorption ioniza-

tion-time of flight mass spectrometry (Voyager biospec-

trometry RP system; Applied Biosystems) with a

a-cyano-4-hydroxycinnamic acid (peptides) or sinapinic

acid (protein) matrix.

Mouse/human chimeric liver immunofluorescence assays

All experiments utilized sporozoites of the NF54 strain of

P. falciparum. Sporozoites were reared in Anopheles ste-

phensi mosquitoes and were isolated by hand dissection or

by a discontinuous Renografin gradient [44] in Medium

199 (Gibco, Grand Island, NY) with 5% foetal calf serum.

The generation of chimeric mice has been previously

described [40,41]. Briefly, SCID mice, homozygous for the

urokinase type plasminogen activator transgene (SCID

Alb-uPA), were inoculated intrasplenically with 1 × 106

human hepatocytes. At 6 wks post-transplant, serum ana-

lysis for human alpha one antitrypsin (hAAT) by ELISA

was performed to determine the success of the transplan-

tation. Mice that demonstrated >25 μg/ml hAAT were

then used for infection with P. falciparum sporozoites.

Mice were cared for by the University of Alberta Health

Sciences Laboratory Animal Services according to the

guidelines of the Canadian Council on Animal Care and

under protocols approved by the University of Alberta

Faculty of Medicine and Dentistry Health Sciences

Laboratory Animal Ethics Committee. Additionally, the

experiments reported here were carried out according to

the principles set forth in the “Guide for the Care and Use

of Laboratory Animals” [45]

Infection with sporozoites and tissue collection

Chimeric mice received an intravenous tail vein injec-

tion of 1-1.5 × 106 P. falciparum sporozoites and were

subsequently euthanized by CO2 overdose at several dif-

ferent timepoints post-infection and their livers removed

for cryosectioning. Livers were rinsed in PBS, the lobes

cut into separate pieces and frozen in Tissue-Tek O.C.

T. compound (Miles Scientific, Naperville, IL.) using an

isopentane/liquid N2 bath. Tissue cryo-sections (7 μm)

were then cut, fixed in absolute methanol, and stored at

-80°C until used.

Nicoll et al. Malaria Journal 2011, 10:14

http://www.malariajournal.com/content/10/1/14

Page 3 of 10



Immunofluorescence assay

Slides were removed from the freezer, placed in a desic-

cator and allowed to equilibrate to room temperature.

The diluted antiserum (polyclonal rabbit anti-LSA-1

[12] or 71A3F1 and 81D1C2 monoclonal (Abcam Inc,

Cambridge, MA) antibodies) was then applied to the tis-

sue section in a volume sufficient to cover the tissue.

Slides were incubated for 30 min at 37°C in a humidity

chamber, then washed three times for 5 min with PBS

and incubated with a fluorescein conjugated IgG (Kirke-

gaard and Perry, Gaithersburg, MD) diluted 1:40 with

0.02% Evan’s blue for 30 min at 37°C. The Evan’s blue

was added to act as a counterstain to suppress any auto-

fluorescence in the tissue. The specificity of the second-

ary antibody varied depending upon the species of the

primary antibody used to stain the sections. Sections

were then washed as above and the slides mounted with

Vectashield® mounting media (Vector Labs, Burlingame,

CA). The stained slides were screened with a Nikon

Eclipse E600 epifluorescent microscope and digital

images collected with a SPOT digital camera (Diagnostic

Instruments, Inc., Sterling Hgts, MI).

CK2 phosphorylation assay

Recombinant P. falciparum CK2a (PfCK2 a) (PlasmoDB

ID PF11_0096) was cloned and expressed in E. coli as a

GST-tagged protein (Z. Holland and C. Doerig, unpub-

lished data). Kinase assays were performed in a standard

reaction (30 μl) containing 15 mM Tris-HCl, pH 7.5;

15 mM MgCl2; 1.5 mM MnCl2; 10 mM b-glycerol phos-

phate; 10 mM NaF; 10 μM ATP; 0.075 MBq of [g-32P]

ATP (220 TBq/mmol; GEHealthcare), 6 μg of substrate

(LSA-NRC) and 1 μg of recombinant PfCK2a. After

30 min at 30°C, reactions were terminated by the addi-

tion of Laemmli buffer, boiled for 3 min, and separated

on a 12% SDS/polyacrylamide gel. Following staining

with Coomassie blue, the gel was dried and submitted

to autoradiography.

Results

LSA-1 contains substrate motifs for TG2 and casein

kinase II

BlastN and BlastP searches against the full-length P. fal-

ciparum LSA-1, the N-terminal, repeat and C-terminal

regions have failed to reveal the existence of homolo-

gous genes in any other organism, including all other

known Plasmodium species, except Plasmodium reiche-

nowi. Motif searches of the LSA-1 amino acid sequence

revealed that the 17-mer repeat region possesses the

properties of a glutamine acyl-donor substrate for TG2

as well as an immediately adjacent casein kinase II

(CK2) substrate motif (Figure 1B). Substrates of TG2

are wide and varied, as is the TG2 substrate motif, how-

ever, it is generally considered that proteins containing

two or more adjacent glutamines are good TG2 sub-

strates [46,47]. Additionally, for the lysine substrate,

increased specificity is seen when the residue on the

N-terminal side of the lysine is a hydrophobic amino

acid such as leucine [48].

LSA-1 is a substrate for TG2

The recombinant form of LSA-1 (LSA-NRC) contains

the N- and C- terminal regions combined with two of

the central repeats [12]. To assess whether this recom-

binant LSA-NRC could act as a TG2 substrate, LSA-

NRC was incubated in the presence of 50 μg/ml guinea

pig liver TG2 (gpTG2). gpTG2 was chosen as it is the

most widely available TG2, is widely used in TG2

assays, and is known to have a wide substrate range

[49]. Additionally, since LSA-1 is more likely to come

into contact with human TG2 (hTG2), LSA-NRC was

assessed whether it could act as a substrate for both

purified recombinant hTG2, and hTG2 in cell lysates

from a transgenic human cell line that over expresses

hTG2. Figure 2A (i and ii) clearly shows the produc-

tion of LSA-NRC multimers over time after incubation

with gpTG2 or hTG2. As time progressed a flocculent

precipitate was observed in the reaction tube which

was unable to enter the PAGE gel, as can be seen in

the tops of the wells in the late time points of Figure

2A(i and ii). The largest molecule that can be seen on

the gel is a small amount of a 214 kDa protein, which

would fit the size of an LSA-NRC tetramer. It is

assumed that multimers bigger than this precipitate

out of solution.

An increase in mobility can be seen over time for the

TG2-treated LSA-NRC monomer (Figure 2A i and 2A

ii). Incubation of LSA-NRC with TG2 (Figure 2B) in the

absence of CaCl2 did not result in any detectable cross-

linking.

Figure 2C shows a Western blot analysis of LSA-NRC

incubated with lysates of human cell line SK-N-BE(2) (i)

and its stably transfected derivative, TGA, that overex-

presses hTG2 (ii). Although a small amount of a band

that correlates to LSA-NRC dimers can be seen at time

zero in both SK-N-BE(2) and TGA lysate-treated LSA-

NRC, no further cross-linking is seen in cell lysates not

expressing hTG2, whereas in contrast several bands

attributed to LSA-NRC cross-linking are observed in

lysates containing hTG2.

To further quantify TG2 activity, an ELISA assay was

developed (based on [42]). As can be see in Figure 2D

an increasing concentration of TG2 is directly related to

an increasing level of cross-linked biotin-labeled LSA-

NRC. Figure 2D clearly illustrates that no cross-linking

occurs in the absence of either calcium or TG2,

confirming that this reaction is not autocatalytic and is

calcium dependent as is typical of TG2 reactions.
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The LSA-1 repeat region is the target Of TG2 cross-linking

To assess whether the predicted TG2 glutamine sub-

strate in the LSA-1 repeat region was in fact a TG2 sub-

strate, LSA-NRC was incubated with TG2 and a LSA-1

repeat peptide containing a single repeat unit. As can be

seen in Figure 3A, inclusion of the peptide resulted in

blocking the shift in mobility, suggesting a reduction in

intra-LSA-NRC cross-linking. Interestingly, the mobility

of LSA-NRC-peptide decreased over time suggesting

that multiple repeat peptides are being successively

crosslinked to the LSA-NRC monomer, gradually

increasing its molecular weight.

To assess the ability of the LSA-1 repeat region to

crosslink to itself, a single repeat peptide was incubated

with gpTG2. RP-HPLC analysis of the cross-linking reac-

tion showed three distinct peaks (Figure 3B). Analysis of

the peaks by MALDI-TOF MS showed that peaks 1, 2

and 3 related to the expected sizes of monomers, dimers

and trimers of the LSA repeat peptide (data not shown).

Analysis of the primary amino acid sequence of the LSA-

1 repeat peptide by Robetta Protein Structure Prediction

server [50] yielded the tertiary structure shown in Figure

3C. Of note are the lysine glutamine pairs (Gln-2/Lys-15

and Gln-3/Lys-13) that project out on either side of the

helix that could act as anti-parallel TG2 cross-linking

pairs, and thus allow the formation of multimers.

To further assess the role of TG2 cross-linking of the

LSA-1 repeats, recombinant versions of both the

N-terminal (LSA-NRC-N), and C-terminal region of

LSA-NRC (LSA-NRC-C) were produced that contained

none of the central repeats. Incubation of LSA-NRC-N

and LSA-NRC-C with gpTG2 did not result in multimers

being produced (Figure 3D i and 3D ii). However, a simi-

lar increase in mobility was seen for the monomers of

LSA-NRC-C as was seen for monomers of LSA-NRC.

CK2 phosphorylation does not affect TG2 cross-linking

The presence of multiple CK2 phosphorylation sites

(one per repeat) in the repeat region of LSA-1 suggests

the possibility of TG2 mediated cross-linking being

regulated through casein kinase 2 (CK2) phosphoryla-

tion. To test this hypothesis, a recombinant catalytic

subunit of P. falciparum CK2, PfCK2a was prepared.

Initially, to ascertain whether LSA-1 can be phosphory-

lated by CK2, LSA-NRC was incubated with [g-32P]ATP

in the presence or absence of PfCK2a. As can be seen

on the Coomassie blue stained-gel Figure 4A(i), LSA-

NRC is present in lanes 1-3, but only the lane contain-

ing LSA-NRC and active PfCK2a shows a band on the

autoradiograph indicating incorporation of 32P into the

LSA-NRC sample (Figure 4A(ii) lane 1). No bands of

this size can be seen in any of the control lanes, which

include a reaction with a kinase-mutant (K72M) of the

enzyme (Figure 4A (ii) lanes 2-4). To assess the effect of

phosphorylation on TG2 mediated LSA-NRC cross-

linking, phosphorylated and non-phosphorylated LSA-

NRC were treated with gpTG2. As can be seen in Figure

4B(i) and (ii), phosphorylation caused no detectable dif-

ference to gpTG2 under the conditions used.

LSA-1 cross-linking in vivo

Plasmodium falciparum is a human parasite and does

not develop in animals except for a few species of non-

human primates. Therefore, the isolation of infected

Figure 2 Assessment of LSA-NRC cross-linking by TG2. A. SDS

PAGE analysis of LSA-NRC samples after various times of incubation

with 100 μg/ml of either gpTG2 (i) or hTG2 (ii). * indicates the band

representing TG2 (MW - 76.6 kDa). B. SDS PAGE analysis of LSA-NRC

samples after various times of incubation with 100 μg/ml of gpTG2

in the absence of CaCl2 indicating dependence of cross-linking on

Ca+. C. Western analysis of LSA-NRC samples after incubation with

lysates of human cell line SK-N-BE(2) (i) or its stably transfected

derivative, TGA, that over-expresses hTG2 (ii). Blots were probed

with anti-LSA-NRC polyclonal antibodies. D. Plate based colorimetric

analysis of LSA-NRC TG2 mediated cross-linking. Change in

absorbance at 405 nm is shown as a function of TG2 concentration.

Open circles - hTG2; Open triangles - gpTG2; Open squares - gpTG2

in the absence of CaCl2; closed triangles - in the absence of TG2.

Error bars show variation of 3 experiments.
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hepatocytes from in vivo sporozoite infection under

normal conditions is virtually impossible. Likewise, the

in vitro tissue culture of hepatocytes that are susceptible

to sporozoite invasion is limited and does not yield suf-

ficient material for biochemical analysis. Fortunately, a

chimeric mouse model has recently been developed

wherein human livers are grown [41]. Because the

pattern of LSA-1 in developing liver schizonts is so dis-

tinctive it predicted that monoclonal antibodies specific

to the glutamine-lysine isopeptide bridge should demon-

strate the same staining pattern as anti-LSA-1 antibo-

dies. Therefore, to assess whether LSA-1 is crosslinked

in vivo, P. falciparum infected liver sections from the

chimeric mice were probed with polyclonal mouse

antibodies raised against LSA-NRC. LSA-1 is clearly

visible in infected hepatocytes at day 5 and day

6 post-infection (Figure 5A and 5B). To detect specific

glutamine-lysine isopeptide linkages created by TG2

cross-linking, two different mouse monoclonal antibodies

specific for this linkage (71A3F1 and 81D1C2) were used

to probe fixed tissue sections (Figure 5C and 5D). Fluor-

escent signal is seen across the entire infected cell in a

similar pattern to that seen with anti-LSA-1 antibodies.

In contrast, the surrounding non-infected cells used as a

control for non-parasite protein reactivity exhibit almost

no fluorescence.

Figure 3 Analysis of cross-linking site. A. PAGE analysis of LSA-NRC TG2-cross-linking in the absence (i) or presence (ii) of peptide

corresponding to the major repeat sequence of LSA-1. B. RP-HPLC analysis of a peptide corresponding to the major repeat sequence of LSA-1

before (i) and after (ii) gpTG2 treatment for 2 h at 100 μg/ml gpTG2. Position of monomers [retention time 23.3 min] (1), dimers [retention time

24.5 min] (2) and trimers [retention time 25.6 min] (3) are indicated. (ii). C. Tertiary structure of a single LSA-1 major repeat as predicted by

Robetta modeling. Arrows indicate glutamines and lysines predicted to be involved in TG2 mediated cross-linking. D. PAGE analysis of gpTG2

cross-linking of LSA-NRC-C (i) and LSA-NRC-N (ii). * indicates band formed by the gpTG2 enzyme (MW - 76.6 kDa).
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Discussion

LSA-NRC is susceptible to TG2 cross-linking by both

gpTG2 and hTG2 in vitro. As a monomer LSA-NRC is

highly soluble, but upon cross-linking, LSA-NRC rapidly

comes out of solution and is seen as a flocculent mass

under in vitro cross-linking conditions. This is consis-

tent with ultrastructural observations [19,23] that

described LSA-1 in 6 day post-infection primate liver

sections as a ‘fluffy flocculent mass’.

The presence of a potential CK2 phosphorylation site

within the LSA-1 repeat region that overlaps the TG2

cross-linking site suggested that TG2-mediated cross-

linking of LSA-1 may be regulated through CK2 phos-

phorylation. However, although this study demonstrated

that LSA-NRC is phosphorylated in vitro by CK2 of

parasite origin, this phosphorylation does not affect TG2

mediated cross-linking under our experimental condi-

tions. However, it cannot be ruled out that phosphoryla-

tion has an effect on cross-linking, but that the

proportion of phosphorylated substrate is too small in

our conditions to allow detection in the cross-linking

assay.

Tertiary structural Robetta modelling [51] predicted

that each LSA-1 repeat sequence exists as a single

a-helix resulting in an extended a-helical arrangement.

This is consistent with previous analysis of the LSA-1

repeat peptides by circular dichroism suggesting that the

repeat region of LSA-1 is an uninterrupted stretch of

a-helices reaching a length of 220 nm [19]. The a-helix

model produced by Robetta modelling in this study

showed that a Gln-Lys pair protrudes on either side of

the repeat helix. By orientating successive LSA-1 mole-

cules in opposite directions these pairs could bind to

each other forming TG2-cross-linked bonds between

molecules resulting in a flexible matrix type arrangement

as seen with the transglutaminase-mediated cross-linking

Figure 4 PfCK2a regulation of TG2 LSA-1 cross-linking. (A) PAGE

analysis of LSA-NRC incubated with PfCK2 a. Coomassie stained

samples (i). Autoradiograph of gel in (i) (ii). Lane 1 - LSA-NRC incubated

with PfCK2a; lane 2 - LSA-NRC incubated with inactivated PfCK2a; lane

3 - LSA-NRC; lane 4 - PfCK2a. (B) PAGE analysis of samples taken at

various time points from non-phosphorylated (i) and phosphorylated

(ii) LSA-NRC incubated with gpTG2.

Figure 5 P. falciparum LSA-1 in human liver hepatocytes .

P. falciparum sporozoites were injected intravenously into

transgenic, chimeric mice possessing functioning human livers. Liver

nodules were collected 5 or 6 days after injection, fixed and

sectioned. Sections containing developing parasites were probed

with antibody and detected by immunofluorescence. (A) A 5-day

infected liver section probed with mouse polyclonal sera against

LSA-NRC. (B) A 6-day infected liver treated as in (A). (C) A 6-day

infected liver probed with mAb 71A3F1 that recognizes the TG2

formed isopeptide bond between glutamine and lysine. (D) As in

(C) but using another mAb, 81D1C2, that also recognizes the TG2

isopeptide bond [52].
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of fibrin during blood clotting [52]. Incubation of the

LSA-1 repeat peptide with gpTG2 resulted primarily in

the formation of peptide dimers with very few trimers or

tetramers, indicating that the majority of cross-linking

was occurring at only one site on the peptide and that

once this is bound no further cross-linking occurs.

Further evidence indicating that the primary cross-link-

ing site is the repeat region was provided by attempts to

crosslink LSA-NRC-N and LSA-NRC-C proteins that

lack any repeats: neither of these proteins was able to

form multimers after incubation with TG2. However,

LSA-NRC-C did show an increase in mobility during

SDS-PAGE analysis suggesting that intramolecular cross-

linking was occurring and leading to speculation that

intramolecular cross-linking of the C-terminal of LSA-

NRC may be responsible for the increased mobility seen

in the full length LSA-NRC.

Obtaining human or primate livers infected with early

stages of P. falciparum is either impossible or prohibi-

tively expensive. Therefore, analysis of infected human

liver sections derived from chimeric mice infected with

P. falciparum [40,41] has proved invaluable. That TG2-

specific cross-linking does occur in vivo and that the

location of this cross-linking is closely associated with

that of LSA-1 was shown by incubating tissue sections

derived from these livers with two different monoclonal

antibodies that are specific to the very unique bond

formed by the TG2 cross-linking, the ε-(g-glutamyl)

lysine cross-bridge. While this model system does pro-

vide tissue sections for analysis, the infection rate is not

sufficient to allow purification of native LSA-1, and thus

biochemical or biophysical analysis that would show

that native LSA-1 is cross-linked by TG2. However, the

in vitro data coupled with the in vivo co-localization of

the unique ε-(g-glutamyl)lysine cross-bridge with the

LSA-1 tissue localization pattern observed strongly sug-

gests the two are associated in vivo.

This then leads to speculation as to why LSA-1 needs

to be cross-linked during infection. The internal repeat

unit of LSA-1, about 85 copies of a 17 amino acid unit

containing the TG2 substrate motif would suggest that

its function is important. A typical P. falciparum infec-

tion involves the migration of the P. falciparum sporo-

zoites through a number of liver cells prior to actually

infecting a hepatocyte and forming a parasitophorous

vacuole [53]. Cellular damage to the liver has been

shown to result in up regulation of TG2 expression in

the damaged tissue [54]. Additionally, TG2 activity has

been shown to be present in P. falciparum and Plasmo-

dium gallinaceum infected red blood cells [55]. Thus it

is likely that TG2 activity would be found at the site of

P. falciparum infection. A P. falciparum infected hepa-

tocyte experiences major internal reorganization as the

parasite schizonts undergo massive expansion, with tens

of thousands of merozoites being made in each infected

cell. It is reasonable to speculate that in order to maxi-

mize the survival rate of the merozoites it would be

advantageous for the parasite to maintain structural

integrity of the host cell for as long as is feasibly possi-

ble. Construction of a dense cytoskeletal matrix formed

with crosslinked LSA-1 would be possible to create a

strong flexible cell that would allow rapid expansion but

minimize the chance of rupture. However, if this were

the case, why is LSA-1 protein not found in most other

Plasmodium species? It is possible that a similar floccu-

lent material seen in other Plasmodium species is func-

tionally analogous to LSA-1, but differs in sequence, and

a possible functional ortholog, identified by synteny

mapping [56] in Plasmodium berghei, that may play a

similar role.

It has recently been shown in P. berghei that mero-

zoites are released in ‘merosomes’ - clusters of mero-

zoites that bud off from the main hepatocyte, taking a

protective layer of the host membrane with them [29].

Prior to merosome formation, Plasmodium liver stages

seem to protect the host cell from apoptosis [57]

through hepatocyte growth factor (HGF) signaling of its

receptor MET, but may undergo autophagy induced by

the huge growth of the liver stage parasite [30]. HGF/

MET signaling may also occur during sporozoite inva-

sion of hepatocytes, again blocking apoptosis. LSA-1, or

analogous flocculent material, may therefore play a vital

role in maintaining cell integrity during autophagy and

merosome formation, TG2 has been shown to play an

essential role in conferring resistance to damage in the

liver [37]. Plasmodium falciparum may be using this

response to maintain the structural integrity of the

infected hepatocyte. Reinforcement of the cell by a LSA-

1 matrix could play a role in reducing the chance of

hepatocyte death by apoptosis.

These studies suggest that recombinant LSA-1 is a

TG2 substrate in vitro and that the unique modification

made by TG2 to the protein can be detected in vivo in a

pattern consistent with LSA-1 protein localization; this

is the first study suggesting a functional role for LSA-1.
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