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Abstract: This study presents a new procedure to automatically select a dis-
criminant motor task for an asynchronous brain-controlled button. This type
of control pertains to Brain Computer Interfaces (BCI). When using sensori-
motor rythms in a BCI, several motor tasks, such as moving the right or left
hand, the feet or the tongue, can be considered as candidates for the control.
This report presents a method to select as fast as possible the most promising
task. We develop for this purpose an adaptive algorithm UCB-classif based on
the stochastic bandit theory and build an EEG experiment to test our method.
By not wasting time on inefficient tasks, our algorithm can focus on the most
promising ones, resulting in a faster task selection and a more efficient use of
the BCI training session. This leads to better classification rates for a fixed time
budget, compared to a standard task selection.
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Sélection automatique de taches motrices par un
algorithme de bandit pour le controle d’un
bouton par la pensée

Résumé : Cette étude présente une nouvelle procédure pour sélectionner au-
tomatiquement une tiche motrice discriminante pour controler un bouton par la
pensée. Ce type de controle reléve du domaine des interfaces cerveau-ordinateur,
ou Brain Computer Interface (BCI). Dans les BCI basées sur les rythmes sen-
sorimoteurs cérébraux, différentes taches motrices peuvent étre considf&@rées,
comme le mouvement de la main droite ou gauche, des pieds ou de la langue.

Ce rapport présente une méthode afin de sélectionner le plus rapidement
possible la tache la plus prometteuse. Nous avons développé a cet effet un
algorithme adaptatif UCB-classif basé sur la théorie bandit stochastique, et
créé une nouvelle expérience EEG pour tester notre méthode. Cet algorithme
évite de perdre du temps sur des taches inefficaces, ce qui permet une sélection
plus rapide et une utilisation plus efficace de la session d’aprentissage. Cela
conduit & de meilleurs taux de classification pour un budget de temps fixé, par
rapport a une sélection de tache standard.

Mots-clés : Interfaces Cerveau Ordinateur, algorithm de bandits, rythmes
sensorimoteur, sélection de taches



Automatic motor task selection for BCI 3

1 Introduction

Scalp recorded electroencephalography (EEG) can be used for non-muscular
control and communication systems, commonly called brain-computer interfaces
(BCI). BCI systems based on sensorimotor rhythms (SMR) rely on the users’
ability to control their SMR in the mu (8-13Hz) and/or beta (16-24Hz) frequency
bands [I1 2, B]. Indeed, these rhythms are naturally modulated during real and
imagined motor action.

More precisely, real and imagined movement similarly activate neural struc-
tures located in the sensorimotor cortex, which can be detected in EEG record-
ings as synchronisation (event related synchronisation or ERS) and/or desyn-
chronisation (event related desynchronisation or ERD) in the mu and beta fre-
quency bands [4,5]. Because of the homuncular organisation of the sensorimotor
cortex [6], it is possible to distinguish different limb movements according to the
position of the neural structures involved. For example, a right hand movement
involves a modification of cortical activity on the upper left precentral gyrus,
whereas the modification of activity due to feet movement is less lateralized.

BCI based on the control of sensorimotor rhythms generally use movements
lasting several seconds, that enable continuous control of multidimensional in-
terfaces [I]. On the contrary our work targets a brain-controlled button that
can be rapidly triggered by a short motor task [7, 2].

A vast variety of motor tasks can be used in this context, like imagining
rapidly or slowly moving the hand, grasping an object or kicking an imaginary
ball. These different tasks permit different levels of control. Unfortunately, the
task which enables the best control of a BCI varies for each user [§]. Generally
a preliminary training session is done to determine which motor task, among a
small subset of tasks, is the most appropriate for each user [9], 10} [11I]. Although
task selection is often mentioned as a preliminary step in the BCI litterature,
this article is the first, to our knowledge, to propose a principled method for
this purpose.

This study presents a way of automatically and efficiently evaluating and
selecting, for a given user, the most appropriate motor task. The benefit is
twofold: reducing the length of the training stage, and exploring a larger variety
of motor tasks.

We thus developed an adaptive algorithm, which, compared to a standard
selection method, is capable of rapidly eliminating non-efficient tasks in order
to focus on the most promising ones. The task selection procedure is based on
bandit theory (initiated in [12]), and its goal is to rapidly select an action that
maximizes the expected performance given a limited budget of trials.

The rest of the article is organized as follows: in Section 2, we describe
the EEG experiment we built to simulate the on-line use of a brain-controlled
button, and we model the task selection as an optimization problem, which is
solved using an Upper Confidence Bounds algorithm. We motivate the choice of
this algorithm by proving its theoretical performance. Section 3 presents results
on simulated on-line experiments, Section 4 discusses these results and presents
perspectives, while conclusions are drawn in Section 5.

RR n°® 7721
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2 Material and Methods
2.1 The EEG experiment

The experiment was designed to be as close as possible to the online use of a
brain-controlled button. To this aim, we presented, at random timing, cue im-
ages during which the subjects were supposed to perform 2 second long motor
tasks (intended to activate the button). During an online use of our adaptive al-
gorithm, the order of the presentations would be determined in view of selecting
most rapidly the best motor task.

Six right-handed subjects, ages 24 to 39, with no disabilities, were sitting
at 1.5m of a 23’ LCD screen. Scalp electrodes were recorded through an Open-
ViBE platform [13] at a sampling rate of 512Hz, on 11 out of 64 channels of a
TMSI amplifier (see Figure . The signal was band-pass filtered and a spatial
Laplacian was applied to increase the signal to noise ratio.

The experiment was composed of 5 to 12 blocks of approximately 5 minutes.
During each block, 4 cue images were presented for 2 seconds in a random
order, 10 times each. The time between two image presentations varied between
1.5s and 10s. Each cue image was a prompt for the subject to perform the
corresponding motor action during 2 seconds, namely moving the right or left
hand, the feet or the tongue. Otherwise the subjects stayed as motionless as
possible.
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Figure 1: The 64 EEG cap with the 3 electrodes from which the features are
extracted (in red). The additional electrodes used for the Laplacian are in blue.

2.2 Feature extraction

In the case of short motor tasks, the movement (real or imagined) produces an
ERD in the mu and beta bands during the task, and is followed by a strong
ERS [7] (sometimes called beta rebound as it is most easily seen in the beta
frequency band).

We use both the ERD during the movement and the ERS following the
movement to detect real or imagined movements. Although using the rebound
(or ERS that follows the movement) may not be practical for BCI, because it
increases the latency of the response, we believe that the rebound may help

RR n°® 7721
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the BCI user in early stages, by enhancing the classification rate, and it could
subsequently be discarded when the subject is sufficiently trained.

We extracted features of the mu and beta bands during the 2-second time
windows of the motor action and on a subsequent 1.5 second of signal in order to
use the bursts of mu and beta power (ERS or rebound) that follow the potential
movement. Figure [2| shows a time-frequency map on which the movement and
rebound windows are superimposed. We can see that during the movement
the power in the mu and beta bands decreases (ERS) and that approximately 1
second after the movement it increases to reach a higher level than in the resting
state (ERS).

More precisely, the features were chosen as the power around 12Hz and
20Hz extracted at 3 electrodes over the sensorimotor cortex (C3, C4 and Cz).
Thus, 6 features are extracted during the movement and 6 during the rebound.
The length and position of the windows and the frequency bands were chosen
according to a preliminary study with the first subject and were deliberately
not tuned for the other subjects.

Right hand movement, Electrode C3
35

25

Frequency [Hz]
N
o

0 05 2 25 3.25 4.75
Time [s]

Figure 2: Time-frequency map of the signal recorded on electrode C3, after
spatial Laplacian, for a right hand movement (subject 1).

2.3 Modeling the problem

Let K denote the number of different images (we will choose K = 4) and N
the total number of images (the budget) that will be presented to the subject
during the learning stage. Our goal is to find a selection strategy (i.e. that
chooses at each time-step ¢t € {1,..., N} an image k; € {1,..., K} to present)
which enables to select the most discriminative movement (i.e. with highest
classification rate in generalization). Note that, in order to learn an efficient
classifier, we need as much training data as possible, so our selection strategy
should rapidly select the most promising images in order to obtain more samples
from these rather than from the others.

RR n°® 7721
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This issue is relatively close to the stochastic bandit problem [12] [14]. The
classical stochastic bandit problem is defined by a set of K actions (pulling
different arms of bandit machines) and to each action is assigned a reward dis-
tribution, which is initially unknown from the learner. At time t € {1,..., N},
if we choose an action k; € {1,..., K}, we receive a reward sample drawn inde-
pendently from the distribution of the corresponding action k;. The goal is to
find a selection strategy which maximizes the sum of obtained rewards.

We model the K different images to be displayed as the K possible actions,
and we define the reward as the classification rate of the corresponding motor
action. In the bandit problem, pulling a bandit arm directly gives a stochastic
reward which is used to estimate the distribution of this arm. In our case, when
we display a new image, we obtain a new data sample for the selected motor
action, which provides one more data sample to train or test the corresponding
classifier and thus obtain a more accurate performance. The main difference
is that for the stochastic bandit problem, the goal is to maximize the sum of
obtained rewards, whereas ours is to maximize the performance of the final
classifier. However, the strategies are similar: since the distributions are initially
unknown, one should first explore all the actions (exploration phase) but then
rapidly select the best one (exploitation phase). This is called the exploration-
ezxploitation trade-off.

2.4 The UCB-classif algorithm

The image selection strategy is designed by using a variant of the Upper Confi-
dence Bound (UCB) algorithm [14], which builds high probability upper confi-
dence bound on the mean reward value of each action, and selects at each time
step the action with highest bound.

The upper bounds By, (of action k at time t) are defined in the stochastic
bandit problem as the sum of the empirical mean of the rewards obtained for
action k£ and a confidence interval term which depends on the number of times
T}.+ action k has been chosen up to time t:

(1)

where a > 0 is a constant.

We adapt the idea of this UCB algorithm to our adaptive classification prob-
lem and call this algorithm UCB-classif (see the pseudo-code in Table . The
algorithm builds the By, ;-values where 74, ; now represents an estimation of
the classification rate built from a g¢-fold cross-validation technique. The cross-
validation uses a linear SVM classifier based on the T}, ; data samples obtained
(at time t) from movement k. Writing 7} the classification rate for the optimal
linear SVM classifier (which would be obtained by using a infinite number of
samples), we have the property that By ; is a high probability upper bound on
ry ¢ the probability p(Bg < ry) decreases to zero polynomially fast (with N).
The constant a is a measure of complexity (VC-dimension) of the class of linear
SVM classifiers.

Figure [3] illustrates how the UCB-classif algorithm works. The intuition
behind the algorithm is that it selects at time ¢ an action k; either because it has
a good classification rate 7y ; (thus it is interesting to obtain more samples from

RR n°® 7721
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The UCB-Classif Algorithm
Parameters: a, N, ¢
Present each image ¢ times (thus set T} ok = ¢q).
fort=qK +1,...,N do
Evaluate by a ¢-split Cross Validation the performance 7 ; of each action.

Compute the UCB: By = 7 ¢ + (LTLO:OT_]Y for each action 1 <k < K.

Select the image to present: k; = argmaxyey1,... .k} Br.t-
Update T: Tkt,t = Tk,,,t—l +1 and Vk # kth,t = Tk,t—l
end for

Table 1: Pseudo-code of the UCB-classif algorithm.

y B

ﬁ Byt
Selected arm

v ® T

w value of
e upper bound

<=
~
E

—-T2,t+1 =T2,t +1

t->t+1l Confidence interval
smaller

Arm 1 will
be pulled
Arm1l Arm 2 Arm1l Arm2| att+2

Figure 3: This figure represents two snapshots, a time ¢ and ¢ + 1, of a bandit
with 2 arms. Although arm 1 is the best arm (r] > r3, represented by the red
stars), at time ¢, By; < Bag, therefore the arm 2 is selected. Pulling the arm 2
gives a better estimate 73 +11 of 3 and reduces the confidence interval. At time
t+ 1, By 41 will be greater than Bs ;y1, so arm 1 will be selected.

it, to perform exploitation) or because its classification rate is highly uncertain
since it has not been sampled many times, i.e., T ; is small (thus it is important
to explore it more). This enables to sample more often the action that has the
highest classification rate. It is indeed important to sample the best action
as much as possible in order to build the best possible classifier. The UCB-
classif algorithm guarantees that the non-optimal images are presented only a
negligible fraction of times (log N times out of a total budget N). The best
action is thus sampled N — O(log N) times (this result will be demontrated in
the next section).

2.5 Adaptation of bandits to our problem

High probability bound for the classification error Let D be a proba-
bility distribution in R? x {0,1}. Let H be the set of binary linear classifiers in
R? i.e. if (z,y) ~ D, (i.e. are drawn from D) then h(z) is the inferred class of
the sample while the true class is y.

We define the {0, 1} loss of a classifier h as

RR n°® 7721
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Lp(h) = E@,y)~p(Ln)2y)-
Let h* be the best linear classifier on D for the {0,1} loss, i.e.
h* = arg min Lp(h).

Let now X = {(z1,v1),---, (z7,yr)} be T ii.d. points in R? x {0, 1}, sam-
pled from D.
We define the {0, 1} empirical loss of a classifier h as

N

1
Z (Ln(ai)2y.)-
t:l

Let h* € H be the best empirical classifier on X in H for the empirical {0,1}
loss, i.e.

—

h* = arg }1%1% Lx(h).

Theorem 1 (Vapnik, 1982) We have with probability 1 — 20

Lo(h*) — Ex(i)] < 2 \/d(log(?T/d) ; 1) +log(4/3)

In our setting and for task k, we have 1 — 7} which is the {0,1} loss of the
best classifier for task & and 1 — 7, which is the empirical {0,1} loss of the
empirical best classifier for task k with T} ; samples.

We thus have with probability 1 — 26 for task k

It — | < 2\/d(10g(2Tk,t/d) +1) + log(4/9)
k - ’
7 Tt

where d is the dimension of the feature space, which is in our case either 12
or 6 depending on whether we consider the rebound or not.

Overview of the way the algorithm works Let us now choose 6 = 1/N.
As Ty, < N, we have with probability 1 — 2/N that

log(2N 1) + log(4N log(N
Irt = ] < 2 d(log(2N/d) 4+ 1) + log(4N) <. /@ og( ),
Tk,t Tk,t

where a = 6(d + 1) when N is big enough.
We thus have with probability 1 —2/N

alog(N) 49 alog(N)
Tkt Tpt

Note here that By ¢ = 71+ + 1/% is an upper bound with high proba-
bility on 7.

RR n°® 7721
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On the event of large probability such that this is true for any £ and any NV,
we know that we pull at time ¢ a sub-optimal arm k if for the best arm * with
reward 7%, B, < By, which acording to the last equation leads to:

alog(N)

T < Byy < By, <rp+2 )
Tyt

This means by a simple computation that we pull a sub-optimal arm k& only
if

log(N
T, < 40108V
SN GETT
We then pull the suboptimal arms only a number of times in O(log(N)), as

Tpn <4 alog(V)  and thus pull the optimal arm N — O(log(NN)) times, more

=107
precisely at least N — 37, 4%.
k

Finally, the error of the empirical classifier on the best arm is such that with
high probability

alog(N)
N — Zk-;é* 4 alog(N) -~

(r*—r;)Z

- <

3 Results

3.1 Performances of the different tasks

Six right handed subjects did the experiment with real movements and three of
them did an additional shorter experiment with imaginary movements. For four
of the six subject the best performances for the real movement were achieved
with the right hand, the two other subject’s best tasks were the left hand and
the feet.

Surprisingly, two of the subjects who did the imaginary experiment obtained
better results while imagining moving their left hand than their right hand,
which was the best task during the real movements experiment. For the last
subject who did the imaginary experiment, the best task was the feet, as for
the real movement experiment.

3.2 Influence of the use of the rebound

For the six subjects, we computed the classification rate of the best movement
and compared the result with and without using the rebound features. For
all subjects, using the rebound features increases the classification rate. It
increases on average by 8.7% for real movements and by 5.9% for the imaginary
movements (table [2)).

3.3 Offline performances of the bandit algorithm

We compare the performance of the UCB-classif sampling strategy to a uni-
form strategy, i.e. the standard way of selecting a task, consisting of N/K
presentations of each image.

RR n°® 7721
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movement without rebound with rebound benefit
real 82% 91% +8.7%
imaginary  82% 88% +5.9%

Table 2: Off-line classification rate of the best movement with and without the
beta rebound features. The increases are significant with p > 95%.

One of the goals of our algorithm is to be able to select the best task among
a large number of tasks. However, in our experiment, only a limited number of
tasks were used (four), because we limited the length of the sessions in order
not to tire the subjects, but still needed a sufficient number of samples for each
task in order to be able to compute the classification rates.

To demonstrate the usefulness of our method for a larger number of tasks,
we decided to create artificial (degraded) tasks by mixing the features of one
of the real tasks (the feet) with different proportions of the features extracted
during the resting period.

Movement Number of presentations Off-line classification
Right hand 28.6 +12.8 88.1%
Left hand 9.0+7.5 80.5%
Feet 11.6 £9.5 82.6%
Tongue 45+1.5 63.3%
Feet 80% 5.1+2.6 71.4%
Feet 60% 4.0+15 68.6%
Feet 40% 3.5+1.0 59.2%
Feet 20% 3.54+0.9 54.0%

Total presentations 70

Table 3: Actions presented by the UCB-classif algorithm for subject 5 across
the 500 simulated online experiments. Feet X% is a mixture of the features
measured during feet movement and during the resting condition, with a X/100-
X proportion. (The off-line classification rate of each action gives an idea of the
performance of each action)

To obtain an realistic evaluation of the performance of our algorithm we use
a bootstrap technique. More precisely, for each chosen budget N we simulate
500 online experiments by randomly selecting the data that will be used by the
UCB-classif algorithm or the uniform strategy.

Table 3| shows, for one subject and for a fixed budget of N = 70, the average
number of presentations of each task 7T}, and its standard deviation, across the
500 simulated experiments. It also contains the off-line classification rate of each
task to give an idea of the performances of the different tasks for this subject.
We can see that very little budget is allocated to the Tongue movement and
to the most degraded Feet tasks, which are the less discriminative actions, and
that most of the budget is devoted to the Right hand, thus enabling a more
efficient training.

Figure 4] and Table [4] show, for different budgets (IV), the performance of
the UCB-classif algorithm versus the uniform technique. The training of the
classifier is done on the actions that would have been presented online and the
testing on the remaining data. The classification results depend on which data

RR n°® 7721
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Budget N experiment’s length Uniform UCB-classif Benefit

30 3min4d 47.7% 64.4% +16.7%
40 Smin 58.5% 77.2% +18.7%
50 6minld 63.4% 82.0% +18.5%
60 7min30 67.0% 84.0% +17.1%
70 8min4d 70.1% 85.7% +15.6%
100 12min30 77.6% *
150 18min45 83.2% *
180 22min30 85.2% *

Table 4: Comparison of the performances of the UCB-classif compared to
the uniform strategy for different budgets, averaged over all subjects, for real
movements. (The increases are significant with p > 95%.) For each budget,
we give an approximation of the length of the experiment (without the pauses)
required to obtain this amount of data. For a budget N > 70 the UCB-classif
could not be used for all the subjects because there was not enough data for
the best action (One subject only underwent a session of 5 blocks and so only
50 samples of each motor task were recorded. If we try to simulate an on-line
experiment using the UCB-classif with a budget higher than N = 70 it is likely
to ask for a 51th presentation of the best task, which has not been recorded).

is used to simulate the online experiment. To give an idea of this variability,
the first and last quartiles are plotted as error bars on the graphics.
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Figure 4: UCB-classif algorithm (full line, red) versus uniform strategy (dash
line, black).
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The UCB-classif strategy significantly outperforms the uniform strategy,
even for relatively small N. On average on all the users it even gives better
classification rates when using only half of the available samples, compared to
the uniform strategy. Indeed, Table[d]shows that, to achieve a classification rate
of 85% the UCB-classif only requires a budget of N = 70 whereas the uniform
strategy needs N = 180.

4 Discussion and Perspectives

The results of the UCB-classif algorithm on this offline analysis are very promis-
ing, and we are preparing to investigate it performance during a real online ex-
periment. Because it is not penalized by non-efficient tasks, this method should
allow the exploration of a larger sets of motor tasks than customary up to now.

For this study we have chosen to use a very small set of fixed features (12
features, extracted from 3 electrodes, 2 frequency bands and 2 time-windows)
that were calibrated on only one subject during a preliminary experiment. Al-
though for all the subjects we obtained a classification accuracy for the best
task superior to 85%, it is important to note that this accuracy would be yet
improve by using a larger set of subject-specific features [I5] and more advanced
techniques (like the CSP [16] or feature selection [17]).

This is why, once the best task has been determined using UCB-classif,
the acquired data should be used to to automatically adjust the features for
each subject. By rapidly focussing, during this exploratory phase, on the most
discriminative task, sufficient data will be available to properly tune the features
in addition to training the classifier.

An alternative strategy would be to start tuning the features during the
use of UCB-classif. Unfortunately this would give rise to two issues: first, an
important risk of over-fitting, especially for small amount of data, secondly a
risk of favouring the tasks that have been the most sampled, and for which the
features will thus be the best tuned.

The BCI targeted in this article use only one motor task to control a single
brain-button. It would be even more interesting to aim for BCI that use two
or more tasks to control more buttons. With this in view, we are studying an
extended version of UCB-classif that will be able to select a pair (or a triplet)
of tasks that will both maximize the classification rate of each task against
non-movements and the classification rate between the two (or three) tasks.

Finally, our results also shed interesting light on the use of the beta rebound
for BCI (Table : the rebound window has the disadvantage of increasing the
latency of the response, but the advantage of improving the performances of
the classification. For this reason, it could be interesting to use the rebound
during the first stage of BCI operation, i.e. when the users are not very well
trained and the classification results are not yet sufficient for a good control.
After the users are better trained and sufficient data has been recorded to train
the classifier, the rebound could be abandoned, to the benefit of a faster control.
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5 Conclusion

The method presented in this paper falls in the category of adaptive BCI based
on Machine Learning, but to our knowledge, it is the first one to deal with au-
tomatic task selection. UCB-classif is a new adaptive algorithm that allows to
automatically select a motor task in view of an asynchronous brain-controlled
button. By rapidly eliminating non-efficient motor tasks and focusing on the
most promising ones, it enables a better task selection than a uniform strat-
egy. Moreover, by more frequently presenting the selected task it allows a good
training of the classifier. This algorithm enables to shorten the training period,
or equivalently, to allow for a larger set of possible movements among which to
select the best.
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