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Abstract

The heart motion study is vital for the understanding and the early diag-
nosis of cardiac pathologies that remain the primary cause of death in western
countries to date. Heart motion analysis require the extraction of quantitative
parameters from time sequences of 3D images (4D images) such as volume, sep-
tum wall thickness, ejection fraction and motion amplitude. In this paper, we
propose a framework for the reconstruction of the left ventricle motion from
4D images based on 4D deformable surface models. These 4D models are rep-
resented as a time sequence of 3D meshes whose deformation are correlated
during the cardiac cycle. Both temporal and spatial constraints are combined
to introduce a prior knowledge of the heart motion and improve the segmenta-
tion accuracy. When compared to previous approaches, our framework appears
too be more efficient and more powerful since it can also include the notion of
trajectory constraint. We have validated this segmentation tool and its abil-
ity to segment even noisy or low contrasted images on 4D MR, SPECT and
ultrasound images.

1 Context

Recently, the improvement of medical image acquisition technology has allowed the
production of time sequences of 3D medical images (3D+T or 4D images) for several
image modalities (CT, MRI, US, SPECT...). Tagged MRI is the gold standard of
heart motion analysis since it is the only modality permitting the extraction of the
motion of physical points located in the myocardium [18]. However, other modalities
may be used for meaningful parameters extraction at a lower cost. In particular, the
fast development of 3D ultrasound imaging is very promising for performing cardiac
motion analysis due to its accessibility and low cost [17].

The main target for these new ultra-fast image acquisition devices is to capture
and analyze the heart motion through the extraction of quantitative parameters such
as volume, septum wall thickness, ejection fraction and motion amplitude. However,
in order to estimate these parameters, it is necessary to reconstruct the left ventricle
motion during a cardiac cycle. Tracking the ventricle motion in 2D or 3D image
sequences has been the motivation for much research work [10, 9, 2|. Tracking [12, 16|
and motion analysis [4, 7] based on deformable models in 4D images take into account
the time continuity and periodicity to improve their robustness.



models. Our concept of 4D deformable surface models combines spatial and time
constraints which differs from most previous approaches [12, 16, 4] that decouple
them. Furthermore, unlike the strategy presented in [7], the motion estimation is
not parameterized by a global time-space transformation. It leads to more efficient
computation and more possible variability in the motion that is being recovered. Fi-
nally, our approach can include the notion of trajectory shape constraint which is the
generalization of the shape memory constraint. The adaptability of the segmentation
tool is demonstrated through various imaging modalities segmentation.

2 4D Deformable Models

Let us denote I a 4D image composed of n volumetric images corresponding to n
different instants {t¢,...,t, 1}. We define a 4D deformable model S as a set of n de-
formable surfaces {S; }+cjo,n—1], each surface model S; representing a given anatomical
structure at instant £. Among the possible geometric representations of deformable
surfaces (see [13| for a survey on deformable models), we have chosen to use the sim-
plex meshes [8] discrete surface representations. They are defined by a set of vertices
and a constant connectivity function. Their main advantage lies in their simple data
structure permitting an efficient implementation both in terms of computational time
and memory storage. This is specifically important in the case of 4D deformable mod-
els where n surface meshes must be updated at each iteration. Furthermore, simplex
meshes are especially well-suited for the computation of curvature-based regularizing
forces. In order to keep an efficient implementation, all n surface meshes S; have
the same topology, i.e. there is a one to one correspondence between the d vertices
composing each surface. In the rest of the paper, p;; denotes the position of vertex
number ¢ at time t.

A 4D model deforms under the combined action of three forces aiming at recov-
ering the motion of an anatomical structure: (i) the data, or external, force attracts
each vertex towards the structure boundaries; (ii) the spatial regularizing, or in-
ternal, force ensures the smoothness of the deforming surface by introducing spatial
continuity constraints in the deformation process; (iii) the temporal regularizing force
similarly relies on a prior knowledge on the time dimension continuity to regularize
the deformation process. A second order (Newtonian) evolution scheme discretized
using an explicit scheme governs the deformation of each vertex (see 8] for details):

piA = pf + (1= ) (PF, — PF ") + i fir (PE)) + 6 frime (PE) + Bifext(PL,), (1)

where fint, fiime, and feys are the internal, the temporal, and external forces respec-
tively. «y, [;, and §; are weights including the vertex mass and the iteration step Ak.
In all our experiments, the background damping + is fixed to value 0.35 based on an
empirical study showing that this value optimizes the convergence speed in general.

Simplex meshes provide a powerful framework for computing internal regularizing
forces [8] including smoothing forces without shrinking side effect. External forces
are computed as distance functions of the model vertices to the data. This speeds-up
the model convergence compared to potential fields approaches and it avoids oscil-
lations [5]. Deformations are computed along each vertex normal direction to avoid



discriminate boundary voxel in images. By lack of space, the computation of external
forces are not discussed here and the reader may refer to [15] for details.

3 Shape and Temporal Constraints

The main incentive for performing medical image segmentation based on deformable
models lies in their ability to incorporate a prior knowledge on the data that is being
recovered. In most cases, this knowledge is translated mathematically into a set of
regularizing constraints that greatly improves the robustness and accuracy of the
segmentation process against noise and outliers. Indeed, many methods have been
proposed in the literature to regularize deformations including parameterized [20] or
modal [6] representations with a limited number of parameters, and the control of the
deformation process through global transformations [3| or free-form deformations [11].
We introduce two complementary constraints that are specifically suited for the
left ventricle tracking in 4D images. The former consists of a shape constraint that
tends to enforce 3D geometric continuity. The latter is a temporal constraint that
causes a 4D mesh to rely on a prior motion knowledge. It is important to note
that, unlike many previous work, in our framework both constraints are applied si-
multaneously thus leading to a true 4D approach. Furthermore, each constraint can
encapsulate a weak or strong prior knowledge, as summarized in table 1.

Prior knowledge Spatial constraint Temporal constraint
Weak Curvature-based shape smoothing | Temporal position averaging
Strong Shape memory constraint Trajectory memory constraint

Table 1: Description of the different spatial and temporal constraint depending of the
amount of a priori knowledge.

3.1 Shape Constraints

In the case where no reference shape is known (weak shape constraint), we use the
regularizing force defined in [8], that minimizes the variation of mean-curvature over
the mesh. Otherwise, we add an additional shape constraint force fgape that is
related to a reference shape S’ of the anatomical structure. This constraint extends
the globally-constrained deformation scheme described in [14] to the 4D case and
introduce shape prior knowledge. Let S* denotes the 4D model after the £*" iteration.
At each iteration, external forces fe are computed for each vertex so that p;, +
fext(Pi+) corresponds to the myocardium boundary point that best matches p; ;. We
estimate a global transformation 7% belonging to a given group of transformations
(e.g. the affine transformation group Tamne) that approximates the external force
field by minimizing the least square criterion:

T = arg . min {nz_: 2_: T (pie) — (Pix + fext(pi,t))||2} . (2)

€Taffine { 1=0 j—0



remains identical to S’° up to an affine transformation. A shape force is defined
on each vertex of S* as a spring-like force towards its updated reference position:
Fsnape(PL) = PIpY-

Furthermore, a locality parameter A is introduced to weight the influence of the
shape force relative to the internal and external forces as described in [14]:

P = pl+ (=Pl —pi )+
A(aifint (pi‘it) + 6iftime(p§,t) + ﬁifext (pit)) + (1 — )‘)fsha.pe(pi‘it)-

When A = 0, the 4D model is deformed through the application of a global affine
transformation from its reference shape. Conversely, if A = 1, only the weak shape
constraint applies. Any intermediate value of A produces local deformations combined
with a shape constraint.

3.2 Temporal Constraints

The temporal regularizing force fiime is also defined as a spring-like force fiime(Pit) =

Pit— Pi: attracting vertex p;; towards a point p; ;. When no prior knowledge is used.

we define a week temporal constraint by attracting p;; towards the middle position
Pit—1+Pit+1

of its two temporal neighbors :p;; = =—--"+. Applying this force is equivalent to

minimizing the speed of each vertex, and therefore minimizing the kinetic energy of
the 4D model.

When using a priori information regarding the trajectory of each vertex, we de-
termine p;, such that this point lies on the ideal vertex trajectory. It is important
to note that these trajectories may not correspond to trajectories of physical points
lying on the myocardium but are only used as temporal constraints. To store each
a priori vertex trajectory, we could store the n vertex positions {p;}wcjon—1j of the
same vertex over time. However, this representation would require that the current
vertex p;; has the same orientation and scale than its reference trajectory, which is
not usually the case. Instead, we choose to store the trajectory, which is a closed 3D
curve (due to the periodicity of the cardiac motion), as a set of geometric parameters
{eit, it, it} that are invariant to rotation, translation and scale. Intuitively, &,
@i+, and 1;, correspond to discrete arc length, curvature, and torsion respectively.

We now describe in more details the definition of the three parameters {e; 4, v; ¢, ¥+ }-
First, each vertex p;; has two temporal neighbors p;;—; and p; 1. Let pf’t denotes
the orthogonal projection of p;; onto [p;; 1, Pit+1]- The relative position of point
pi: to its temporal neighbors may be defined through: (i) the metric parameter ¢;,
measuring the relative position of pift in segment [p; ;—1, Pis+1]; (ii) the angle ¢, , mea-
suring the elevation of p; ; above the segment [p;; 1, Pitr1] in plane (Pir 1, Pits Pit+1);
and (iii) the angle ¢;; measuring the discrete torsion of the trajectory. Let t;; denote
the discrete tangent, b;, the binormal vector, and n;, the discrete normal to point
pi: respectively:

_ PieaPicn PitPit+1 A\ Pit—1Piyt
tip=o—————, bi:

b= y Dit = , N =b; At
IPst—1Pi 41| IPitPit+1 A Pig—1Pie||

P piet1l]

The metric parameter is defined by €;; = Tore bl

the elevation angle is ¢;; =
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Figure 1 illustrates the elements composing the trajectory geometry.
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Figure 1: Left: Trajectory geometry and temporal force. Right: temporal force effect.

The position of p;, is related to the position of its neighbors and the trajectory
parameters by equation:

Pit = €itPit—1+(L=€i)Pitt1HR(Eit, Qits Pit—1, Pijt+1)(cos(Pi 0 )rs ¢ +sin(vs )i c Arie), (3)

where h = ||p¢,tpf,t||. The temporal force is computed with p;; defined by equation 3
using the trajectory reference parameters.

Figure 1 shows the temporal constraint effect. A spherical 4D model composed
of 3 instants (to, t1, and t,) is shown in the upper row. A single vertex of the model
is submitted to an external force at time t;. The middle row shows the resulting
deformation. Surface S; is deformed causing surfaces Sy and S, to deform through
the temporal constraint, although the deformation is attenuated in time. The bottom
row shows the surface converging towards its reference motion after 40 iterations.

3.3 Initialization procedure

In general, to get a first rough position of the 4D left ventricle model, we first proceed
by using only highly constrained spatial deformations without any temporal con-
straint. By using A = 0, we basically estimate a set of global affine transformations
to align the model with the 4D dataset. Then, we proceed by iteratively increasing
the locality parameter A while adding temporal constraints. This approach allows an
evolutional deformation scheme based on a coarse-to-fine strategy.



4.1 MR Images

Cardiac MR images have a very accurate resolution in slice planes (here 256 x 256
voxels). However, the third dimension resolution is much lower (the anisotropic ratio
is about 8). We show a segmentation experiment on a sequence composed of 13
images each having 9 slices covering the heart left ventricle. The cardiac MR images
contrast varies between slices and the heart boundaries are poorly defined.

A 4D model is generated by embedding a set of identical ellipsoids roughly cen-
tered on the left ventricle in the first image sequence. Only spatial and temporal
smoothing (weak) constraints are used since no relevant prior information was given.
The local deformations are constrained by a global affine transformation. A low lo-
cality coefficient (A < 40%) prevents the surface from being too sensitive to the lack
of information in area where the gradient filter gave no response. The «, # and §
weights are constant (o =1, § = 0.15, § = 0.1). Each surface model is composed of
500 vertices and the deformation process for the whole 4D model only takes 1 min 46
s on a 500 MHz Digital PWS with 512 Mb of memory. Four out of the 13 surfaces
composing the 4D model are shown in figure 2 on the left. The middle graph plots
the volume variation curve. It corresponds to a non pathological volume curve.

volume from MRI
volume from US

systole + diastole systole

Figure 2: Left: 4 surfaces from the 4D models deformed in an MRI. Middle: 4D model
volume curve. Right: 4D model volume obtained from a US image by 3D (dashed
line) and 4D (solid line) segmentation.

4.2 SPECT Images

We have processed a 4D SPECT image database including healthy and pathological
patients. Each sequence is composed of eight 3D images covering a complete cardiac
cycle. The systole is approximatively three instants long whereas the diastole takes
the remaining five instants. Each 3D image is composed of 64% voxels acquired on
a regular grid. We compare images of healthy patients with a normal endocardium
blood perfusion and pathological patients with an abnormal perfusion due to some
ischemic zones. The mean deformation time for all 4D models, made of 700 vertex
surfaces, is 2 min 34 s.

The reference model is built from an healthy patient image by 3D segmentation.
The high image contrast allows to use gradient information to compute external
forces. The 3D segmentation does not involve any time continuity constraints. A 4D
deformation stage with time smoothing forces is therefore needed to obtain a reference



the segmentation of low contrasted images showing pathologies such as ischemia. Due
to the similarity between images, the 4D model is roughly initialized in its reference
position. Rigid then similarity registration are first used to compensate the differences
in location and size between patients. Local deformations with an affine constraint are
then used. By progressively increasing the locality factor and lowering the external
forces range, local deformations only affect a restricted neighborhood.

Figure 3 shows a frontal view of the 4D models. Top line displays the reference
model obtained by 3D segmentation and revealing poor time continuity. The center
line displays the 4D model regularized by time smoothing constraints in the image of
a healthy patient. The bottom line shows the model extracted from a pathological
case. The surface model reveals the pathological heart with weak motion amplitude.

7 time

0 1 2 3 4 5 6
reference . ' . . . . . '

Figure 3: 4D models of the myocardium: reference model obtained by 3D segmenta-
tion (top row), healthy case (middle row), and pathological case (bottom row).

patho-
logical

4.3 Ultrasound Images

The speckle noise of ultrasound images and the lack of beam reflection on boundaries
tangent to the ultrasound rays make the segmentation process difficult. 4D ultrasound
images are composed by a set of slices acquired with a rotative probe [15] with a low
spatial (20 degrees of arc) and time (8 instants) resolution. A 4D model is built as
in the isotropic example, by 3D segmentation of a reference image. The model is
first registered by a similarity to align and adapt its scale to the data. The gradient
information is sufficient since the deformations are strongly constrained to speed-up
the model convergence. A large force range allows the model to find boundaries far
from the initial model position. After registration, the model locally deforms with
an affine global constraint. Local deformations guided by region based forces with a
restricted range are used in the final segmentation. The use of region-based forces
slows down the deformation process. The deformation time for the 4D model was 4
min 42 s.

Figure 2, right, shows the time evolution of the heart left ventricle (solid line).
The volume is compared to the result of an iterative 3D segmentation of the same
sequence from an earlier study [15] (dashed line). The time regularizing constraints
make the 4D curve much more regular. The initial volume value is very close (3%



tends to accumulate errors. Moreover, the 4D curves shows a profile closer from the
theoretical line expected. The model volume leads to a 49% ejection fraction. This
value compares to the 45% ejection fraction computed from a manual segmentation
by a cardiologist on the same sequence.

Figure 4 shows the sequence slices on which are superimposed the model intersec-
tions with each plane. The 8 figure columns correspond to the 8 instants. Five rows
corresponding to one slice out of two (from top to bottom: 0, 40, 80, 120, and 160
degrees of arc) are shown.

5 Conclusion

We have demonstrated the ability of 4D models to track the left ventricle motion in
4D noisy medical images. The proposed framework relies on complementary spatial
and temporal constraints to regularize the deformation while introducing a priori
knowledge about the ventricle shape and motion in the segmentation process. Shape
constraints allow the segmentation of sparse and low contrast data. This approach
leads to an endocardium surface modeling well suited for estimating quantitative
parameters such as endocardium volume or wall thickness.
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