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Abstract

In this paper we address the problem of extracting geometric models from low
contrast volumetric images, given a template or reference shape of that model.
We proceed by deforming a reference model in a volumetric image. This reference
deformable model is represented as a simpler mesh submitted to regularizing
shape constraint. Furthermore, we introduce an original approach that combines
the deformable model framework with the elastic registration (based on iterative
closest point algorithm) method. This new method increases the robustness of
segmentation while allowing very complex deformation of the original template.
Ezxamples of segmentation of the liver and brain ventricles are provided.

1 Introduction

We are interested in the extraction of geometric models of anatomical struc-
tures in medical images. Those models may be used for a surgery simulator
with patient-specific data or the study of pathologies evolutions (deformations
of ventricles in the brain...).

1.1 Related Work

Due to the low contrast of images we are considering, standard segmentation
methods like thresholding or edge extraction perform poorly. Several optimized
algorithms have been proposed:

— Segmentation can be achieved by registration of feature points [1], lines (such
as crest lines [4]), surfaces or image volumes [10]. It may be difficult to extract
feature points on complex shaped organs. We found that in the abdomen,
the large variability in the relative location of the organs between patients
made it difficult to perform a reliable registration.

— Some models built from geometric primitives have been proposed [11]. They
tend to be very application specific and they apply only for simple shapes.

— The active contour models [6], known as snakes, have been widely used in
2D. Deformable surface models have been proposed [9] in 3D. In this paper
we propose a similar approach with different constraints.



— Parameterized models [8] are very compact representations of the objects
they represent. However, they are often limited in their shape description.

— Statistical models [2] use statistical information extracted from a training set
to constrain the deformations of a model. The difficulty with this approach
is the construction of a reliable training set, especially in 3D.

1.2 Contributions

In this paper, we are proposing an algorithm for extracting geometric mod-
els of anatomic structures from volumetric images. Our method combines the
deformable model approach with the registration approach in order to improve
the robustness of the segmentation.

Deformable models are well suited for the modeling of complex shapes be-
cause their shape description includes many degrees of freedom. However, if they
are not submitted to global constraints, they can deform locally and they are
not robust against noise, outliers or even natural shape variability.

On the other hand, the approach of registering a reference geometric model
with a volumetric image tends to be more robust because it deforms the model on
a global scale. However, the geometric transformation used for the registration
is in general too restrictive to represent the inter-patient variation of anatomical
structures. Furthermore, when the geometric transformation includes a large
number of degrees of freedom, the numeric computation becomes unstable.

We propose a method that combines those two approaches. This hybrid mode
of deformations consists in an additional external force acting on a deformable
model. This force is derived from the best geometric transformation between
the actual model shape and the closest data points. This scheme limits the
degrees of freedom of the deformable model and improves the robustness of the
segmentation.

2 Constrained Deformable Models
2.1 Deformable Models

We are using 2-simplex meshes [5] to represent surfaces of IR®. They are
regular 3-connected meshes with interesting regularizing properties. Let M be
a simplex mesh made of the vertices {F;}; and N;,i € [1;3] be three neigh-
borhood functions. Each vertex P; can be expressed as a function of its three

neighbors, the three metric parameters €!, €2 and € and the simplez angle ¢;:

The metric parameters are barycentric coordinates locating the projection
of P; in the plane made by its three neighbors. The simplex angle describes the
height of P; above this plane. It is related to the notion of local discrete curvature
of the surface. The metric parameters and the simplex angle describe the shape
of a mesh with a given topology. This geometric description is up to a rigid or a

scale transformation.



We can define the neighborhood of order s of a vertex P;, Vi(P;), as the set
of points connected to P; by a topological path of length lesser or equal to s.

We deform a mesh according to forces computed from the data. Thus, we
need to extract some contour information to compute external forces applied to
every vertices. We also need to apply regularizing or internal forces ensuring that
deformations occur smoothly. Therefore we will express the total force applied on
the vertex P; by f(P;) = fint(FP;) + Bfezt(P;) where 8 is a weighting coefficient
of external forces. The model iteratively deforms accordingly with Newtonian
laws of motion: P/t = P! + §(P! — P/™1) + f(P;) where § is a damping factor
between 0 and 1.
Contour Information Contours information is computed using the gradient
as well as the grey level of voxels. The gradient of an image can be computed
by applying Sobel masks or recursive filters. From the gradient we extract (i)
a gradient map and (ii) an image of edges. The gradient map provides a local
information indicating for each vertex the location G; of the maximum gradient
value in a restricted neighborhood of P;. Edges are main contour points obtained
by hysteresis thresholding of the gradient image. They are used to attract distant
vertices toward boundary. For each vertex we are looking for the closest edge
point E; along the normal to the surface at this point.
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Fig. 1. Gradient and edges forces.
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External Forces Computation We compute the external force applied on P;
as the weighted sum of the gradient force f;,,4 and the edges force feqqe. If we
know the grey level range [gmin; gmax] of the tissue to extract, we can use this
information to exclude some outliers. f..:(Pi) = pgmdfgmd(Pi) + pedgefedge(pi)
with fgmd(Pi) = foraa(P;) if gmin < I(G;) < gmaz and is null otherwise;
fedge(Pi) = fedge(P;) if gmin < I(E;) < gmaz and is null otherwise. Since we
are considering noisy data we may perform a smoothing of external forces over
a neighborhood s. We then express the smoothed force applied on P; by:

ot (Pi) =

ext

S () 1)

P;eV.(P;)

b
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s acts as a scale parameter controlling the smoothing effect.



Regularizing Forces Computation Internal regularizing forces are related
to the geometric properties of simplex meshes. They ensure smooth deforma-
tions of the surface. Using the scale parameter we want to control the extent of
regularizing forces.

As shown before, the shape of a simplex mesh can be described by the met-
ric parameters and the simplex angle at each vertex. Let us consider a mesh M
with N vertices whose reference metric parameters are €}, &2, € at the vertex
P;. We consider fixed the € parameters so that only the simplex angle controls
the regularity of the mesh at P;. The regularizing forces then result in the mini-
mization of the local energy S; = 5 |Pi]5i||2 where «a; is a weight of the applied

regularizing force and P; is the location of the point defined by the gg' and ¢;.
Specifying the ¢; value set the P; location and therefore the resulting internal

force fint(Pi) = g}s;: = CkiPiPi.

2.2 Shape constraint

Let us consider a reference shape for a given mesh M described by the simplex
angles {¢?};. Setting b; = @Y for each i, we force the vertices to evolve toward
their reference shape. Thus, a mesh evolving under the only regularizing forces
will eventually come back to its reference shape. Figure 2 illustrates a deformed
model of a face retrieving its reference shape under shape constraints.

Fig. 2. Model of a face evolving under a shape constraint

We added a scale parameter so that all neighbors in an order s neighborhood
are implied in the computation of shape constraint regularizing forces. Given a
reference shape defined by {¢?}; we express ¢; as an offset from its reference
value:

Gi=0l+ D (- ¢)) (2)

P;eV.(FP;)

We proved that ¢; iteratively converges toward #? as soon as . Ay =1 <L
We shall therefore consider ViVj, A;; = W with r constant.

A simple test shows that the scale parameter leads to a more global behavior
of the surface while deforming. Figure 3 (left) represents a synthetic cross model
which has been rotated and translated away from its reference location. The
model is then attracted toward its reference position by the wireframed cross.



Under the external forces, the surface locally deforms. After a given number of
iterations, we can evaluate the distance between the model { P; }; and its reference

position {P}: d ({P;}i, {P}) =X, [|Pi — P?||*.
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Fig. 3. Displaced cross model and distance after deformation

Figure 3 (right) shows the distance between the deformed model and the
reference position as a function of the scale parameter. It can be seen that the
distance consistently decreases when the scale parameter increases. It means
that with a higher scale parameter (a wider smoothing over the surface), the
shape is better preserved during the deformation. The graph also shows that
the deformation is far better with the shape constraint (the solid line) than the

simplex angle continuity constraint (the dashed line).
The shape constraint scheme provides a very interesting behavior: when data

is missing, the model tends to deform toward a given shape corresponding to an

a priori knowledge of the organ shape.

2.3 Global Transformation

Another way of deforming the model is to use only global transformations to
drastically reduce the space of allowable deformations. Thus the model can be
registered as closely as possible to some data points by a global transformation
f

Consider the pair of points {(P;, D;)}; where D, = P; + f2.,(P;) (see eq.
1). We are looking for a global transformation f that minimizes the squared

distance between P; and the corresponding D;:

N
f = argmin {Z lg(P;) — Di||2} (3)

where F is a functional space limiting the kind of deformation allowed. We have
been investigating the function spaces: F,;, (rigid transformations), F;, (sim-
ilarities i.e. rigid transformations with a scale factor), F,ss (affine transforma-
tions) or Fi, (cubic B-spline transformations). They are ranked into increasing
number of degrees of freedom since Fr;y C Fiim C Fopp C Fip. Details on re-
solving equation 3 can be found in [7] for ¢ in F;y, Fgim or F,py and in [3] for

gin Fyp.



More complex, transformations could have been introduced. However, the
evaluation of the best cubic B-spline transformation is already much more costly
than the other transformations. It would be even more time consuming to evalu-
ate transformations with more freedom degrees (such as higher order B-splines),
not to mention numerical instabilities of the resolution method. In practice, we
are limited in the set of usable global transformations.

2.4 Hybrid Models

We now have a locally regularized deformable model scheme and a set of
global transformations varying from completely rigid to cubic B-spline transfor-
mations. Local deformations are often under-constrained: the model bends too
freely and is too sensitive to outliers. Global transformations do not allow the
model to fit the set of morphological variations of some human organs and it
cannot be extended due to computation time and numerical stability problems.

We propose an hybrid model combining the advantages of both approaches.

Given a deformation field of external forces {f2,,(P)}:, we can compute a global
transformation f. This global transformation results in the application of a force
fo10ba1(Pi) to each vertex of the mesh. f7, ,,,(FP;) equals to the displacement of
P; under the global transformation f. As shown in figure 4, we apply on P; a

weighted average of the local and the global force.

Fig. 4. Hybrid force computed from local and global deformations

The hybrid force applied on P; is written f7, () = v fo (P)+(1—7) stobal(F5)
where « is a locality parameter. The figure 5 shows a part of a synthetic cross
model deforming under the local, hybrid and global schemes. The cross model
has been rigidly moved away from its reference location. A wireframe cross at
the reference position attracts the model back to its original position using com-
pletely local deformations (left), hybrid deformations based on a rigid global
transformation (center) and rigid transformations (right).

We obtain a trade off between local deformation and global transformation
using the hybrid scheme. In the local case, the vertices locally deform and the
shape is strongly disturbed. In the global case, the shape remain untouched. In
the hybrid approach (here using v = 20%) we have an intermediate behavior.

Since the locality factor plays a role similar to the scale parameter (a larger
scale implies a more global behavior), we can bind v and s: v = (1 — s/Nmax)?
where Nmaz is the maximal neighborhood size.



Fig. 5. Effect of local, hybrid and global deformations after a few iterations

3 Segmentation using Deformable Models

Organs segmentation from volumetric medical images if often a required stage
for further analysis. Segmentation of the liver and vascular trees from abdominal
CT-scan images is needed for laparoscopic surgery simulation. Study of brain
ventricles deformations is also relevant for diagnosis of brain pathologies. For the
liver, we use a template semi-automatically extracted from the NLM (National
Library of Medicine data. For the ventricles we built a template from a brain
segmented by hand.

The segmentation process requires two stages. The Initialization locates and
scales the template of the organ we are considering inside the volumetric image.
From this rough initial position, the model locally deforms using the hybrid
constraints described above. The segmentation is achieved when the model stops
deforming.

3.1 Initialization

We need a first segmentation to initialize the mesh location. It can be ob-
tained by a first very rough segmentation of the organ, using standard segmen-
tation methods such as thresholding or isosurface extraction. Once we have an
approximative contour, we deform our model to fit it. Since we are relying on a
shape constraint in the following stage, we must strongly constrain deformations
so that we keep an overall consistent shape.

We use the global deformation scheme described above to initialize the model.
Thus we constrain allowable deformations in functions classes we have been
investigating. We just need to match each vertex of the model P; with a point
of the rough contour extracted. We use the Iterative Closest Point algorithm
(ICP) [12] to do so. Figure 6 illustrates the slice of a liver model before and after
ICP using an affine transformation constraint.

The rough contour has been obtained by thresholding the data. The regular
contour is the 2D trace of the model in the given slice. To obtain better matches
in the ICP algorithm (and therefore better global transformation evaluation) we
first evaluate the best rigid transformation, then we add degrees of freedom by
using the best similarity and finally the best affine transformation.
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Fig. 6. A slice of the liver before (left) and after (right) affine registration

3.2 Deformation

Once the model has been initialized, we compute the deformation field from
the image and we deform the model using the hybrid formulation using B-spline
global transformations and regularizing shape constraints. The local force ap-

plied on each points is f*(P;) = f:.,.(P) + 3 (7 fo (P)+(1—7) oline (PZ-)).
The use of the hybrid model is required to control deformations since the ini-
tialization stage provide such a rough starting point. Applying only local defor-
mations would lead the model to deform toward outliers.

eorr

Fig. 7. Deformation of a liver model

3.3 Results

We applied our deformation scheme on abdominal CT-scans (to extract the
liver) and MRI brain image (to extract ventricles). Figure 7 shows each step of
the segmentation process on a liver model. Up row is the initial model (left) and



the model after the initialization stage (center-left). Only affine transformations
were allowed so the overall shape is almost identical. A slight variation of the
orientation can be seen though. The model is then strongly constrained (center-
right) with a low locality factor so that it deforms toward edges without being
sensible to outliers. As the registration of the model with the image gets better,
constraints are released (right) by increasing locality to let the model deform
more locally. Bottom row of figure 7 shows the evolution of the intersection of
the model with one slice of the data.

Figure 8 shows the template of ventricles before (left) and after (right) the
segmentation process. As expected, the overall shape of the organs has been

Fig. 8. Model of the ventricles before (left) and after (right) deformation

preserved. The figure 9 shows the intersection of the liver and ventricles models
on different slices of the original data.

Fig. 9. Slice of recovered liver (left) and ventricles (right) models

4 Conclusion and Future Work

We have explained how to build deformable models and how to compute a set
of deformations varying from rigid to completely local transformations. Using the
hybrid deformation approach the model takes advantage of both global and local
deformation schemes. Such constrained model provides an accurate mechanism
to perform segmentation in low contrasted medical images.

In the future we plan to improve segmentation accuracy by using statistical
information for locally controlling the deformation parameters. Our segmenta-
tion tool allows the construction of anatomical databases. From those databases



we can study morphological variations of organs. Another possible use of data-
bases is the study of pathologies evolution or organs growth.

Acknowledgment

The authors are grateful to J. Marescaux, J.M. Clément and V. Tassetti from
the IRCAD (Institut de Recherche sur les Cancers de I’Appareil Digestif, Stras-
bourg, France) for their collaboration in building the liver model and providing
the abdomen CT-Scans. We thank Ron Kikinis from the Brigham and Women’s
Hospital, (Boston, USA), for providing the MRI images of the head. We also
thank the members of the Epidaure project for their previous work, criticism
and proof reading.

References

1. J. Boes, C. Meyer, and T. Weymouth. Liver definition in CT-using a population
based shape model. In Computer Vision, Virtual Reality and Robotics in Medicine,
volume 905 of Lectures Notes in Computer Science, pages 281-286. Springer-Verlag,
Apr. 1995.

2. T. Cootes, C. Taylor, D. Cooper, and J. Graham. Active shape models, their train-
ing and application. In Computer Vision and Image Understanding, volume 61,
pages 38-59, Jan. 1995.

3. J. Declerck, J. Feldmar, M. Goris, and F. Betting. Automatic registration and
alignement on a template of cardiac stress and rest SPECT images. Technical
Report 2770, INRIA, Jan. 1996.

4. J. Declerck, G. Subsol, J. Thirion, and N. Ayache. Automatic retrieval of anatom-
ical structures in 3D medical images. In N. Ayache, editor, Computer Vision, Vir-
tual Reality and Robotics in Medicine, volume 905 of Lecture Notes in Computer
Science, pages 153-162, Nice (France), Apr. 1995. Springer Verlag.

5. H. Delingette. Simplex Meshes: a General Representation for 3D Shape Recon-
struction. Technical Report 2214, INRIA, Mar. 1994.

6. M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Active Shape Models. Intertna-
tional Journal of Computer Vision, 1:321-331, 1987.

7. X. Pennec. L’incertitude dans les Probléemes de Reconnaissance et de Recalage.
Application en Imagerie Médicale et Biologie Moléculaire. PhD thesis, Ecole Poly-
technique, France, 1996.

8. G. Székely, A. Kelemen, C. Brechbiiler, and G. Gerig. Segmentation of 2D and 3D
objects from MRI volume data using constrained elastic deformations of flexible
Fourier surface models. Medical Image Analysis, 1(1):19-34, July 1996.

9. D. Terzopoulos, A. Witkin, and M. Kass. Constraints on Deformable Models:
Recovering 3D Shape and Nonrigid Motion. Artificial Intelligence, 36(1):91-123,
1988.

10. J.-P. Thirion. Non-Rigid Matching using Demons. In Computer Vision and Pattern
Recognition, CVPR’96, San Francisco, California USA, June 1996.

11. A. Yuille and P. Hallinan. Deformable templates. In M. Press, editor, Workshop
on Active Vision, 1991.

12. Z. Zhang. Iterative point matching for registration of free -form curves and surfaces.
International Journal of Computer Vision, 13(2):119-152, Dec. 1994.



