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Abstract

This paper presents a 4D (3D + time) echocardiographic image anisotropic filtering
and a 3D model-based segmentation system. To improve the extraction of left ventri-
cle boundaries, we rely on two preprocessing stages. First, we apply an anisotropic
filter that reduces image noise. This 4D filter takes into account the spatial and
temporal nature of echocardiographic images. Second, we adapt the usual gradi-
ent filter estimation to the cylindrical geometry of the 3D ultrasound images. The
reconstruction of the endocardium takes place by deforming a deformable simplex
mesh having an a priori knowledge of left ventricle shape and that is guided by
a region based data attraction force. The external force formulation improves the
segmentation robustness against noise and outliers. We illustrate our method by
showing experimental results on very challenging sparse and noisy ultrasound im-
ages of the heart and by computing quantitative measurements of the left ventricle
volume.
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1 Introduction

3D ultrasound imagery is a very promising image acquisition technology due
to its low cost and non-invasive nature. Furthermore, the development of real-
time 3D ultrasound probes creates numerous medical applications ranging
from diagnosis to therapy planning and control. For instance, it allows the
reconstruction of the left ventricle motion through the quantitative computa-
tion of the ventricle ejection fraction which is of major importance in detecting
heart pathologies (Clarysse et al., 1997; Declerck et al., 1998). Unfortunately,
the speckle noise in ultrasound images combined with a low image resolution
of 3D ultrasound make it a very challenging task. In this paper, we propose a
reconstruction algorithm of the left ventricle from echocardiographic images
based on 3D deformable models. The input images are time series of 3D ul-
trasound (or 4D images) that are filtered to reduce noise before segmentation.

In some cases, 3D ultrasound systems are based on a moving 2D probe acquir-
ing along non-aligned planes (Treece et al., 1998). In this paper, we consider
rotative probes producing a set of 2D planes intersecting each other along a
revolution axis. These images are acquired with a cylindrical geometry imply-
ing that the density of information decreases as a function of the axis distance
(figure 1).

Fig. 1. The rotative probe and the resulting US images with cylindrical symmetry.

Previous work (Winterfeldt et al., 1997; Jacob et al., 1999) have considered
2D image segmentation and tracking approaches (Nastar and Ayache, 1996;
McEachen and Duncan, 1997) without any spatial coherence between slices.
Statistical information (mainly principal component analysis) has also been
used to restrain the set of possible deformations of a left ventricle model (Jacob
et al., 1999; Giachetti, 1998). Deformable surfaces have been recently used to
reconstruct the heart motion from 3D echocardiographic images (Berger et al.,
1999), but most of them rely on tagged MRI (Guttman et al., 1994; Reynard
et al., 1995; Young et al., 1995; Park et al., 1996; Declerck et al., 1998).

Recent methods where proposed in the literature for the reconstruction of car-
diac cycles in 4D ultrasound images. In (Papademetris et al., 2001), biomedical
models are used for heart motion analysis. The segmentation stage is semi-



automatic and simplified by using opened chest dog heart images. Surface-
based methods have been proposed for left ventricle segmentation, either rely-
ing on region clustering (Sanchez-Ortiz et al., 2000) or prior shape and motion
constraints (Montagnat and Delingette, 2000) to make the segmentation ro-
bust to ultrasound noise. To our knowledge, no other work deal with the native
geometry of 3D ultrasound images acquired by a rotative probe.

Alternatively, several authors proposed to reduce speckle level by spatial com-
pounding (Rohling et al., 1997) or to detect boundaries in US images by
modeling speckle noise (Czerwinski, 1998). Segmentation approaches based
on voxels clustering after noise correction have been also proposed (Bouker-
roui et al., 1999; Stetten and Pizer, 2000).

In this paper, we propose a model-based segmentation procedure. Prior to
left ventricle segmentation, the image is filtered to reduce speckle noise. A 4D
anisotropic diffusion procedure benefits from the weak correlation of speckle
through time. Image boundaries are then extracted using a differential opera-
tor specialized for the cylindrical geometry of the ultrasound images acquired
using a rotative 2D probe. A deformable surface model including prior knowl-
edge on the shape to recover is then used to segment each 3D volume com-
posing the 4D sequence. The surface models compensate for the weak image
resolution and data occlusions. Moreover, a region-based data term that ben-
efits from the prior diffusion stage is used. Segmentation steps are illustrated
in figure 2.

. .
’ ’

+
_— —_—
anisotropic _— = J
diffusion @
) Cylindrical gradient Eij] @ J3D model-based
4D US image computation

segmentation

Fig. 2. Segmentation steps: anisotropic diffusion (section 2), gradient computation
in cylindrical geometry (section 3) and model-based segmentation (section 4).

The main contributions of our approach are:

to consider the full 3D nature of input images with a 3D model deformation,
to introduce prior knowledge on the shape to recover,

to take into account temporal consistency through 4D anisotropic diffusion,
to adapt image filtering techniques to the ultrasound images cylindrical
geometry,

e and to use a region-based approach for finding the boundaries of the left
ventricle.



2 Image filtering

To get rid of image noise, many filtering techniques have been proposed based
on the computation of a mean intensity value on a local neighborhood at each
image voxel. However, these techniques also tend to displace structures and
blur their boundaries. This side effect is critical for segmentation algorithms
relying on the detection of structures boundaries such as deformable model
approaches. Anisotropic diffusion (Weickert, 1998; Gerig et al., 1992; Alvarez
et al., 1992; Perona and Malik, 1990) has been developed to smooth an im-
age, thus removing high frequency noise, while preserving the boundaries of
structures of interest.

2.1 4D anisotropic diffusion

The anisotropic diffusion theory in imaging raised from an analogy with fluids
diffusion. It states that the image intensity I, seen as a fluid concentration,
is evolving toward an equilibrium state according to the diffusion equation
0,1 = div(D.VI) where D, a positive definite symmetric matrix (the diffusion
tensor) and 0; denotes the derivation with respect to the time.

For ultrasound images filtering, we use a diffusion tensor that depends on the
position of the voxel in the image (heterogeneous), that is computed from the
evolving image (nonlinear) and that depends on the direction of the gradient at
this position (anisotropic). We use the diffusion function g(z,a) =1— ¢ /i
(Weickert, 1998), with a the gradient threshold (the value above which the
gradient is considered high enough for a voxel to be a boundary point). It acts
as an edge-enhancing filter: where the image gradient is high, the diffusion
is high in the direction parallel to the boundary and negative in the direc-
tion orthogonal to the boundary. Therefore, the intensity gap increases and
this process leads to an enhancement of boundaries. The anisotropic diffusion
tensor is written as:

. oI oI oI oI
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With a tensor whose components are different in all directions, it is possible
to vantage the diffusion in a direction (along boundaries) and, conversely, to
prevent smoothing in another direction (orthogonal to a boundary).

The diffusion equation is discretized by the finite differences method. Let A
denote the matrix of the spatial derivations, I* the image (written as a vector)
at time ¢ and At the time step. If D! is the value of D at a voxel i and at



instant ¢, we have:
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5 if j € N (i),
Aij (It) =3y~ EnEN(i) @ if J=1
0 otherwise.

where N (i) is the neighborhood of i. Let A, be the spatial derivation in
direction d, we can write the diffusion equation in a discrete form as a semi-
implicit scheme:
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This scheme ensures stability with quite large time steps (around 1.0, com-
pared to 0.001 for an explicit scheme) and a low enough computation cost, but
as the dimension increases (3 or 4 dimensions) the system solution becomes
costly. The idea of numerical schemes based on additive operator splitting
(AOS) is to separate dimensions and rearrange image in order to only in-
vert, tridiagonal matrices (IV (¢) is then only composed of the two neighboring
voxels in the considered dimension):
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AOS scheme has the same first-order Taylor expansion in At as the semi-
implicit scheme (therefore the same convergence speed and stability) and it

fits in the discrete multi-scale theory framework (Weickert, 1998).
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As described in section 3, there are different techniques to compute the im-
age gradient direction. In the diffusion process, the gradient is computed at
each iteration, so the computation must be fast. Moreover we want to have a
symmetry between spatial and temporal data, as they are processed the same
way and the AOS numerical scheme allows to parallelize the computation in
all dimensions. For these reasons, the gradient is simply computed by central
finite differences in the diffusion process.

One key parameter of the diffusion process is the gradient threshold a. As the
diffusion process evolves, the homogeneity of image regions increases and the
occurrence of high gradient voxels decreases. Thus the threshold must decrease
with time. It must also be different for each dimension, as the information
density and variation is different.

2.2 Ultrasound tmages filtering

Anisotropic diffusion is suited to filter 4D ultrasound images. It allows us to
drastically reduce the speckle noise while enhancing the structure boundaries.



It is a pre-segmentation tool that can noticeably improve the quality of model
based reconstruction.

Since ultrasound images speckle is not necessarily correlated in time, it appears
as a high frequency noise in the time dimension. Although the speckle makes
some parts of the boundaries disappear, the time diffusion allows to recover
some of them. Thus, it seems meaningful to perform anisotropic diffusion on
4D images (Elayadi, 1997; Sanchez-Ortiz et al., 1999). Brandt et al. (1999)
similarly use time and space information for a better detection of ultrasound
image boundaries.

2.3 Experiments

The 4D anisotropic diffusion is applied on the image sequences for 3 iterations
of 1.0 time unit. The thresholds a,, a,, a, and a, are computed at each step
as a fixed fraction (80%) of the cumulated histogram of the gradient compo-
nent considered (as a percentage, it decreases when the number of edges is
reduced, so the remaining boundaries are well preserved). Since boundaries
correspond to high gradients, thresholds are chosen in the small upper part of
the histogram. Threshold values are displayed in the table below:

Initial Image | First iteration | Second iteration
Gy 10 5 4
ay 14 7 5
a, 26 19 16
ay 22 13 10

Thresholds are decreased by almost 50% after the first iteration for every
dimension: as expected, the most important part of the smoothing is done
during this iteration and thresholds are significantly different clearly showing
the data anisotropy.

Fig. 3. 4D anisotropic diffusion in ultrasound images of the heart. Left: the original
image. Center: the 3D diffused image. Right: the 4D diffused image (same diffusion
parameters).



We can observe on Figure 3 that the anisotropic filtering smooths the noise,
but keeps the sharpness of boundaries, even enhancing it at some places. We
can also observe that the 4D diffusion is better in filtering noise in homo-
geneous zones and tends to produce more continuous boundaries, which is,
indeed, very interesting for model based segmentation. Diffusion is an effec-
tive preprocessing but it remains computationally expensive. In a time series
composed of five 3D images whose dimensions are 256 x 256 x 17, the diffusion
process takes 30 minutes while the deformation of the model in all image of
the sequence takes less than 5 minutes using the same hardware.

3 Gradient Computation in Cylindrical Geometry

Model based segmentation relies on boundaries detection to guide deforma-
tions. This usually involves gradient computation from the input images. In
3D images based on a regular lattice (Cartesian images), the computation of
gradient vectors is mostly based on separable filters (e.g., Sobel operators)
or recursive filtering (e.g., Canny-Deriche filters (Monga et al., 1991)). When
considering images of cylindrical geometry, classical approaches can be used in
each slice, computing 2D gradients and neglecting the tangential component.
It is also possible to interpolate the image on a regular lattice before applying
3D operators. Unfortunately, this approach is hopeless due to the important
angular resolution and the low signal-to-noise ratio (see left of figure 4 for
a resampling example on a realistic echocardiographic image composed by 9
planes). Instead, we compute a 3D gradient vector for each image voxel in the
cylindrical geometry (see (Herlin and Ayache, 1992) for a similar approach in
2D).

Image plane

z

Fig. 4. Left: echocardiographic image interpolation on a Cartesian grid. Right: cylin-
drical geometry.

Let My be a point in Euclidean space with Cartesian coordinates (zg, yo, 20)
and cylindrical coordinates (g, 8y, z9) (see right of figure 4). Let I be the cylin-
drical image defined as I : I' C IR® — IR, where T is the discrete cylindrical



grid over which the grey-level values are known. The convolution of a 3D signal
S by a filter f at point M, is defined in Cartesian space as:

(S® f)(Mp) = / / [ fwo =290 =y, 20 = 2)S(a,y, 2)dudydz. (1)

To write this equation in cylindrical space we use the coordinate transforma-
tion x = rcos(f), y = rsin(f), and z = z. Let J be the Jacobian matrix
corresponding to this transformation. A variable change in equation 1 leads
to:

2w

(5@ f)(Mp) = ///f 20 — rcos(0), yo — rsin(0), 20 — 2)S(r, 0, 2)|T|drdbdz. (2)
—o0 0 0

Since image [ is a discrete signal, we discretize equation 2. Let dr, d6, and 6z
be the dimensions of the discrete filter applied to /. The filtered value of I at
point M, € I', knowing that |J| = r, is:

20+0z  Bp+d60  ro+or

(I® f)(My) = Z Z Z (r,0,2)f(xqg — rcos(f),yo — rsin(0), zg — z)r-

2=20—0z 0=00—00 r=ro—0or

We use Deriche filters (Deriche, 1987) to perform gradient computation in
cylindrical geometry. Let D, and S; be the mono-dimensional Deriche deriva-
tive and smoothing filters respectively, in dimension d € {z,y,z}: Dy(u) =
ue~® and Sy(u) = (a|u| 4+ 1)e~®*l. The directional gradient operators are
defined as G, (u) = Dy(u)Sy(u)S,(u), Gy(u) = Sy(u)Dy(u)S,(u), and G,(u) =
Sz(u)Sy(u)D,(u). The discrete masks are computed by sampling G, G, and
GG, values then normalizing mask coefficients such that the sum of positive co-
efficients equals 1 and the sum of negative coefficients equals —1. This ensures
that the derivative mask coefficients sum is nul.

Top row of figure 5 illustrates the filter response on a slice of a synthetic cube
image for a 3® (left), a 5% (center), and a 73 (right) filter. Bottom of figure 5
compares the output of the 2D Sobel filters (left) and a 3D cylindrical operator
(right) in one image plane. A magnification of the center part is also shown.
The cylindrical operator improves significantly the edge detection and reduces
the speckle effect by filtering along the axial direction, especially close to the
rotation axis where dense data is available.

4 Model representation

Many deformable surface representations have been proposed for model-based
segmentation of medical images (McInerney and Terzopoulos, 1996). The left
ventricle was first modeled using parameterized representation such as surface
harmonics (Schudy and Ballard, 1979), superquadrics (Bardinet et al., 1996),



Fig. 5. Top row: cylindrical gradient filter response on a cube; Bottom row: com-
parison of Sobel operators (left) and the cylindrical gradient filter (right) on a slice.
A magnification around the symmetry axis is given that clearly shows the filtering
improvement.

or generalized primitives (Park et al., 1996). Discrete surfaces have also been
used for their capabilities to model complex shapes (McInerney and Terzopou-
los, 1995; Montagnat and Delingette, 2000). Among existing representations,
we use the discrete simplex meshes (Delingette, 1999) for their simple geome-
try and their ability to define shape constraints in a computationally efficient
manner.

4.1 Law of motion

A 2-simplex mesh is a discrete non-parametric representation of a surface in
IR? defined by a set of vertices {p;}; and their connectivity. It is a regular
3-connected mesh. Its topology is dual to a triangulation, and it can represent
surfaces of any topology. The geometry of simplex meshes allows us to define
discrete quantities such as mean curvature at each vertex (see (Delingette,
1999) for details). All vertices follow a Newtonian law of motion. Three kinds
of forces are computed at each vertex p;. The internal force f/™ enforces some
regularization behavior. The external force ff** pulls the model toward the
ventricle boundaries. The global displacement force figl”bal is computed from
a global transformation with few degrees of freedom designed to constrain all
vertices displacements. The law of motion is discretized using finite differences
and an explicit iterative scheme:

Pt =pi+ (1= ) (P! - pi7) + Mafi™ + B™) + (1= N (3)

where p! denotes the position of vertex p; at time ¢, v is a damping coefficient,
« and [ are the internal and external force weights, and A is a locality weight.
The discrete time step is hidden in the «, 5 and 7 coefficients. We use a coarse-



to-fine approach, limiting model deformation capabilities by setting A to zero
at the beginning of the deformation process, then gradually increasing it to
allow more local deformations. The « coefficient value is set to 1 thus having
[ variations weight the respective influence of the internal and the external
forces. The 3 coefficient varies from 1 to 0.1 as A increases. The damping value
«v is fixed to 0.35 based on some empirical results showing this value usually
provides a fast convergence speed. An automatic algorithm for governing A
evolution was proposed in (Montagnat and Delingette, 1998).

At the beginning of the deformation process, A = 0 and, due to the com-
putation of f#** (Montagnat and Delingette, 1998), equation 3 exactly cor-
responds to the Iterative Closest Point (ICP) algorithm (Besl and McKay,
1992; Zhang, 1994). Thus a rigid registration of the model is first achieved.
This drastic reduction of the model number of degrees of freedom constrains
the deformation capability of the model and make the model far less sensitive
to its initial position. When rigid registration is achieved, affine registration
is applied before allowing local model deformations (A > 1).

4.2 Surface reqularization

Due to its discrete nature, the regularization of a simplex mesh is not based
on the evaluation of surface partial derivatives but on the relative position of
a vertex with respect to its neighbors. When a reference shape similar to the
structure to segment is known, we rely on a shape regularizing constraint. The
internal force is computed from the geometric parameters of simplex meshes.

Let us consider a mesh vertex p; and its three neighbors pngn (), J € [1,3]
defining a tangent plane P; with normal n;. The position of p; is related to
the position of its neighbors by the equation:

p: = 5%pngh1(i) + ggpnghg(i) + (1 - 511 - E?)pnghs(i) + H(pnghj () g}’ 612’ gpi)ni

where €] and €7 are two barycentric coordinates called metric parameters, p; is
a curvature related angle called simplex angle, and H is an elevation function
above P; (see (Delingette, 1999) for details). It can be shown that a simplex
mesh shape is defined up to a similarity transformation by the set of its metric
parameters and simplex angles {}, 2, ;};.

Each vertex p; is attracted toward a point p; on a smoother mesh. Let 5{ , Qi
and p;- denote the metric parameters, the simplex angle and the projection
of p; on P; respectively. The internal force can be decomposed as the sum of
a tangential and normal component :

fint (pz) = (f)zJ_ - sz_) + (H(pnghj(i)a g%’ 5?7 QOi) - H(pnghj(i)a 5zla 5?7 sz))nz
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The tangential component of the internal force controls the vertex spacing over
the surface. To ensure uniformly spread vertices, metric parameters are all set
equal : ] = & = 3. The normal component constrains the mean curvature
of the surface through the simplex angle. The definition of ¢; depends on the
level of geometric regularity that should be enforced. Let {¢5}; be the set of
simplex angles defining the reference shape of an anatomical structure. Setting
©®i = @5, V1 constrains the surface to converge toward the reference shape in
the absence of external forces. This internal force definition introduce shape
prior knowledge in the deformation process. Reference simplex angles ¢; are
measured on the reference mesh used for segmentation. This implies deforming
a first mesh in a reference image. The reference mesh can be guided manually
if needed as this initialization stage needs only to be done once.

4.8 Statistical shape variations

By using simplex meshes, we are using zero order statistics on shape (i.e. a
mean model) with reference curvature information to introduce prior shape
knowledge in the segmentation process. Several authors reported positive re-
sults in using PCA to compute first order statistics (i.e. shape variations) (Cootes
et al., 1995). However, we found difficult to apply this result in our case.
Training on reference surfaces in the 3D case is not straightforward due to
the difficulty to match corresponding points on a set of surfaces (except for
a very few curvature extrema points). Moreover, relevant statistics can only
be extracted from large enough image databases. This is even more critical in
3D were the variation space dimensionality is much higher. In the case of 4D
imagery, statistical variation modes would only be relevant for the segmenta-
tion of one, say the first, image. Each following image of the sequence would
require a new statistical model.

5 External Forces for 3D US Image Segmentation

Our deformable simplex mesh relies on external forces for segmenting the left
ventricle in 3D US images. These forces should attract each vertex toward the
closest boundary voxel. In echocardiographic images several difficulties arise
for finding object boundaries. The speckle, inherent to the image formation
of US imagery, and the image noise mainly originating from the digitization
process, are responsible for causing false contour detections (false positives).
The variable information density, due to the cylindrical geometry of the image,
and the missing information, due to the low energy of the ultrasound beam
reflected at the organ interfaces and the rib occlusions, make the ventricle
contours hard to detect (false negatives). We rely on the model regularizing
behavior and the robust force expressions proposed below to deal with false
positives and false negatives.
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5.1 Scan-Line Algorithm

Closest boundary voxels are computed for each vertex by scanning the image
along the vertex normal direction until a boundary voxel is reached. Indeed, it
has been shown in (Kimia et al., 1992) that the class of surface deformations
is not restricted by only considering displacement along each vertex normal.
Thus, we restrict the search for boundary points along the normal direction
n; of each vertex p;.

We proceed by scanning all cylindrical voxels intersected by the normal line
(pi, ;) in the image volume within a fixed range centered on each vertex (see
left of figure 6). The image intensity I(p) at any normal line point p is tri-
linearly interpolated from the eight closest image voxel intensities Iy to I7 (see
center of figure 6). This algorithm outputs a list of voxels for which we store
their interpolated intensity value and their Euclidean distance from p;. The
scan-line range is fixed as a percentage of the image size. We used a ten-voxel
length scan-line in our experiments.

Fig. 6. Normal line and the scanned voxels; Tri-linear interpolation on a cylindrical
voxel; 3D display of the scanned voxels.

5.2  Gradient Norm Eztremum

We first use the extracted scan line in order to find the gradient norm extrema
along the normal direction. In practice, the normal direction at a gradient
vertex quickly converges toward the direction of the gradient vector in presence
of a strong boundary. In order to improve this external force computation, we
propose to add two additional constraints for a voxel to be considered as
the closest boundary voxel. Since the cavity of left ventricle is surrounded
by structures that appear brighter, we use a gradient orientation constraint
to keep only boundaries whose gradient vector direction is roughly the same
as the normal direction. Also, we constrain the boundary voxel to belong
to a given range of intensity values in order to eliminate spurious boundary
information.

5.3  Region-Based Algorithm

The previous algorithm may still fail due to the presence of strong edges in
the ventricle boundaries vicinity. Errors occur if such a neighboring edge has
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a higher gradient than the ventricle edge and if it meets the two additional
constraints listed above. In order to improve the discrimination of the bound-
ary search algorithm, we propose to use both notions of region and boundary.
Region-based image segmentation has been proposed in (Ronfard, 1994) and
has proven to be more powerful than gradient-based approaches. We first ex-
tract the intensity profile of a vertex in the filtered image. Prior anisotropic
diffusion ensures rather homogeneous regions in the image. The intensity pro-
file is scanned from the inside to the outside to find a set of consecutive voxels
within a given intensity range and of length greater than a minimum threshold.
Once the beginning of a region has been found, we search for the first voxel
value that does not belong to the region intensity range thus corresponding
to the end of the region. Given that such a voxel has been found we then
look for a voxel whose gradient norm is above a given threshold in the vicinity
of the region end. This algorithm requires to set appropriate values for the
region intensity range and the gradient norm threshold parameters, based on
the segmented image properties.

6 Experimental Results
6.1 Gradient computation

This experiment compares three cardiac left ventricle reconstructions from a
3D echocardiographic image using two different expressions of the external
force. The first reconstruction relies on the gradient of the gradient norm
as the external force, thus following the approach originally introduced by
Kass et al (Kass et al., 1988). The second and third reconstructions relies on
gradient extremum and region-based external forces as introduced in section 5.
The left ventricle model is initialized as an ellipsoid roughly centered inside
the ventricle. Figure 7 shows the reconstructed surfaces (top row) and the
intersection of each surface with one of the image planes (bottom row). The
template image quality is high (4 degrees of arc resolution) and gradients are
compute using a 73 cylindrical filter. The gradient of the gradient norm (left)
is not reliable enough due to the large amount of speckle which introduces too
many false positives. The scan-line algorithm (middle) provides better results
for both the gradient extremum and the inner dark regions search. The region
approach (right) better smooths the boundary and is more accurate as can be
clearly seen in the mitral valve area (lower part of image).

6.2 Echocardiographic Images
The temporal evolution of the cardiac left ventricle is extracted from a series
of eight 3D echocardiographic images covering the heart systole (contraction).

The original images quality is poor due to a low resolution (20 degrees of arc
between planes) speckle, video signal digitization artifacts, and occlusions due

13



Fig. 7. Gradient of the gradient norm (left), gradient extremum (center), and region
based (right) reconstruction.

to the reflection of the ultrasound beam by ribs. A region based approach is
used for computing the external image attraction term. In order to study the
benefit of anisotropic diffusion, the same 4D image is segmented both with
and without prior diffusion.

The model built in the previous experiment is used as a template for the seg-
mentation of the first volume in time. At each following time step, the model
is initialized from its position at the previous time instant. The same deforma-
tion parameters have been used for original and diffused images segmentation.
Two deformation stages occur for each time instant: a global rescaling of the
model using a global affine constraint (8 = 1, A = 10%, scan line range r = 10
voxels) followed by a local deformation stage that compensates for non-rigid
deformations (8 = 0.2, A = 70%, r = 5 voxels).

time during systole

Fig. 8. Left: volume variation extracted from the original (dashed line) and diffused
(solid line) images. Right: surface models extracted from the original (top row) and
diffused (bottom row) images.

LV volume

Figure 8 displays the surface model extracted at all 8 time instants in the
native (top row) and diffused image (bottom row). Even though they appear
to be similar, the graph shows the model volume variations through time for

14



the original (dashed line) and diffused (solid line) images. For detailed view of
the differences, figure 9 shows the intersection of the models extracted from
the original data onto slices of the original image, while figure 10 shows the
models extracted from the diffused data. The horizontal axis represents time
(all 8 time instants of the sequence). The vertical axis is the rotation angle of
the displayed slice (from top to bottom: 0, 20, 40, 60, 80, 100, 120, 140, 160
degrees of arc).
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Fig. 9. Intersection of the deformed models with the original image.

A last segmentation example on a complete heart cycle sequence is shown in
figure 11. The sequence has a high resolution: 4° of arc angle between slices, 22
time instants. There is a visible breathing artifact. Figure 11 shows the volume
variation curve and the reconstructed model superimposed on one slice of the
sequence.
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Discussion

The anisotropic diffusion procedure improves both the gradient computation
and the extraction of homogeneous regions along the model normal directions.
As a consequence, the model better fits the visible boundaries of the left
ventricle in echocardiographic images. For the two segmentations shown above,
the same parameters of motion have been used.

The region based force defines the model boundary as a bright region whose
length is at least 5 voxels. However, due to the intensity smoothing caused
by the diffusion process, the intensity threshold defining “bright regions” is
different in the original and the diffused data. The definition of the ventricle
boundaries is sensitive to this threshold and this results in a displacement
of the apparent boundaries that explains the difference in volume estimation
between the original and diffused data (see left of figure 8). In the absence
of ground truth segmentation, it is very difficult to set the region threshold
so that the reconstructed surface corresponds to the physical boundaries of
the heart ventricle and that the computed volume corresponds to the actual
volume.

However, the computation of the heart left ventricle ejection fraction if far less
sensitive to the intensity threshold since it is a ratio parameter. The ejection
fraction ef measures the fraction of blood ejected by the ventricle at each
heart cycle: ef = (Umax — Umin)/VUmax Where vmay and vmi, are the maximal and
minimal ventricle volume respectively. In the first experiment shown above,
we measured ejection fraction values of 41% in the original data and 44% in
the diffused data. This values compare to the 45% ejection fraction estimated
from hand-made segmentation of the image by a cardiologist. These results
are very satisfying since the inter-operator variability in the computation of
the ejection fraction on that kind of images is in the order of a few percents.

The model shape constraints regularize the surface deformation. This is visible
in the second experiment (figure 11) where shape constraints attenuate the
effect of the breathing artifact on the surface reconstruction.

7 Conclusion

In this paper we have demonstrated that segmentation of cylindrical echocar-
diographic images can be performed using deformable surfaces. The model
provides enough intrinsic (shape) and extrinsic (grey-level range) prior knowl-
edge on the data, to constrain the deformations properly even in the presence
of very sparse and noisy data. We are now focusing on introducing more prior
knowledge in the deformation process using temporal continuity in the defor-
mation process (Montagnat and Delingette, 2000).

Prior filtering of the image reduces the speckle level and improves the re-
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gion detection. The 4D anisotropic diffusion preprocessing improves spatial
and temporal consistency of the time series of images. The image geometry
is also taken into account for a better detection of structure boundaries. The
model-based segmentation enables an accurate computation of the left ventri-
cle ejection fraction when compared to hand made segmentation by an expert.
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