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Abstract

Deformable models have raised much interest and found various applications in the
fields of computer vision and medical imaging. They provide an extensible frame-
work to reconstruct shapes. Deformable surfaces, in particular, are used to represent
3D objects. They have been used for pattern recognition [35,2], computer anima-
tion [100], geometric modelling [59], simulation [28], boundary tracking [11], image
segmentation [69,67,91,5,45], etc. In this paper we propose a survey on deformable
surfaces. Many surface representation have been proposed to meet different 3D re-
construction problem requirements. We classify the main representations proposed
in the literature and we study the influence of the representation on the model
evolution behavior, revealing some similarities between different approaches.

Key words: Deformable Surface, model representation, surface geometry, surface
topology, 3D reconstruction

1 Introduction

For the past decade, there has been a significant research effort for achieving
3D objects modelling based on deformable models. The main motivation of
this research is to provide reliable reconstruction tools that are both robust
and generic.

Deformable models cover a very wide range of applications and have been
used in pattern recognition [35,2], computer animation [100], geometric mod-
elling [59], surgery simulation [28], tracking [11], image segmentation [69,67,91,5,45],
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etc. Extremely variable representations have been used to fulfill different 3D
modelling needs, from deformable 3D lines [90,40] to deformable volumes [103,17].
In this paper we focus on deformable surfaces that have been vigorously in-
vestigated for 3D objects modelling. Deformable models were introduced by
Kass et al in 2D as explicit deformable contours [46] and generalized to the
3D case by Terzopoulos et al [102]. Parametric representations such as su-
perquadrics [99,7] and discrete representations [72,32] have also been proposed.
Recently, implicit representations have been used with the ability to handle
topology changes [58,112,53].

When reconstructing noisy 3D datasets [1], it is needed to constrain the model
deformation and to introduce some prior information about the structure that
is being recovered in the deformation process. For instance, statistical shape
variations from a training set [26] may be used to constrain the deformation of
a geometric model. In this paper, we propose a survey on existing deformable
surfaces. We only focus on the geometric representation and evolution behavior
of these surfaces without describing the numerous data forces that have been
proposed since they are very dependent on the nature of the dataset (3D
images, range images, unstructured point sets,...) and the target application.

Different approaches are classified according to their surface representations
in section 2. The different schemes of deformation found in the literature
are studied in section 3. Although there is a clear link between a surface
representation and its evolution law, we exhibit some similarities between
different approaches. Specific approaches for constraining the deformation of
surface models have been proposed. These methods are described in section 4.
The ability of various representations to handle topology changes is the topic
of section 5.

The wide application field of deformable models has already led to the pro-
duction of several surveys. McInerney and Terzopoulos [62] study deformable
models for medical image analysis and classify the approach found in the liter-
ature based on their applications. Brown [14] focuses on registration methods
as well as Audette et al [4] who thoroughly classify registration techniques
from an algorithmic point of view. In this paper, we focus on the mathemati-
cal and computational foundations of deformable surfaces used for 3D object
reconstruction in a wide variety of applications.

2 Deformable surfaces geometry

A deformable surface can be characterized by its surface representation and
its evolution law describing its ability to represent a different shape. We first
focus on surface geometric representations.



2.1 Shape and Deformation parameters

A key aspect of deformable models lies in their geometric nature. Basically,
two criteria may be associated with the geometry of these models :

e Shape Description. A deformable model may be restricted to represent sim-
ple shapes (for instance ellipsoids) or shapes of restricted topology (for in-
stance spherical Fourier descriptors) or may represent any shapes indepen-
dently of their topology (for instance spring-mass models).

e Deformation Description. Instead of deforming directly a model shape, it is
possible to deform its embedding space. For instance, a global transforma-
tion like an affine transformation may be applied to the model. The model
number of degrees of freedom then depends on the class of allowed trans-
formations. In the case of affine transformations, the deformation is only
described by 12 parameters.

In terms of geometric description, a deformable surface Sq is controlled by a
vector of shape parameters q = (q1, ... ,qnq)T. If the surface has an explicit
representation, it is defined as a function :

Sy R™ x Q — R?
(1)

(q17 .- ':qnqa’ra 8) = pq(n S)

where (7, s) denotes a point of the surface parameter domain .

However, in some cases, it may be useful to introduce an additional vector of
deformation parameters d = (dy, ..., d,,)7 that controls the application of a
global transformation Ty on the surface :

S(aa) = Ta(Sq) : R™ x R™ x - R? @)

Q13- -3 Gnygs di, - o dny, 7, 8) = Ta (Pqg(r, s))

Usually Ty is chosen as an endomorphism of IR®. It is important to note that
we could also include the set d into the set q of shape parameters. However,
the mathematical methods associated with these two formulations are slightly
different (see sections 3.1 and 4 for the two approaches).

Therefore, we can distinguish between two extreme cases. On one hand, when
nq = 0 and n, # 0, we have a typical deformable model framework with a large
variety of possible surface representations. These surface representations are
described in the rest of section 2 and are illustrated in figure 1. On the other
hand, when n, = 0 and ny4 # 0, we have a surface registration framework, where



a surface is deformed through the application of a global transformation. In
this case, the initial surface description S does not even have to be a parametric
surface. Indeed, this approach may be applied to any surface having an explicit
representation even a discrete surface mesh.

In section 4, we describe several approaches combining a global transformation
(nq # 0) and shape parameters (n, # 0).

Deformable
surface

Discrete

models
Continuous Discrete Particle
models meshes systems
(section 2.5) | (section 2.6)
Spring-mass
Simplex model
Explicit Implicit mesh (section 2.5.2)
(parameterized) representation  (section 2.5.3)
representation (section2.4) | Triangulation
(section 2.3) (Section 2.5.1)
Level-set

(Section 2.4.4)

Polynomial

finite support Deformable
representation template

(section 2.3.1) | (section 2.3.3)

Superquadric

(sections 2.3.2 Algebraic Hyperquadric
and2.4.2)  grface (Section 2.4.3)

(section 2.4.1)
Modal
- decomposition
B-Splines _ Finite (section 2.3.4)
differences
Finite
elements

Fig. 1. Different geometric representations of deformable surfaces.



2.2  Continuous and discrete representations

First, we make a distinction between deformable surfaces having continuous
and discrete representations (see figure 1). With discrete representations, the
geometry of surfaces is only known at a finite set of points. Continuous rep-
resentations must be discretized for computational needs but they offer the
ability to compute differential quantities such as surface normals or curva-
tures almost everywhere on the surface. In fact, we have extended the notion
of discrete representation to include any surface representation having at most
a C° continuity (position continuity) along the surface. This is why we have
included triangulations and simplex meshes in the set of discrete surfaces.

Each family in turn can be divided into different classes of representations.
Continuous surfaces may be defined through an explicit or an implicit equa-
tion while discrete surfaces are mainly represented through discrete meshes or
particle systems.

2.8 Ezxplicit representations

When using an explicit representation, surfaces are described by coordinate
functions depending on a vector of shape parameters q as described in equa-
tion 1. A further distinction between these models can be made depending on
the number and the nature of the parameter set q. The number of parame-
ters has an impact on the complexity of the deformation. Another criterion
is the local or global deformation impact of these parameters. With param-
eters controlling local deformations, fairly complex shapes may be obtained
but at the expense of an important computational complexity. On the con-
trary, global shape parameters lead to more stable numerical schemes when a
limited number of parameters are estimated.

2.3.1 Polynomial finite support functions

In these representations, shape parameters correspond to the coefficients of
polynomial finite support functions. Each parameter has only a local impact
on the surface shape. This often leads to solve linear systems of equations
with sparse matrices. This category includes the different types of contour and
surface splines among which B-splines are the most widely used. In [64], Menet
et al introduce “B-snakes”, some deformable contours represented as B-spline
curves. B-splines are smooth curves or surfaces with high level of geometric
continuity but they allow sharp corners by duplicating some control points
to make the curve C° only. Menet et al use B-snakes for recovering building
contours from aerial images. B-spline surfaces have also encountered some



success in the deformable models community for registration of anatomical
structures and contour tracking [40,10] in image sequences. Leitner et al [51,50]
define deformable contours and surfaces based on B-snakes with the ability to
operate topology changes.

In fact most finite element models are based on shape functions that are
polynomial finite support functions. These shape functions are usually related
to Hermite polynomials in order to guarantee at least a C' continuity along the
surface. Also, these approaches are often limited to represent surfaces of simple
topologies because of their difficulty to ensure C! or G' geometric continuity
on surfaces of arbitrary topology (see for instance [36]) while keeping local
support functions.

Finite elements methods are mainly used as a numerical framework for mini-
mizing deformation energy functionals. They are further studied in section 3.4.

2.8.2  Superquadrics

Superquadrics are a generalization of quadrics to surfaces. They certainly are
the most widely used parameterized surfaces [99,7,80,106]. In particular, su-
perellipsoids represent closed surfaces. A superellipsoid Qg : 2 — R? is de-
fined by a parametric equation. The surface parameter vector q has only 6
components and Q = [0, 27[x[—-7F, §]. Superquadrics only allow the represen-
tation of shapes with a symmetry axis and are not suited to represent complex

shapes.

Superquadrics can also be represented as implicit surfaces of a function Fy :
IR® — IR. The surface is then defined as Sq = {p € R?|F,(p) = 1}. This
representation is suited to determine if a point p belongs to the interior
(Fyq(p) < 1) or the exterior (Fy(p) > 1) of the surface. Choosing one repre-
sentation instead of the other also affects the evolution behavior of the model
as we can see later in this paper.

2.3.8 Deformable templates

Yuille et al [111] define a parametric model suited to the representation of the
eye. The set of shapes that the model can represent is restricted to the specific
needs of the application. It overcomes the shape variation restrictions by using
only parameters adapted to a given application while making the evolution
process robust since the number of parameters is as small as possible.



2.8.4 Modal decomposition

Different representations use a modal decomposition of the model. The decom-
position basis is a set of different frequency harmonics. This representation is
equivalent to a parametric surface set whose parameters are the mode weights.
The sum of the first modes composing the surface gives a rough approximation
of its shape. The approximation refines as higher frequency modes are added
to the representation. In practice, it is desired to reduce as much as possible
the number of modes used to obtain a compact representation, knowing that
few modes usually allow the representation of rather complex shapes. More-
over, the small number of modes allows the regularization of the surface when
considering its evolution [72,76].

Staib et al [87] investigate Fourier mode decomposition. A curve may be rep-
resented as a sum of sinusoidal terms. This representation extends to surfaces
by using spherical harmonics, for instance, as in Székely et al [92]:

ZZ Y (r, s),

k=0m=—k

where Y™ is a spherical harmonic of degree k and order m, and q = (¢, ", ..., )"
if only n modes are used. Other decomposition bases may be used. To sim-
plify the surface parameterization, Staib and Duncan [87] propose different
bases depending on the surface topology (surfaces homeomorphic to a sphere,

a torus, a cylinder or a plane).

2.4 Implicit representation

Contrary to explicit models, implicit representations involve an implicit equa-
tion to locate the surface points. An implicit surface is generally defined as
the zero set of a function f valued in IR. That is:

Sy ={p e R*|f(p) =0}. (3)

2.4.1 Algebraic surfaces

Algebraic surfaces are surfaces satisfying equation 3 where f is a polynomial.
They have been widely used in the field of graphics and modelling [96]. Taubin
et al [97] use algebraic surfaces to reconstruct unstructured point set data.
Algebraic surfaces have several limitations. They are not necessarily closed,
although it is possible to consider only some even order polynomials. Alge-
braic surfaces are not straightforward to display on a graphic screen. Moreover



computing the distance from a point to an algebraic surface, which is required
by surface matching algorithms, is difficult. The value f(p) is often used as
an approximation.

2.4.2  Superquadrics

Superquadrics presented in section 2.3.2 may also be represented in an implicit
form [7]. In particular, superellipsoids represent closed surfaces.

2.4.8 Hyperquadrics

Hyperquadrics [41,20] have been proposed as a superquadric extension. They
allow the representation of a wider surface family. An hyperquadric is defined
by equation:

n>3

=1

where ¢; > 0 for all j, and q = (a1, b1, c¢1,d1, €1, . ., Uny by, Cry Ay €,)7. This
equation does not have any explicit representation as soon as n > 3. The
surface is enclosed in the convex envelope defined by the set of planes a;p, +
bjpy + ¢;p, + d;j = £1. As ¢; coefficients increase the surface merges with its
convex envelope. As well as modal representation, hyperquadrics is an exten-
sive formulation allowing the iterative addition of terms that refine the surface
description. However, a hyperquadric remains homeomorphic to a sphere.

2.4.4 Level sets

Level set methods were developed by Osher and Sethian [74] and introduced
in the medical vision community by Malladi et al [58]. Level set methods
are thoroughly described in [83]. The main idea of level sets is to embed the
deformable model in higher dimension space. A surface is represented as the
zero level set of a function ¥ : R* — R: S = {p € IR*|¥(p) = 0}. Thus S is
necessarily a closed surface or a set of closed surfaces.

Given an initial surface Sy, the hypersurface is defined by ¥(x) = dist(p, Sp)
where “dist” is the signed Euclidean distance between a point and the surface.
The distance is positive if the point lies outside the surface and negative oth-
erwise. The evolution of surface § is guided by a partial differential equation
involving function V. Its extension to higher dimension space is straightfor-
ward.



The main advantage of level set methods is to allow changes of surface topol-
ogy implicitly. & may split in several connected components or merge from
several components while ¥ remains a function. Their main drawbacks are
the computational cost, since a higher dimension space is used for updating
the surface, and the lack of user interactivity. Malladi et al [57] propose sev-

eral techniques to speed-up the numerical aspects including the use of narrow
bands.

Siddiqi et al [84] use a propagation equation similar to level sets to recognize
the shape of binary structures at different smoothing scales.

2.5 Discrete meshes

The representation of deformable models as discrete entities naturally raises
the parameterization problem of continuous representations. However, this
approach permits a large number of degrees of freedom to the surface and it is
therefore often necessary to constrain the space of possible deformations. Most
discrete models are meshes defined as a set of points with some connecting
relation.

2.5.1 Triangulation

A discrete deformable contour C is just a set of vertices {po,...,Pa_1} con-
nected to produce a closed or opened polygonal line. A surface is also repre-
sented by a set of vertices and a neighborhood relation that induces topological
constraints. A common representation are triangulations (see left of figure 2)
for which the surface is composed of a set of adjacent triangles. Each triangle
of a triangulation shares at least one of its edges with a neighboring triangle.

2.5.2  Spring-mass model

Vasilescu and Terzopoulos [104] use spring-mass models composed of a set
of nodes connected by springs in the context of surface reconstruction. An
example of a spring-mass model where n point masses are linked eight by
eight [72] is shown in center of figure 2. The springs rest length determines
the model rest shape although mass-spring models have several equilibrium
positions. The springs’ stiffness controls the model elastic properties. It is
possible to represent non-manifold surfaces with spring-mass models. Also, it
may be necessary to add springs between vertices in order to improve the mesh
stability and to provide a better volume behavior.



2.5.8 Simplex meshes

Simplex meshes were introduced by Delingette [32] and studied in [66,109,39,67].
A simplex mesh is a discrete model representation with a constant vertex con-
nectivity. 2-simplex meshes are used to represent surfaces. Each vertex of a
2-simplex mesh is connected to three, and only three, neighbors (see right of
figure 2). 2-simplex meshes are topologically dual to triangulations: there ex-
ists a dual triangle for each mesh vertex and a dual triangulation vertex for
each mesh face. Due to their constant connectivity, the geometry of simplex
meshes is fairly simple. A notion of surface local shape description allows the
definition of shape memory constraints in the deformation process (see [32]
for details).

Fig. 2. Left: triangulation. Center: mass-spring model. Right: 2-simplex mesh and
its dual triangulation.

2.5.4 Other discrete meshes

Vemuri and Guo [105] use a hybrid model called pedal snake composed with
a discrete deformable contour and a parameterized generative ellipse. The
discrete representation is also suited for dynamic programming of the model
evolution as demonstrated in [3]. Subdivision surface techniques [44,88] allow
to describe smooth surfaces by iteratively subdividing an unstructured mesh.
However, since the limit surface cannot be recovered explicitly but only ap-
proximately as a function of the control points, it may lead to computationally
expensive schemes for approximating real data.

2.6 Particle systems

Particle systems are discrete models with a representation fundamentally dif-
ferent to meshes. They are composed of a set of elementary objects called
particles. Particles are described by their location, speed, acceleration, mass,
and any other parameter needed for a given application. Each particle evolves
according to Newtonian mechanical laws. Particles interfere with each other
through attraction-repulsion forces that tend to arrange them on a regular lat-
tice (hexagonal grid) when external forces vanish. Particle systems are suited
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to represent viscoelastic solids or fluids [34].

In [95], Szeliski and Tonnensen propose oriented particles to represent surfaces.
Each particle is considered as a surface element, or surfel by analogy to pixels.
To each particle is associated a rotation matrix. The authors define coplanar
and cocircular energies that tend to align the particles on the surface of a
plane or a sphere at rest respectively. Lombardo [52] extends this framework
to define a curvature on the surface. He proposes a hybrid model combining
a particle system and an implicit surface describing the model envelope.

Particle systems are adapted to represent surfaces with a variable topology.
Szeliski and Tonnensen [95] propose ad-hoc rules to dynamically add or remove
particles to a system. New particles fill in the surface holes. However, particle
systems do not allow a direct computation of the surface geometric properties
and are rather complex to visualize.

3 Deformable models evolution

For practical use, it is needed to deform the model to fit the data. The sur-
face representation affects the possible evolution of a model. With few shape
parameters, a surface model has restricted shape variations. Implicit represen-
tations allow topology changes but this property makes it also more sensitive
to data noise. The deformation process also permits the introduction of re-
strictions in the allowed shape deformations of a surface.

The deformation process generally involves a data term attracting the model
towards structures to reconstruct and a regularization term enforcing a smooth
behavior of the model. External data is used to drive the model deformation
but the presence of noise or the outliers requires to constrain the possible
deformation space in order to stabilize the model evolution. Definition of the
data term is very application dependent and falls out of the scope of this
paper. The reader may refer to [23] for details.

Most deformable model evolution is driven the minimization of an energy
functional E. This energy allows the quantification of the model geometric
quality (such as its smoothness or its distance to a prior shape) and the data
reconstruction accuracy. A regular model fitting the data has a low energy
while the energy increases with the model rough shape and its distance to the
data. The minimization of E often requires to differentiate and discretize the
energy equation.

A different approach consists in avoiding the definition of a global energy
functional and to directly propose a law of motion for the deformable model.
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Indeed, the differential equation derived from the minimization of a global
energy may lead to very complex complex expressions that are numerically
difficult to implement. If we make an analogy with mechanical systems, the
law of motion is then composed of a set of ad-hoc forces that do not derive from
any energy. Powerful smoothing effect can be obtained by choosing appropriate
internal forces also called differential stabilizers [31]. Figure 3 sums up the
resolution methods described in this section.

Bayesian
formulation
(section 3.2)
Energy equation ] Forces
E=E g E oq (section 3.1) equilibrium
(section 3.6)
Euler-Lagrange
Stationary equation Finite element
method
o (section 3.4)
Centered finite
differences
(section 3.3)
Discrete stationary equation  (section 3.7)
Global .
minimization Evol utlvg method
(Section 35) (%Cuon 372)
Lagrangian Newtonian
Gradient
Evolution equation descent
(section 3.7.1)
Finite differences
Semi-implicit .
scheme Explicit scheme
Discrete evolution equation
Iterative
convergence
Solution

Fig. 3. Solving deformable models’ evolution equation.
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3.1 Energy

The energy E of a deformable model is composed of several terms including
at least an intrinsic regularizing term E,., and a data term Eg.. In the rest
of the paper we consider L?(f2), the set of square integrable functions on Q:
L2(Q) = {f € (2= R)| [ f? < +oc}. L*(Q) is characterized by the scalar
product (f,g) = [ fg and the induced norm ||f||? = (f, f)-

The energy of a parameterized surface S € L*(Q)? is defined by:

E:L*Q° >R
S+ E(S) = Erey(8) + Eexe(S)

We admit that the energy functional is built such that its global minimum
coincide with the expected solution Sy = ming E(S). As a regularizing term,
Tikhonov stabilizers are often used to measure the surface smoothness. Thus,
a surface internal energy is:

2

drds (4)

Ereg(s) = Z ; .. "wij(T, 8)

14l
o 1<itj<k bJ:

ortQsi

‘ oS

where w;; are positive functions. Second order stabilizers (k = 2) are mostly
used. The stabilized surface must thus be twice differentiable, that is S €
H?(Q)?® where H?(() is the Sobolev space. A surface regularized by a second
order Tikhonov stabilizer is identical to a thin plate with mechanical energy
E.es. Functions wy and wy; measure the membrane stress while wyg, wge and
w11 measure its rigidity.

The data term depends on a potential P computed from the data (e.g. for an
image I, P = —||VI|? in its simplest form): Ee(S) = [ P(S(r, s))drds.

For given FEi., and Eg terms, the minimization equation does not have, in
general, any analytical solution. Thus, it is necessary to discretize this equa-
tion and to apply an iterative scheme to solve it. The most common method is
to rewrite this equation as a stationary equation corresponding to a force equi-
librium. The equilibrium equation is then discretized using finite differences.
Other resolution methods exist such as dynamic programming [3], greedy al-
gorithms [110] or simulated annealing [77,89].
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3.2  Bayesian approach

Another classical approach to optimize the shape of a surface & embedded
in a dataset D is to use a statistical framework [111,93]. Probability P(S|D)
denotes the posterior statistical model. It estimates how a surface S fits the
dataset D. The searched solution is the posterior mazimum (MAP), that is the
surface that maximizes the posterior model probability MAP = maxg P(S|D).

The posterior model is estimated by using Bayes rule:

P(D|S)P(S)

P(SID) = =50, 5)

composed of the following terms:

- P(D) =Y 5 P(D|S) is a normalization constant.

- The prior model P(S) is a geometric model measuring the surface shape
quality without taking data in account.

- The data model P(D|S) measures how the given surface generates the

dataset. This is the stochastic process description linking the unknown state
S with the data D.

The prior model must lead to high probabilities for S configurations that
correspond to a weak regularization energy. A Gibbs (or Boltzmann) distribu-
tion is often used: P(S) = %ege_Ereg(s), where Z,., is a regularizing constant
called the partition function. Similarly, a Gibbs distribution may be used for
the data model, supposing an acquisition model based on linear measures dis-

turbed by a Gaussian noise: P(D|S) = ﬁe’Eexﬁ(‘s). Finally, the posterior

model is: P(S|D) = +e ). Thus, the maximum of the conditional proba-
bility P(S|D) corresponds to the energy minimum.

This approach is interesting if the data term is computed taking the acquisition
noise into account. Otherwise, this framework is basically equivalent to the
regularization framework described in the previous section [93].

Terzopoulos and Szeliski [101] describe a “Kalman snake” based on a proba-
bilistic modelling by adding a Kalman filter to prior models and data with a
Bayesian formulation.

3.3  Finite differences discretization

The energy is usually a non convex function with several local minima. The
goal of the minimization procedure is to push the model towards one of those
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minima. The minimization result thus depends on the initial pose and shape
of the model.

3.3.1 Stationary equation

Using Euler-Lagrange equation (VE(S) = 0), and considering a second order
Tikhonov stabilizer, it can be proved [19] that an energy local minimum must
satisfy:

0,05 0,05 O O PP PP
8rw10 or 831001 0s aras“’“ ords 8r2w20 or?2 832w02 052

— _VP(5)(6)

plus boundary conditions. This equation might be seen as an equilibrium be-
tween internal regularizing forces and external data forces. It requires the com-
putation of the surface fourth order derivatives which might cause numerical
stability problems. & must belong to H*(Q2)? space. A solution to equation 6
can be computed by discretizing this equation using centered finite differences.

3.3.2 Finite differences

The parameter domain ) is discretized along a regular grid 2a,as of size
M x N. The grid nodes are distant of A7 = = in one direction and As = =
in the other. The function f(r,s) is represented by the value array f[m,n] =
f(mAr,nAs) with 0 < m < M and 0 < n < N. The discrete derivation

operators in the parameter space are defined by centered differences such as:

0 1.n]— -1
oL s, o) = D, o, g = L =S = Lo

After discretizing equation 4, the internal energy appears on a matrix form
K(S)S where K designates a M N x M N rigidity matrix and the force vector
f(S) represents the data potential. The stationary equation thus composes
a non-linear system of dependent equations: K(S)S = f(S). When using
Tikhonov stabilizers, if w;; functions are constants, the system simplifies in a
linear form :

KS = £(S). (7)

3.4 Discretization using finite elements

It can be proved [19] that solving equation 6 is equivalent to finding a function
v:t€e[0,T] — v(t) =(ueQ— Su,t) € HZ(Q), where HZ(Q) is the

15



Sobolev space, such as Vu € HZ(2),a(v(t),u) = Ly,(u), where a is a bilinear
form defined as:

Ou Ov Ou Ov 0%u 0%v 0%u 0%S 0%u 0%v

— bl bl Y o —— 22 i
a(u,v) Q/wlo Or Or + ot Os Os + w2 02%r Or? + 2w Ords Ords + Woz 0s? 0s? dsdr

and L, is a linear form defined as L,(u) = — [, VP(v)udrds.

The variational problem: a(S,u) = Ls(u), Vu € HZ(Q2) admits a unique solu-
tion if the regularization coefficients (wyg, wo1, w11, Wey €t wpe) are positive
since a is Hi-elliptic.

The finite element method gives a discrete approximation vy, of the solution
v in a finite dimension space Vj, C HZ(Q) verifying lim, o |[v — vi]] = 0.
Function vy, is piecewise polynomial on a V}, basis whose generative functions
are defined on a restricted domain.

Q) is split into triangular or rectangular elements. Rectangular elements do
not allow the representation of surfaces with unrestricted topology but they
lead to a smaller linear system that is easier to solve. In the following, we will
consider the set of nodes Qaras = {Nmn }mn such as Np, , = (mAr, nAs). It
defines the rectangular finite elements Ky, , = [Npn: Nmt1.0] X [Nmns Nmnt1]-

We consider Bogner-Fox-Schmidt finite elements. Let Qs(IR?) be the set of
polynomials {p(r, 5) = Yo<ki<3 ’yk,lsle}. Vi = {U € CI(Q)|?}‘KZ.J € Qg(Ki,j)}
where Q3(K,; ;) = {p|Km. Ip € Q3(1R2)}. Bogner-Fox-Schmidt finite elements
basis can be obtained by the tensor product of ® and ¥ base functions of
Hermite finite elements in IR. Thus vy, is given by:

vp(r, s) = o Z| -| (vh(Nk,l)q)(r) + %(Nkl)\ll(r)> O(s) +
62vh

(%(Nk,l)fb(r) + s (Nk,l)‘ll(r)) U(s)

, a—gf(Nk,l), %?‘(Nk,l)

and %%(Nk,l) to each node. This system may be written Kx = f and is

equivalent to equation 7.

This is a linear system with unknown parameters vy, (Ng,)

As finite elements, B-splines represent the model as a tensor product of poly-
nomial curves. The model shape is controlled by a set of nodes. The B-spline
representation is indeed equivalent to finite elements on a particular basis [23].

The finite element method only requires the computation of the surface second
derivatives as opposed to finite differences that make use of fourth derivatives.
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Furthermore, it allows the computation of the surface differential attributes
at any point, not only at the nodes. In some finite element methods, v, is
not linear and implies greater order combinations. The finite element method
requires fewer nodes than finite differences since it provides an interpolation
of the surface between nodes. However, finite elements are computationally
expensive compared to finite differences.

3.5  Global minimization

The energy functional is usually non-convex making the global minimization
process difficult. Few approaches have been proposed to find the energy global
minima.

3.5.1 Simulated annealing

The simulated annealing [89] derives from the gradient descent method. Start-
ing from an initial surface Sy, a gradient descent iteratively evolves according
to the equation Si11 = S — AtVE(S,) until the model converges. The sim-
ulated annealing process introduces a random component in the convergence
process. Let q denote the parameter vector of the discretized energy functional
Eq. At each iteration, a component ¢; from vector q is randomly selected and
the energy variation AE, = E{qo,---,q¢+€;---7Qn} —Eq resulting from ¢; variation by
a constant £ is evaluated. If the energy variation is negative, the energy descent
is accepted. If AE is positive, the energy augmentation might be accepted with
a probability eﬁ where 7 is a “temperature” parameter decreasing from an
initial value towards 0 as the algorithm converges. A high temperature makes
it possible to get out of the energy local minima. As the system “freezes”, the
algorithm becomes identical to a gradient descent. Due to its stochastic nature
and the difficulty to set the temperature evolution law, simulated annealing
may be very slow to converge and tricky to optimize.

3.5.2  Dynamic programming
Dynamic programming was introduced by Amini et al [3] to solve the evolution
equation of deformable contours. It is based on a particular discretization of

the contour energy E(C) = Y¢=} Ereg(Pi)+ Eex(Pi), where C = {po, ..., Pa-1}-
This energy can be written:

E(C) = Ey(po, P1) + E1(P1,P2) + - - - + Ea_1(Pa-1, Pa—2)- (8)
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We consider the following notations:

So(Pl) = minpo EO(PO; Pl)
Vk € [1,d — 1], s3(Pr+1) = ming, {sx_1(Px) + Ex(Pr, Pr-1)}

A global minimum min £ = ming, , s4 2(pg_1) of the energy functional may
be computed by dynamic programming. The contour leading to this minimum
is built by tracking back into the position matrix. Geiger et al [38] propose an
optimization of this method by using a multi-scale approach.

Dynamic programming is one of the rare method finding the energy functional
global minimum. It is possible to introduce in the deformation process hard
constraints such as a minimal distance between each pair of vertices. The
algorithm might then fail if no solution satisfies the given hard constraints.
However, this algorithm extension to the surface case is made difficult by
the complex decomposition of the energy functional as a sum equivalent to
equation 8.

3.6 Forces equilibrium

Each term of the stationary equation 6 might be seen as an equilibrium be-
tween internal forces (the left term) and external forces (the right term) that
deform the surface. Ad-hoc internal forces f;,;; that enforce some regularizing
constraints and external forces f.;; that steer the surface deformations towards
the data might be computed without considering any energy term [33]. The
optimal model then verifies the equilibrium equation Y fieg(S) = — X fext (S)
which can be solved in a similar way to the energy stationary equation 6.

Since these forces do not derive from any energy, it is needed to check that
they will lead to the desired smoothing level and to a stable behavior of the
deformation process. The regularizing constraint associated with the internal
forces can be identified by looking at the model shapes where these forces
vanish. The external forces must guide the model towards the data. To avoid
any oscillations, external forces proportional to the distance between the data
and the model should be used. These forces vanish when the model coincide
with the data.

3.7 FEvolution equation

Solving the stationary equation requires an iterative method which is initial-
ized with an approximate solution to converge towards a minimum. The first
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approach is based on a direct minimization technique of a multivariate func-
tion such as the gradient descent. Another approach is to introduce an evolu-
tion term in the stationary equation then to iteratively solve the differential
equation.

3.7.1 Solving by a gradient descent

A gradient descent or one of its derived algorithms [78,56] allow the mini-
mization of a function as a model energy. We suppose in this section that
the energy E is discretized using a finite difference or finite element scheme
as detailed in section 3.3 for instance. The simple gradient descent method is
characterized by the evolution of an initial surface Sy in the steepest energy
direction. The surface iteratively evolves according to the equation:

Ses1 = Sk — AIVE(S,) 9)

where At is a positive constant. This method converges towards an energy
local minimum. The initial surface used is thus meaningful.

When the algorithm reaches a minimum of the energy function in a given di-
rection, then the steepest direction at that point is necessarily orthogonal to
the direction previously followed. A gradient descent thus evolves by constant
steps with directions orthogonal to each others. This procedure does not fol-
low, in the general case, the shortest path toward a local minimum. Hence,
the convergence might require a large number of iterations. Therefore, faster
convergence numerical schemes such as conjugate gradient, Newton method
or Levenberg-Marquardt method have been proposed [78].

In [106], Vemuri et al introduce new numerical algorithms and compare their
efficiency.

3.7.2  FEwvolutive approach

The discrete stationary equation 7 is not linear. Its resolution requires an
evolutive framework that iterates towards the solution. Many methods for
solving iterative systems are proposed in [78]. The evolutive approach consider
the deformable model as a dynamic object evolving according to a parameter
t [98]:

S:Qx[0,+00] — R
(u,t) = S(u,)
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and the corresponding energy term E(S,t) = E(S(.,1)).

Inertial terms are introduced in equation 7, of the first order (Lagrangian
evolution) 2% + K& = f(S) or of the second order (Newtonian evolution) :

2S oS
M=o + 0% + KS = £(S), (10)

where M and C are two NM x NM matrices representing the model mass
and the background damping. M et N are the dimensions of the discretized
parameter space.

This formulation leads to an evolution scheme suited to active surfaces since it
allows the user to interact with the model during the deformation process. It
requires setting an initial surface Sy = S(., 0) close enough to the solution. The
initial surface evolves until the inertial terms vanish. The surface then satisfies
the stationary equilibrium between regularizing and data forces. [99,22].

The dynamic system 10 must be discretized in time by the finite difference
scheme. M and C are diagonal or banded matrices. They lead to independent
equations and are easily invertible. The time discretization leads either to an
explicit numerical scheme, or to an implicit numerical scheme.

An explicit numerical scheme:

Sirar — 28 + Si_at Siyar — St
M AP TCT N

+KS, = £(S)), (11)

converges only if the selected time step is small enough [78]. However, equa-
tion 11 give an explicit way of computing S;ya; from S; and S;_a;. This
equation is simple and can be solved at low cost. If M = 0 and C =1, it
simplifies to Syyn; = S — AHKS; — £(S;)) = Sy — AtVE. It can be seen that
the Lagrangian explicit numerical scheme leads to an equation identical to a
gradient descent 9.

Alternatively, a semi-implicit scheme can be used:

Strar — 28 + St Ay " CSt+At - S At

M At? 2At

+ KSH—At = f(St) (12)

The semi-implicit scheme is more stable than the explicit scheme and in-
sures the numerical convergence even for larger time steps. However, the semi-
implicit scheme 12 requires the resolution of a dependent equation set at each
iteration. Although a larger time step reduces the number of iterations, the
semi-implicit scheme requires the costly inversion of matrix K. This matrix
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inversion is computed each time the model topology or its physical coefficients
w;; change.

3.8 Discrete model evolution

A discrete model geometry is defined only at its vertices. A vertex ¢ might be
considered as a point mass governed by a Newtonian law of motion:

m@) TP = 1)L ai) fnlp) + B (). (13

where m(¢) is the vertex mass, y(¢) is the background damping, fes is the reg-
ularizing force, fe is the data force, and o and [ are two weights controlling
the internal and external terms. This equation corresponds to an equilibrium
between the acceleration, the inertial force, the regularizing force and the data
force.

For a model with n vertices, there are n independent linear equations that
may be written with a matrix form equivalent to equation 10. where M =
diag(m(0),...,m(n — 1)), C = diag(y(0),...,v(n — 1)), and fi,; and £, are
the internal and external force vectors.

3.9 Implicit models evolution

3.9.1 Algebraic surfaces

Implicit models are characterized by an equation such as Fg(p) = 1. The
distance from a point p to the surface may be roughly approximated as Fy(p)—
1. Given d data points {pi}ie[o,d—l]’ the model energy may be estimated by

Eq({p:}) = X5 11 = Fo(pi)*-

The resolution consist in finding the implicit surface parameters qg verifying
Eq4, = ming Eq. This energy is minimized by using one of the gradient descent
method proposed in section 3.7.1. In many cases, function |1 — Fy| is a poor
estimation of the distance from a point to the surface. Authors usually propose
better approximations involving a specific knowledge of the surface [80,96].

3.9.2 Lewvel-set methods

Malladi et al [58] qualify as Eulerian dynamic the level-set evolution equations
by opposition to the Lagrangian dynamic of “classical” deformable models.
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Let {S(u,t)}; be a surface family evolving according to the partial differential

equation %—f = vn where n represents the surface normal and v the displace-
ment speed. For instance, v = Hg the surface mean curvature. Since ¥ is null
on S, ¥U(S(t),t) = 0,Vt. Knowing that n = |g—$ and by differentiation, the
previous equation leads to an the Hamilton-Jacobi equation:

ov
9% _ 5 N
5 v(u,t)| VY| (14)

where 7 is a function of R* — IR which coincide with v on its definition
domain. For instance, v(u,t) = Hy(u,t), the mean curvature of the level-set
crossing u, that coincide with v on § (Hy(u,0) = Hg(u)). If function v is
regular enough, ¥ does not show any singularity as it evolves and equation 14
can be solved by using finite differences (in space and time):

WA = WL + At Vi L | (15)

Moreover, the surface geometrical attributes are determined by the analytical
expressions n = % and H =V - %.

As the propagation speed may become discontinuous at points far away from
the 0 level-set, it is needed to periodically reinitialize ¥ as the distance function
to the current surface to ensure evenly spaced level-sets. Equation 15 is com-
putationally expensive since a 3 dimensional grid must be updated to compute
a surface evolution. The computation time might be reduced by computing ¥
value only on a narrow band around the surface {¥ = 0}. It is then required
to periodically reset the narrow band location in order to avoid collisions of
the evolving surface with the band borders.

4 Constraining deformations

A deformable surface evolving according to an evolution law such as equa-
tion 10 or 13 is only constrained by the number of degrees of freedom (DOF)
imposed by its geometric representation. Some representations have few DOF
such as superquadrics with only 6 parameters and may constrain the defor-
mation process too much for a valid reconstruction of complex structures.
Conversely, a surface with too many degrees of freedom is more sensitive to
noise and outliers. Moreover, most minimization techniques only lead to sub-
optimal solutions corresponding to energy local minima. The more DOF a
surface has, the less convex its energy functional is, and the more it is likely
to converge towards a local minimum.
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Therefore, several approaches have been proposed to restrict the model defor-
mation space. These deformation restrictions are often based on a coarse to
fine strategy from a highly constrained deformation space towards more local
deformations as the model converges towards its optimal shape.

4.1 Using global transformations

A model deformation may be driven by iteratively applying global transfor-
mations of the space embedding the model instead of applying local deforma-
tions of the model inside space. As discussed in section 2.1, this approach is
referred to as registration opposed to model local deformations. The registra-
tion framework restricts the model variation space depending on the choice of
global transformations.

4.1.1 Iterative Closest Point algorithm

The registration process described by Besl and McKay [9] and Zhang [113]
is very close to the iterative resolution of the deformable models dynamic
equation. A model is iteratively deformed by a global transformation 7T :
IR? — IR3. The transformation 7 is estimated by minimizing the least square
criterion:

T = arg min 3 |T(p;) — (Closest(p;))]’ (16)

T€Treg prd

with “Closest(p;)” a data point close to vertex ¢, and T,e; a given transforma-
tion group. The authors refer to the Iterative Closest Point algorithm (ICP).

4.1.2  Rigid and affine registration

Widely used transformation groups for 7" estimation include rigid transforma-
tions (6 DOF), similarities (7 DOF) and affine transformations (12 DOF). For
these three transformation groups, there exists a closed form solution for solv-
ing equation 16 [75]. Rigid registration is useful for aligning data originating
from a common source. Similarity and affine registrations are used to align
different data in the same reference frame. However, in this case, the small
number of DOF usually does not allow the reconstruction of structures from
a model with a different prior shape.
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4.1.3  Free-form deformations and B-spline transformations

Sederberg and Parry [82] and Coquillart [27] introduce free-form deformations
(FFD) where the embedding space is deformed according to a set of control
points and interpolation functions between those points such as Bernstein
trivariate polynomials. Thus deformations apply locally to each node point
and the number of DOF is tuned through the number of control points. B-
spline transformations are a particular case of FFD where the interpolation
functions are B-splines.

Declerck et al [30] use B-spline transformations to warp space. Due to the
amount of deformations allowed by B-splines, he introduces an additive Tikhonov
stabilizer whose influence in the minimization process is weighted. Lotjonen
et al [55,54] and Bardinet et al [7] similarly need to add a regularizing term
to FFD.

4.1.4  Superquadric extensions

Terzopoulos et al [99] introduce a model composed of a reference superquadric
on which an additional deformation term allows the definition of local surface
deformations. Let Qg denote a superquadric with parameters q;. The model
surface is defined by Sq(r,s) = ¢ + R (Qq,(r, s) +d(r,s)), where c represents
the @ superquadric inertial center, R is a rotation matrix, and d is a vectorial
displacement field from the superquadric surface. The authors define d as a
linear combination of basis functions: d = Sqg where S is the basis function
matrix and qq is a weight vector. If q. and qy denote the translation and the
rotation parameters respectively, the parameters vector is q = (q., qg, qi, qd)T.
This representation leads to more shape variability and can represent a wider
set of surfaces than superquadrics.

Metaxas et al [65] still introduce more deformations on this model to repre-
sent physical deformations of the surface (bending, pinch, twist...). The model
surface is defined by : Sq(r,s) = ¢ + R (T'Qq,(r,s) +d(r,s)), where T is a
transformation. The surface parameter extends to q = (q., qg, qi, 94, A7) -

4.1.5 Other globally constrained deformations

Feldmar and Ayache [37] define locally affine transformations to increase the
surface number of DOF. They determine the “closest” point of a vertex p;
by computing a distance function from the data points. Their distance in-
clude geometric position of points but also their similarity in terms of normal
orientation and principal curvature values. They estimate several affine trans-
formations by considering only a restricted set of vertices included in a given
neighborhood around each model vertex. They apply a piecewise affine trans-
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formation and demonstrate some continuity results on the surface patches.

4.2 Coarse-to-fine approaches

4.2.1 FEnergy Graduated Non-Convezity

The energy functional is usually non-convex making the deformation process
very dependent of the model initialization. The Graduated Non-Convexity
algorithm (GNC) proposed by Blake and Zisserman [12] makes the energy
functional locally convex. The idea is to make the (positive) second derivative
of the energy regularizing term greater than the (negative) second derivative
of the energy data term to produce a convex approximation E' of the energy
functional E. E'’s minimum does not necessarily coincide with E’s global
minimum. An energy family {E"};c[o1] is built such as E' is convex and E° =
E. By varying ¢ from 1 to 0 and making the model iteratively evolve according
to energy E', it gets closer from the local minimum of E. Blake and Zisserman
demonstrate the validity of the GNC algorithm in the particular case of their
study but they state that it is not guaranteed to converge in the general case.

Davatzikos and Prince [29] similarly build a functional family varying with a
scalar parameter to drive a thick line detector model. Cohen and Gorre [24]
use the GNC algorithm for deformable modelling in the case where the data
term is a function of the distance from a point p to the closest data point.

Montagnat and Delingette [68] regularize deformations through a modified
deformation scheme that combines local and global forces resulting from a
global transformation estimation. By weighting the global and the local forces,
it is possible to continuously evolve from a global registration process to a local
deformation one.

4.2.2  Pyramidal approach

Reissman et al [79] model an image with a graph of cells describing the image
regions. A pyramid is build from the original graph by merging graph regions
from one pyramid layer to the above one. The algorithm proceeds to a coarse
to fine deformation by deforming first the pyramid apex and then propagating
the computed deformations towards the base. Lotjonen et al [55] use a similar
idea with deformable surfaces. They build a multi-resolution surface model by
decimation of an original mesh and the mesh is deformed in a corresponding
image pyramid from the apex towards the base.

Szeliski [94] also proposes a hierarchical approach to minimize an energy func-
tional. He builds a multi-scale pyramid of basis functions. It is then possible to
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compute the discrete energy at different precision levels. The energy minimiza-
tion begins at a coarse scale which is refined with the algorithm convergence.

4.8  Local reqularization constraints extension

To enforce the regularizing behavior of the energy internal term, Feldmar and
Ayache [37] compute the internal term over a neighborhood with a variable
size at each model point. The computation neighborhood is geometrically
defined at each mesh point by the set of mesh points included in a sphere of
radius r. The larger r is, the stronger the regularization term is. Montagnat
and Delingette [67] similarly use a topological neighborhood and show the
regularizing effect on surface model deformations.

4.4 Modal analysis

4.4.1 Surface vibration modes

Decomposition of a surface into a set of modes provides a coarse to fine repre-
sentation by tuning the number of modes used. The vibration modes, extracted
by Fourier analysis for example (see section 2.3 and [87]), give an incrementally
detailed representation of surfaces.

Pentland et al [76] similarly optimize the resolution of the model evolution 10
by decomposing the surface S on a vibration basis. Let S be a n dimensional
vector and § = ®S where ® is an orthogonal transformation matrix. Equa-
tion 10 rewrites:

- d’S - dS

M——+C—+KS=f 1
dt2+ dt+ S , (17)

where M, C, K and f depend on M, C, K, f and &.

An optimal transformation matrix ® is the common eigenmodes matrix of M,
K and C such that components of equation of 17 are independent. ® is the so-
lution to the double eigenproblem K® = Q?®M, where ® = [¢1, @o, . . ., P3,]
and = diag(w1, wo, - - - , ws,) are such that the eigenvectors are M-orthonormal,
which means that ®TK® = Q2 and ®"M® = I. The eigenvector ¢; is the
ith shape vector and w; is the associated vibration frequency. Finding the
eigenmodes of the damping matrix C is possible if it is defined as a Caughey
series [8]: C = M Y021 ax[M'K]*. If p = 2 then C = aoM + ;K and equa-

tion 17 simplifies to ‘227‘29 + é% + Q28 = &TF, where C = a,I + ;2. This
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equation system is made of 3n independent equations that can be resolved by
discretizing the time.

Nastar and Ayache [72] use Pentland and Sclaroff’s modal analysis to reduce
the model deformation space. Bookstein [13] similarly decomposes a thin-
plate spline deformations over the eigenmodes of the bending energy matrix.
Cohen and Cohen [21] propose an alternative approach with an hyperquadric
based model. The model is defined as a sum of an hyperquadric generating
a convex envelop and a number of hyperquadric exponential allowing local
non-convex deformations. The model energy is controlled simultaneously by
the hyperquadric and the additional term parameters. By iteratively adding
terms, they produce a hierarchical deformation scheme.

4.4.2  Superquadric-based modal analysis

Starting from Terzopoulos et al superquadric extension [99], Vemuri and Radis-
avljevic [107] propose a continuous transition between global deformations
(only involving variations of the superquadric parameters) and local defor-
mations (involving the d displacement field). They project g4 on a wavelet
orthogonal basis and set the number of meaningful deformation modes. The
more deformation modes are used, the more local deformations apply on the
superquadric surface. By limiting the number of modes involved in the de-
formation computation, they restrict the deformation space. They gradually
increase the number of modes as the model converges.

4.4.8  Principal Component Analysis

Cootes et al [25] use principal component analysis (PCA) (also known as
Karhunen-Loeve decomposition) to decompose the model in eigenmodes ob-
tained from a shape training set. The decomposition basis size depends on
the training set number of shapes. Since only shapes composed by a linear
combination of the eigenmodes can be represented, PCA restricts the shape
variations of the model close to the known statistical shape variation.

PCA modelling

PCA only takes into account local deformations after training shapes have
been registered by translations, rotations and scale factors. A particular shape
is defined by S; = T'(x;) where x; is a parameter vector of dimension d that
describes the surface S;. Vector x; may be a set of d/3 vertices coordinates
that represent a discrete model: x; = (z1,...,24)7 [6,26]. In that case, T is
a similarity transformation. Vector x; may also be a parameter vector: x; =
q=(q1,---,q2)" [91]. In that case, T is a transformation from the parameters
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space to the shape deformation space. In both cases, let us consider a training
set built from n shape instances: (x1,...,x;,). The mean shape is defined by
L5~  x; and the covariance matrlx (posmve definite) is C = Y1, (x; —

Yo%)

By diagonalization of C, CU = UV where U is the matrix for which each
column is an eigenvector of C and V = diag(vy, ..., v,) is the diagonal matrix
of associated eigenvalues. The column vectors, u;, of matrix U correspond to
meaningful deformations according to the training set. PCA is based on the
hypothesis that data distribution is Gaussian which leads to a linear repre-
sentation. Vector x; varies inside an n dimensional hyperellipsoid. The eigen-
vectors of C represent the hyperellipsoid axis directions while the eigenvalues
are the axis amplitudes.

MM

A new shape instance is defined as a linear combination of the eigenmodes
x = X + Uq, where q is the parameter vector weighting the contribution of
each deformation mode. It is generally wanted to prevent the shape to vary
too much from the mean shape. Each component ¢; of q is thus restricted to
an interval: —kv; < ¢; < kv;, with k € IV.

Usually, n is much lower than d and diagonalization of matrix C leads to
n — 1 eigenvectors associated to n — 1 non zero eigenvalues. The number
of usable modes depends on the size of the training set. It must be large
enough compared to the parameter vector size d to allow the model to recover
the 3D object. This approach requires as a preliminary the construction of a
training set. This implies to define on a set of n shape instances d matching
points. Often considered as a first manual stage, this task is fastidious and
may become impracticable in the 3D case. Indeed, to determine corresponding
points on smooth surfaces is a difficult task for a human operator except for a
few feature points such as curvature extrema [18]. Anyway, several methods to
automatically match different shapes are proposed by Caunce and Taylor [16].

PCA constrained deformations

If x is a model instance in the centered space (x = x + Pq), the surface is
a function of x: § = ERx + t, where E = diag(e,e,...,e) is a scale factor
matrix, R is a rotation matrix and t is a translation vector.

Cootes et al [26] use a discrete model for which displacement dS are computed
at each iteration. A time ¢ + A¢ a model instance x;, a; verifies: S; + dS ~
Et—|—Ath—|—AtXt—|—At + tt—}—At leadlng to dx = Et—|—At t—I—At(St + ds — tt—|—At) — X
with x; A = x¢ + dx.

To estimate the displacement dx, the eigenmode parameters leading to a
model of like shape have to be estimated. In the general case, the eigenmode
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restrictions prevent from reconstructing exactly x + dx. A least mean square
approximation is obtained by x + dx ~ x + P(q+dq) = dq = P”dx. Vector
dq is truncated according to the covariance matrix eigenvalues to prevent the
excessive deformation in a given mode direction (—kv; < ¢;+dg; < kv;), where
k is a positive constant.

PCA encountered a large success for segmentation [26], in particular segmen-
tation of anatomical structures [81,43], contour tracking [42,47], and shape
classification [73]. Some non linear extensions have been proposed in [86,85].

5 Deformable models topology

Deformable models give prior information on the shape of the objects to re-
cover. However, if the prior model shape is too different from the data, the
model might not be able to deform correctly. Several authors propose topology
adaptive models to face this problem.

The term topology change may include both change in the mesh structure (as
illustrated at left of figure 4) or change of the surface genus (right of figure 4)
which transforms the surface such as it is not homeomorphic to its previous
configuration. In the first case we shall refer to model adaptation while genus
changes apply to variable topology models.
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Fig. 4. Left: adaptive topology. Right: topology change.

5.1 Adaptive models

Model adaptation is needed to obtain a geometric representation with a detail
level similar to the data precision.

5.1.1 Parameterized models adaptation

Parameterized models require a data adaptation if the parameter space dis-
cretization is rough compared to the data detail level. McInerney and Ter-
zopoulos [60] propose to resample the finite element method nodes along time.
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This multi-scale approach allows a transition from coarse to fine level. The
model is first roughly discretized, and its surface is adapted as it converges
towards the data. This approach considerably reduces the computational task
at the beginning of the deformation process.

In the case of explicit models, regular sampling of the parameter space does
not necessarily lead to a regular sampling of the surface. Vemuri and Radisavl-
jevic [108] propose a transformation of parameter space solving the problem in
their particular case. Székely et al [91] try to keep constant the ratio between
a surface triangle area and the curved triangle area composed with the three
same parameters on a unit sphere.

From a numerical point of view, parameterized models resampling necessarily
lead to a new computation of mass, damping and stiffness matrices. In the
case of a semi-implicit numerical scheme, these matrices have to be inverted.
An adaptive scheme with too high a frequency might thus become computa-
tionally expensive.

5.1.2  Discrete adaptive models

In the case of discrete models, adaptation is performed locally by adding new
vertices. Since the motion equations are local to each vertex, the surface adap-
tation has a reduced effect on the evolution scheme. Bulpitt and Efford [15]
propose a refinement algorithm for regular triangulated surfaces (each ver-
tex has six neighbors). Delingette [32] defines adaptation laws preserving the
simplex meshes geometry.

Subdivision surfaces allow a multi-scale representation of discrete meshes, re-
gardless of their structure. A subdivision surface is defined as a point set that
can be enlarged to refine the surface.

The most common approach is to consider the point set {py}, as vertices
of a mesh M°. A mesh sequence is built (M° ... M7 ...) which produces
more and more detailed meshes and converges towards a continuous surface.
Thus, lim;_, p} exists for any point ¢ and the sequence {p{ }j strongly con-
verges. A large number of subdivision surfaces refinement schemes have been
proposed [114]. A second approach is to consider the points {p?}, as a con-
trol node set indirectly generating a surface. The surface is refined by adding
control points.

5.1.8 Adapting the number of modes

Decomposing a model on a vibration mode basis as described in [70,71,108,76]
leads to an adaptive representation. A restricted set of low frequency modes
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give a rough surface description. By adding modes, the surface representation
is refined.

5.2 Adaptive topology

Several authors propose deformable models whose topology may change along
the deformation process to fit the data topology [48,63,49]. The model shape
initialization may represent the data very roughly. The reconstruction process
does not rely on the prior model shape and benefits of a large number of
degrees of freedom.

If the idea of an automatic topology adaptation is attractive, it is difficult to
apply when considering noisy datasets. The deformable models convergence is
very dependent on its prior shape and location. To automatically determine
topology changes in a noisy dataset without prior shape information may be
unstable.

5.2.1 Parameterized representations

When considering parameterized models, different topologies lead to differ-
ent parameter boundary conditions. Leitner and Cinquin [50] propose an al-
gorithm to detect self-intersections of surface models represented as a ten-
sor product of B-splines. Surface self-intersections are treated by refining the
model, making holes around intersecting regions, and connecting by reordering
the control points defining the surface.

5.2.2  Implicit representation

Level-set may change their topology in a very natural way. As the function ¥
continuously evolves, the isovalues define surfaces that may undergo fusions
or splitting while ¥ remains a function.

5.2.8 Discrete representation

McInerney and Terzopoulos [61] propose deformable discrete contours (7-
snakes) and deformable discrete surfaces ( T-surfaces) with an adaptive topol-
ogy. Their approach is based on a simplicial decomposition of space using a
quasi regular tetrahedral grid. The model is initially a triangulation whose
vertices are located on the simplicial grid edges. The algorithm alternatively
performs deformations and resampling. This approach is efficient due to the
cheap resampling procedure of the discrete model. However, it requires the
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definition of the inside and the outside part of the surface. Thus it is not pos-
sible to deal with open contours or surfaces with borders. The deformation
process brings the surface to inflate or to deflate everywhere. It may cause
some problem unless the surface is carefully initialized.

Lachaud and Montanvert [48] define topology adaptive triangulations based
on the Jd-snakes concept. A length parameter (6 > 0) is used to control the
triangulation sampling and to detect model self-intersections from two elemen-
tary rules controlling the distance between neighbor vertices and non neighbor
vertices. This approach is relatively costly since it require the comparison of
the distance between each vertex pair. An octree structure is used to optimize
the computations.

Delingette and Montagnat [33] also propose an algorithm for handling topol-
ogy changes of discrete contours. A contour subsampling over a grid is used
to speed-up intersection detections.

6 Conclusion

This survey focuses on the topological, geometric and evolution aspects of
deformable models because they are common to all deformable models inde-
pendently of their applications. However, it is clear that we have not covered
other aspects of deformable models that are typically application-dependent.
For instance, when considering deformable models in the context of image seg-
mentation, the choice related to external energy guiding the models towards
an object boundary is also of primary importance. In computer graphics, the
issues of collision detection and realistic behavior are more relevant. These
specific topics have been partially covered by previous surveys [62].

In section 2 we have classified various surfaces by their geometric representa-
tion. The choice of a surface representation has an effect on the set of possi-
ble shapes. For instance, surfaces defined as sums of spherical harmonics are
restricted to represent shapes of genus 0. Superquadrics can only represent
convex objects. Level-sets cannot represent contours or surfaces with borders.
Conversely, discrete meshes can represent surfaces with any topology. Some
representations are continuous and allow to define geometric quantities such
as normals or curvatures all over the surface. Conversely, discrete represen-
tations only define the surface geometric attributes at a finite set of points.
The representation is thus very context-dependent, depending on the desired
shape variability and geometric properties.

Deformation schemes are the topic of section 3. The problem of deforming
a surface towards a dataset is often stated as an optimization problem that

32



involves the minimization of a model energy functional. The energy functional
both depends on the surface regularity and the distance between the surface
and the data. In the ideal case, the optimal surface is a global minimum of
the energy functional that corresponds to an equilibrium between regularity
and distance to data. Few techniques allow the search of a global minimum for
the very irregular and non-convex energy functional because of their computa-
tional complexity. Instead, the energy equation is often derived in a stationary
equation corresponding to an equilibrium of forces applied onto the surface.
Local minimization of the derived equation is achieved either by a gradient
descent or an evolutive method. The surface is thus likely to converge towards
a local minima of its energy.

Section 4 presents several techniques to constrain the deformation space. Con-
strained deformations lead to more convex energy functional that are easier
to minimize. They are often used to reduce the surface degrees of freedom
in the initialization stage. However, constraining deformations too much may
reduce the surface shape variability and make it impossible to reconstruct
complex 3D structures. A trade-off between deformation behavior and shape
variability must be found. Iterative or multi-scale algorithms have been pro-
posed to apply global, highly constrained, transformations and evolve towards
local deformation as the algorithm converges. Conversely, some surface repre-
sentations have very few degrees of freedom. Superquadrics, for instance, are
only defined by a set of six parameters. Additional local deformations may be
used to improve the surface space of deformations.

Finally, we have focused on model topology changes in section 5. Topology
changes include both surface adaptation and changes in the surface genus.
Implicit representations such as the level-set algorithm naturally allow topo-
logical adaptation. For explicit representation, few sophisticated algorithms
have been proposed to allow such adaptivity. These algorithms are often based
on a smart sampling of the Euclidean space.
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