
HAL Id: inria-00592174
https://inria.hal.science/inria-00592174

Submitted on 11 May 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Tight Analysis of Relaxed Multi-Organization
Scheduling Algorithms

Daniel Cordeiro, Pierre-Francois Dutot, Grégory Mounié, Denis Trystram

To cite this version:
Daniel Cordeiro, Pierre-Francois Dutot, Grégory Mounié, Denis Trystram. Tight Analysis of Re-
laxed Multi-Organization Scheduling Algorithms. 25th IEEE International Parallel and Distributed
Processing Symposium (IPDPS 2011), May 2011, Anchorage, United States. �inria-00592174�

https://inria.hal.science/inria-00592174
https://hal.archives-ouvertes.fr

Tight Analysis of Relaxed Multi-Organization Scheduling Algorithms

Daniel Cordeiro∗‡, Pierre-François Dutot‡, Grégory Mounié‡, and Denis Trystram†‡

∗Instituto de Matemática e Estatı́stica

Universidade de São Paulo

São Paulo, Brazil
†Institut universitaire de France

Paris, France
‡LIG, Grenoble University

Montbonnot Saint-Martin, France

{cordeiro,pfdutot,mounie,trystram}@imag.fr

Abstract—The goal of this paper is to study how limited
cooperation can impact the quality of the schedule obtained by
multiple independent organizations in a typical grid computing
platform. This relaxed version of the problem known as the
Multi-Organization Scheduling Problem (MOSP) models an
environment where organizations providing both resources and
jobs tolerate a bounded degradation on the makespan of their
own jobs in order to minimize the makespan over the entire
platform.

More precisely, the technical contributions are the following.
First, we improve the existing inapproximation bounds for
this problem proving that what was previously though as not
polynomially approximable (unless P = NP) is actually not
approximable at all. We achieve this using two families of
instances whose Pareto optimal solutions are on par with the
previous inaproximability bounds.

Then, we present two algorithms that solve the problem
with approximation ratios of (2; 3/2) and (3; 4/3) respectively.
This means that when using the first (second) algorithm, if
an organization tolerates that the completion time of its last
job cannot exceed twice (three times) the time it would have
obtained by itself, then the algorithm provides a solution that
is a 3/2-approximation (4/3-approximation) for the optimal
global makespan. Both algorithms are efficient since their
performance ratio correspond to the Pareto optimal solutions
of the previously defined instances.

Keywords-scheduling; multiple organizations; multi-
objectives; approximation algorithms;

I. INTRODUCTION

A. Motivation and Informal Presentation of the Problem

Grid computing systems allow unprecedented computa-

tional power by combining geographically dispersed com-

puters into a single massively parallel distributed system.

Users of such systems contribute with computational power

(multi-core machines, clusters, etc.) and expect to be able

to execute their own jobs more efficiently by sharing their

own resources with others.

This work has been supported by the bilateral brazilian-french CAPES-
COFECUB program (project # Ma 660/10) and by a Google Research
Award.

The heterogeneity of the available resources, the large

number of available processors and cores, and different

demands from users make the problem of scheduling of

such parallel platforms really hard in practice. In order to

fully exploit such systems, we need sophisticated scheduling

algorithms that encourage the users to share their resources

and, at the same time, that respect each user’s own interests.

Typically, these computer systems are composed of or-

ganizations that own and manage clusters of computers. A

user of such systems submits his/her jobs to a scheduler that

can choose any available machine in any of these clusters.

However, each organization expects that the performance of

its own jobs will be improved even if its local hardware

could be used to execute jobs from other organizations.

It is crucial to determine schedules that optimize the allo-

cation of the jobs for the whole platform in order to achieve

good system performances. On the other hand, it is important

to guarantee the performance perceived by each organization

in order to provide an incentive to the cooperation between

organizations. The goal of this paper is to study how to

compute such schedules and to analyze the trade-off between

the global performance and the performance perceived by

each organization.

B. Related Work

The classical problem of scheduling parallel jobs is related

to the Strip packing [1] problem, where one must pack a set

of rectangles (without rotations and overlaps) into a strip

of processors in order to minimize the used height (which

corresponds to the makespan). Strip packing was extended

to the case where the rectangles must be packed into a finite

number of strips [2], [3]. Recently, Jansen et al. [4] presented

an asymptotic (1+ ǫ)-approximation AFPTAS with additive

constant O(1) and with running-time polynomial in n and

in 1/ǫ.
Motivated by grid computing systems, Schwiegelshohn,

Tchernykh, and Yahyapour [5] studied a very similar

problem, with the difference that the jobs can be sched-

uled in non-contiguous processors instead of rectangles.

They presented an algorithm with a guarantee that is

a 3-approximation for the maximum completion time

(makespan) when all the jobs are known in advance. They

also provided a 5-approximation for the makespan on the

on-line, non-clairvoyant case.

The Multi-Organization Scheduling problem (MOSP)

was introduced by Pascual et al. [6], [7]. The goal was

to study how to efficiently schedule parallel jobs in new

computing platforms, while respecting users’ own selfish

objectives. A preliminary analysis of the scheduling problem

on homogeneous clusters (composed of the same amount

of identical processors) was presented with the target of

minimizing the makespan, resulting in a centralized 3-

approximation algorithm.

Then, MOSP was extended in distinct ways. Cohen

et al. [8] analyzed the complexity of the problem when

organizations are locally interested in minimizing either the

makespan (MOSP(Cmax)) or the average completion times

(MOSP(
∑

Ci)). The problem is shown to be NP-Hard for

both local objectives. This study was restricted to sequential

jobs. In the same paper, they have also studied the impact

of the lack of cooperation between organizations through

the introduction of the notion of selfish organizations, i.e.,

organizations that refuse to cooperate if their objectives

could be improved just by executing early one of their

jobs in one of their own machines. Cohen et al. proved

that any approximation algorithm for MOSP(Cmax) has

a ratio greater than or equal to 2 − 2
N

regarding the

optimal makespan with local constraints if all organizations

behave selfishly. Three different 2-approximation algorithms

for MOSP with selfishness restrictions were presented and

analyzed for practical workloads.

Ooshita et al. [9] also studied the notion of cooperation

between organizations, following [6] but with a different

perspective. Instead of studying the strict lack of willingness

to cooperate, they studied how much one can improve the

global makespan if all organizations allow some degradation

of their own local objectives by a constant factor – called de-

gree of cooperativeness (denoted by the parameter α). This

relaxed version of MOSP was called α-Cooperative Multi-

Organization Scheduling Problem (α-MOSP). The authors

have focused their work on the problem of scheduling on un-

related machines (R||Cmax), opposed to the previous works

on MOSP that always studied the problem of scheduling on

independent machines (P ||Cmax).

Their first contribution was to show that for any degree of

cooperativeness α ≥ 1, there exists an instance of α-MOSP

where the ratio between the makespan that respects the

degree of cooperativeness (Cα
max) and the optimal makespan

without the local constraints (C∗
max) satisfies the relation

Cα
max

C∗

max
≤ max

{

∑N

l=1
1
αl ;

(α+1)
α

}

− ǫ. This ratio shows that

when α = 1 the lack of cooperation can make the makespan

be N−ǫ times greater then it could have been with unlimited

cooperation.

The authors developed an algorithm called TOMOS,

which provides a way to transform a schedule with unre-

strained cooperation into one with degree of cooperativeness

α. The algorithm guarantees that the ratio between the Cmax

of the solution without the constraints and the solution

constructed with the α-MOSP constraints is less then or

equal to
∑N

l=1
1
αl < α

(α−1) .

The authors have studied the complexity and inapproxi-

mation bounds for the α-MOSP problem. They have showed

that the problem is strongly NP-Hard for any α > 1. Using

the arguments given in the reduction used on the proof, they

have calculated the inapproximation bounds for the problem

when α < 2. Under the assumption of P 6= NP, there is no

ρ-approximation algorithm for α-MOSP for any ρ < (α+1)
α

.

If α > 2, the classical inapproximation ratio of 3
2 of the ∞-

MOSP problem holds.

The notion of cooperation between different organizations

and the study of the impact of users’ selfish objectives

are directly related to Game Theory. The study of the

Price of Anarchy [10] on non-cooperative games allows

to analyze how far the social costs – results obtained by

selfish decisions – are from the social optimum on different

problems. In selfish load-balancing games (see [11] for more

details), selfish agents aim to allocate their jobs on the

machine with the smallest load. In these games, the social

cost is usually defined as the completion time of the last job

to finish (makespan). Several works studied this problem

focusing in various aspects, such as convergence time to

a Nash equilibrium [12], characterization of the worst-case

equilibria [13], etc. We are not targeting here at such game

theoretical approaches.

C. Contributions and Outline of the Paper

As emphasized in the last section, the classical MOSP has

been studied in depth. In this work, we extend the previous

analysis on the relaxed version of the problem when local

degradations are allowed. We believe to have provided a

better understanding of this problem. More precisely,

• We improved the existing inapproximation bounds of

[9] for α-MOSP by showing that, unlike previously

thought, there is no polynomial time approximation

algorithm for these bounds even if P = NP . Then,

we present two families of instances whose Pareto op-

timal points corroborate the presented inapproximation

bounds;

• Then, we propose two new algorithms with guaranteed

performance to solve the α-MOSP problem. The anal-

ysis shows that the first one achieves a 3
2 -approximation

for the obtained global makespan, while it guarantees

that no organization will have its makespan more than

doubled. This solution is Pareto optimal according to

[9]. The second one guarantees a 4
3 -approximation

for the global makespan, while no organization has

its makespan more than tripled. This solution belongs

to the border of the inapproximability of the second

family, and, thus, it is Pareto efficient.

II. PROBLEM DESCRIPTION AND NOTATIONS

The general problem studied in this paper is the schedul-

ing problem in which different organizations own iden-

tical machines that are interconnected. Like in any grid

computing system, these organizations share resources and

exchange jobs with each other in order to simultaneously

maximize the profits of the collectivity and their own

interests. All organizations intent to minimize the total

completion time of all jobs (i.e., the global makespan) while

they individually intent to minimize the completion time of

their own jobs in a selfish way.

Although each organization accepts to cooperate with oth-

ers in order to minimize the global makespan, individually

it behaves in a selfish way. An organization could refuse

to cooperate if in the final schedule its local makespan is

significantly increased.

Formally, we define our target platform as a grid comput-

ing system with N different organizations interconnected by

a middleware. Each organization O(k) (1 ≤ k ≤ N) has a

single machine which can be used to run jobs submitted by

users from any organization.

Each organization O(k) has n(k) jobs to execute. Each

job J
(k)
i (1 ≤ i ≤ n(k)) will use one processor for exactly

p
(k)
i units of time. No preemption is allowed, i.e., after its

activation, a job runs until its completion at time C
(k)
i .

We denote the makespan of a particular organization k by

C
(k)
max = max

1≤i≤n(k)
(C

(k)
i). The global makespan for the entire

grid computing system is defined as Cmax = max
1≤k≤N

(C
(k)
max).

A. Relaxed Local Constraints

MOSP – as first studied by Pascual et al. [6], [7] –

introduces local constraints to guarantee that all organiza-

tions will always have incentive to cooperate. In the global

schedule, no organization will have its makespan increased

when compared to the makespan that the organization could

have by scheduling its jobs alone in its own set of processors

(C
(k) local
max). More formally, we denote by MOSP(Cmax)

the following optimization problem:

minimize Cmax such that, for all k (1 ≤ k ≤ N),

C
(k)
max ≤ C

(k) local
max

By restraining the feasible schedules to the ones that

respect the local constraints, the minimum attainable global

Cmax is restricted. There is a clear trade-off between

how much each organization can improve its own local

makespan and how much the global makespan can be

improved. This motivated Ooshita et al. [9] to study a relaxed

version of the MOSP problem called the α-Cooperative

Multi-Organization Scheduling Problem (abbreviated by α-

MOSP).

In the α-MOSP problem, the local constraints imposed in

the classical MOSP problem are relaxed. Each organization

allows a degradation of its initial makespan by a factor α ≥ 1
that represents the degree of cooperativeness. Ooshita et al.

study how much the global makespan can be improved if

the makespan obtained by each organization k is bounded

by αC
(k) local
max . When α > 1, each organization is less selfish

and is more likely to sacrifice its local objective in order to

improve the global makespan. When α = 1, the problem

corresponds to the classical MOSP problem defined in [6].

The MOSP optimization problem rewritten to model the

degree α of cooperativeness can be stated as follows:

minimize Cmax such that, for all k (1 ≤ k ≤ N),

C
(k)
max ≤ α · C

(k) local
max

In this paper, we are interested in the study of algorithms

with guaranteed approximation ratios when the degree of

cooperativeness is fixed. We denote the approximation ra-

tios by (α; β), meaning that if an algorithm respects a

degree of cooperativeness of α, then the algorithm is a β-

approximation for the global Cmax. We also present some

improved inapproximability analysis for the problem.

III. INAPPROXIMABILITY ANALYSIS

A natural question that arises when studying a multi-

objective optimization problem – like the relaxed version

of MOSP – is how to determine the Pareto set that charac-

terizes the set of Pareto optimal solutions1. In this section

we studied how to characterize the Pareto set of MOSP.

While this problem is hard (and still open), we provide

some inapproximability results that should help to better

characterize the Pareto set.

We provide in this section some families of instances

that clearly show the trade-off between the objectives being

optimized. We will show through these examples that if we

bound the approximation ratio of one criteria, no scheduling

algorithm will be able to improve the approximation ratio

of the other objective. Those inapproximability results are

stronger than in [9] because the shape of the inapproximation

curve is broader (see Family 1 of instances on Section III-B)

and because we prove that there is no algorithm with better

performance ratio (since the Pareto optimal solutions of

these instances reach these ratios). Hence, while previous

works show that no polynomial algorithms with better ratios

exists unless P = NP , we show that there are no feasible

solutions with better ratios at all, which eliminates the

possibility of any further improvements even with the use

of non-polynomial algorithms.

1Pareto optimality [14] is a concept originally used in economics and
now widely utilized to indicate that a solution for a multi-objective problem
cannot be improved on one objective without worsening another objective.

A. Principle

To better understand the inapproximation ratios presented

in this section, we first start with a simple example. Let us

consider an instance with N = 3 organizations and four

different jobs, as follows (see Figure 1):

O(1) : 1 organization with 2 jobs of length 1,

O(2) : 1 organization with 1 job of length 1
3 ,

O(3) : 1 organization with 1 job of length 2
3 .

O(1)

O(2)

O(3)

time
1

Figure 1. Simple instance with 3 organizations

First, remark that if we want to obtain a makespan strictly

better than 2, then, it is impossible to schedule two jobs of

organization O(1) on the same machine. Depending on the

considered objective (global makespan and respect of the

degree of cooperativeness α), a scheduling algorithm could

be interested in either achieving the optimal global makespan

(Cmax = 1) or respect α-MOSP relaxed local constraints

with α = 1 (C
(k)
max ≤ 1 · C

(k) local
max , ∀k ∈ [1;N]).

To achieve a makespan of 1, the jobs of organizations O(2)

and O(3) must be scheduled together. In the best case, the

job of O(2) is scheduled before the job of O(3) which leads

to an approximation ratio of (32 ; 1). This means that if the

approximation ratio for the global makespan is bounded by

1, then no algorithm can construct a solution with a degree

of cooperativeness better than 3
2 (see Figure 2(a)).

On the other hand, if the schedule targets to achieve

Cmax < 2 and a degree of cooperativeness α = 1, then

the jobs of O(2) and O(3) must start at time 0. Starting the

first job of O(1) at time 0, the second one can start as soon

as the job of organization O(2) finishes. In this case, the

approximation ratio obtained is (1; 4
3) (see Figure 2(b)).

time
1

(a) (3
2
; 1)

time
1

(b) (1; 4

3
)

Figure 2. The two relevant schedules

As these two schedules are Pareto optimal solutions for

this instance, there is no algorithm with a performance ratio

strictly better than 3
2 on the degree of cooperativeness and 4

3
on the makespan at the same time, as there are no solutions

for this instance with these values.

The principles demonstrated in this example can be ex-

tended with the following instances.

B. Family 1

Let us consider the following instance of the MOSP

problem (depicted in Figure 3):

• N organizations;

• O(1) has n(1) = N − 1 identical jobs of length 1;

• For 2 ≤ k ≤ N , O(k) has only one job of length

ai =
1

N−1

O(1)

O(2)

O(3)

O(4)

time
1

Figure 3. Instance of family 1 for N = 4

The total work to be done is equal to
∑

i,k p
(k)
i = N

and the optimal Cmax for this instance without the MOSP

constraints is obtained by scheduling each job of length 1
on different machines and then, scheduling all jobs of length

1
N−1 on the remaining machine. The optimal Cmax is equal

to 1 (see Figure 4(a)).

time
1

(a) (N − 1; 1)

time
1

(b) (1; 1 + 1

N−1
)

Figure 4. The two extreme Pareto schedules of family 1 for N = 4

Suppose now that we want to guarantee a value 1 ≤ x < 2
for the approximation ratio of the global makespan. This

means that we must schedule all the jobs of O(1) in different

organizations and that they must start at most at time t =
x− 1.

If we set x = 1+ 1
N−1 , then we can schedule all the jobs of

length ai before the jobs of length 1 (see Figure 4(b)). This

leads to a (1; 1 + 1
N−1)-approximation. On the other hand,

if we set x = 1+ 1
N−1−ǫ then all jobs ai must be scheduled

on the machine that does not have any job of length 1. This

schedule increases the makespan of the jobs ai by a factor

of at most N − 1 and we get a (N − 1; 1 + 1
N−1 − ǫ)-

approximation.

This family of instances shows that although the guarantee

(N − 1; 1 + 1
N−1) seems far from the two Pareto optimal

solutions (1; 1+ 1
N−1) and (N −1; 1), we can not improve

simultaneously the solution for both objectives.

For N = 3, 4, 5 and 6, we have Pareto efficient guarantees

of (2; 3
2), (3;

4
3), (4;

5
4), and (5; 6

5), respectively.

C. Family 2

Consider the family of instances of the MOSP problem

described as follows. Let j, k be integers such that j > 1
and k > j − 2. We define three classes of organizations:

O(A) : (j− 1)k organizations with only one job of length
j−1
j

O(B) :k organizations with j − 1 jobs of length 1
j

O(C) :1 organization with k + 1 jobs of length 1

O(A1)

O(A2)

O(A3)

O(A4)

O(B1)

O(B2)

O(C1)

time
1

Figure 5. Instance of family 2 for (j = 3; k = 2)

In order to reach the optimal makespan, each job of orga-

nization O(C) must be scheduled alone on an organization.

Each one of the jobs of O(B) must be scheduled together

with a job from O(A), in such a way that each pair is

scheduled alone on an organization and the job from O(B) is

scheduled before the one from O(A). The global makespan

is optimal (Cmax = 1) and the degree of cooperativeness

is equal to
j−1
j

+ 1
j

j−1
j

= j
j−1 (this configuration is shown in

Figure 6(a)).

Proposition 1: To improve the degree of cooperativeness

to a value better than j
j−1 , the makespan must be at least

equal to 1 + j−1
j

.

Proof: To prove this, we need to look at what would be

an implication of a lower degree of cooperativeness. If the

degree of cooperativeness is lower than j
j−1 , then each job

of a type O(A) organization has to be scheduled without any

other job of organizations O(A) or O(B). This only leaves

k+1 machines to schedule the k(j−1) jobs of organizations

O(B). Furthermore, if the makespan is strictly lower than

1 + j−1
j

, only one job of O(C) and at most j − 2 jobs of

O(B) can be scheduled on those k+1 machines (see Figure

6(b)).

However, as k > j − 2, we have:

(k+1)(j−2) = k(j−2)+ j−2 < k(j−2)+k = k(j−1)

Therefore, if the makespan is strictly lower than 1+ j−1
j

there is at least a machine with a job of type O(B) and one

of type O(A), which lead to a cooperativeness ratio of at

least j
j−1 .

time
1

(a) (j

j−1
; 1)

time
1

(b) (1; 1 + j−1

j
)

Figure 6. Two Pareto schedules of family 2 for (j = 3; k = 2)

The Pareto guarantees are then (j
j−1 ; 1 +

j−1
j

). For j =

2, 3, 4 and 5, we have Pareto efficient guarantees of (2; 3
2),

(32 ;
5
3), (

4
3 ;

7
4), and (54 ;

9
5), respectively.

D. Summary

In this section, we have studied the trade-offs between the

degree of cooperativeness of the organizations and the best

global makespan attainable that respects the relaxed MOSP

constraints. We presented two families of instances and their

respective sets of Pareto optimal approximation ratios.

The first family of instances, presented in Section III-B,

improves the previous known bounds established by Ooshita

et al. [9] in two distinct ways.

 1

 1.2

 1.4

 1.6

 1.8

 2

 1 2 3 4 5

Gl
ob

al
 C

m
ax

Local Cmax

(2; 3/2)

(3; 4/3)

(4; 5/4) (5; 6/5)

(3/2; 5/3)
(4/3; 7/4)

(5/4; 9/5)

(10/9; 19/10)

Family 1 inapprox. points
First 10 inapprox. points of Family 2

Figure 7. Inapproximation bounds

First, we proved that what was previously though as not

polynomially approximable (unless P = NP) is actually

not approximable at all. We show that for this family of

instances it is not possible to simultaneously improve the

guarantee of (N ; 1 + 1
N−1) on both criteria.

Second, despite the fact that the approximation ratios

obtained in families 2 and 3 are in the curve
(α+1)

α
presented

in [9], better ratios are theoretically still possible if only one

criterion is improved. The rectangles in Figure 7 mark the

area that is known to be not attainable. However, points on

the outline of the rectangles (that are not covered by other

rectangles) are still attainable.

The second family of instances, presented in Section III-C,

shows that ratios of the form (j
j−1 ; 1 + j−1

j
) are Pareto

optimal. This result also shows that for large values of j, we

have limj→∞(1 + j−1
j

; j
j−1) = (2; 1). This means that the

ratio (2; 1) obtained by classical list scheduling algorithms

for the classical MOSP problem (like the ones presented in

[8]) is also Pareto optimal.

Figure 7 summarizes the inapproximation bounds pre-

sented in this section.

IV. APPROXIMATION ALGORITHMS

We present in this section two algorithms that guarantees

an approximation factor for the MOSP problem with relaxed

local constraints of (2; 3
2) and (3; 4

3). It means that if the

makespan of an organization is worsened by a factor at most

of 2 (respectively 3), then the global makespan is no more

than 3
2 (respectively 4

3) of the optimal.

Since the value for the optimal makespan is unknown,

we use the dual approximation technique introduced by

Hochbaum and Shmoys [15], that uses a binary search

approach to estimate the value of the optimal makespan.

For the sake of clarity – and without loss of generality –

we rescale the length of all jobs in such a way that 1 is the

length of optimal makespan.

A. Principle

The main idea of the algorithms presented in this section

is to allocate optimally all the large jobs. This placement

will be used to determine where to schedule the remaining

jobs of the organizations, with respect to the relaxed local

constraints. The definition of what is a large job depends

on the value of the target global makespan. Both presented

algorithms are designed on the same basic structure of job

partitioning. The principle can be decomposed into five

successive phases as follows:

1) all organizations are classified according to the value

of their initial makespan and presence of a large job;

2) an algorithm is used to determine the placement for

the large jobs;

3) some of the large jobs are used to determine where to

schedule all the jobs from their owners;

4) entire organizations are migrated to machines with

total load less than the optimal makespan;

5) finally, the remaining organizations (the ones with

initial makespans too small or too large) are allocated

and the entire schedule is produced, starting all the

jobs as soon as possible in the predetermined order to

remove idle times.

B. Algorithm 1: (2; 3
2)

The first approximation algorithm presented computes a

schedule that is a 3
2 -approximation for the global makespan,

while ensuring that no organization will have its makespan

more than doubled if compared with its initial makespan.

Phase 1: Classify each organization into one of the

following disjoint groups:

• A = {O(k) | C
(k) local
max ≤ 1

2};

• B1 = {O(k) | 1
2 < C

(k) local
max ≤ 3

4 and ∄ J
(k)
i such that

p
(k)
i > 1

2};

• B2 = {O(k) | 1
2 < C

(k) local
max ≤ 3

4 and ∃! J
(k)
i such that

p
(k)
i > 1

2};

• C = {O(k) | C
(k) local
max > 3

4}.

This classification gathers organizations that have small

initial makespans (A), that are hard to schedule with re-

spect to the local constraints; organizations that are easy to

schedule (C), since within the global makespan of 3
2 they

will always fufill the local constraints; and intermediate or-

ganizations (B1 and B2) that need to be carefully scheduled.

In this classification, large jobs are defined as jobs whose

processing times p
(k)
i are strictly larget than 1

2 .

Phase 2: We now assign all large jobs one per processor,

from the end of the schedule under construction (time = 3
2)

to the beginning (time = 0).

Phase 3: The assignment calculated is adjusted as follows.

Large jobs owned by organizations in C remain untouched,

while each large job owned by an organization in B2 is

replaced by all jobs of its owner (including itself).

Phase 4: Group all organizations from B1 and B2 into

pairs (O(i) and O(j), where C
(i) local
max ≤ C

(j) local
max) in such

a way that each machine has only one pair and all jobs from

O(i) are scheduled before the jobs from O(j). If |B1|+ |B2|
is odd, then schedule the last remaining organization on their

original machine at the beginning of the schedule.

Phase 5: Assign all jobs owned by organizations in A
and the remaining jobs from the last organization B1 (if

any) into their original machines. Then, assign all remaining

jobs from organizations in C into the scheduling using any

list scheduling algorithm. Then, compact the schedule, i.e.,

remove any idle time by executing early the jobs starting

after an idle time.

Analysis

The Phase 2 of the algorithm presented in the previous

section schedules the large jobs, i.e. those with p
(k)
i > 1

2 ,

one per processor. The number of large jobs is limited to N
as shown in the following lemma:

Lemma 1: There are at most N jobs J
(k)
i such that p

(k)
i >

1
2 .

Proof: By contradiction. Suppose that there are N
organizations with N + 1 large jobs. Since the number

of large jobs is larger than the number of organizations,

two large jobs with processing times p
(k)
i and p

(l)
j must be

assigned to a same machine on the optimal schedule. Then

Cmax ≥ p
(k)
i + p

(l)
j > 1, which contradicts the fact that the

optimal schedule must be equal to 1.

During Phase 4, pairs of organizations from B2 have

all their jobs assigned to a same machine and they are

scheduled one after the other. The following lemma shows

why stacking two organizations does respect the α-MOSP

constraints.

Lemma 2: Given two organizations O(i) and O(j), if

C
(i) local
max ≤ C

(j) local
max then all jobs from these organizations

can be scheduled sequentially with respect to their relaxed

local constraints.

Proof: If all jobs from O(i) are followed by all jobs

from O(j) on the same machine, we have C
(i)
max = C

(i) local
max

and

C(j)
max = C(i) local

max + C(j) local
max

≤ C(j) local
max + C(j) local

max

= 2C(j) local
max

At the end, organizations from B2 were coupled and

assigned to machines with a total load greater than 1 and

smaller than 3
2 .

Lemma 3: Jobs of organizations from A always can be

scheduled at the beginning of the schedule before large jobs

from organizations in C during Phase 5.

Proof: Since |A| + |B1| + |B2| ≤ N , it is sufficient to

schedule organizations from A on the same machines where

large jobs from C were assigned. Since a large job from C

has processing time at most equal to 1, then the total load

of the machine will be less than or equal to 1
2 + 1 = 3

2 .

Theorem 1: The schedule generated by Algorithm 1 is a
3
2 -approximation for the global makespan and no organiza-

tion has its makespan more than doubled if compared with

its initial makespan.

Proof: First, we will show that the makespan ob-

tained by the algorithm is a 3
2 -approximation for the global

makespan.

We start by remarking that during Phase 4, organizations

from B1 and B2 are coupled and each pair is assigned to

a different machine. The total load on these machines is

strictly greater than 2· 12 = 1 and less than or equal to 2· 34 =
3
2 . If |B1|+ |B2| is odd, the machine with the organization

that is scheduled alone has a total load bounded by 3
4 .

From Lemma 3, it is sufficient to schedule all jobs from

A before the large jobs from C. Since C
(A) local
max ≤ 1

2

and maxi,k p
(k)
i ≤ 1, then the load on these machines are

bounded by 1
2 + 1 = 3

2 .

Finally, after Phase 5, all remaining small jobs (p
(k)
i ≤ 1

2)

are scheduled using any list scheduling algorithm. Since

there always exists a machine with load < 1 available

(otherwise the total work to be done would be larger than

N and the optimal makespan would be larger than 1), there

is always a machine in which these jobs can be scheduled.

The remaining jobs are smaller than 1
2 , therefore the load

does not exceed 1 + 1
2 = 3

2 . This finishes the proof that

the schedule generated is a 3
2 -approximation for the global

makespan.

Furthermore, it is easy to remark that no organization will

have its makespan more than doubled. Organizations from

A will be scheduled at the beginning of the schedule and

will not be delayed at all. Organizations from B1 and B2 will

remain alone on their own machines or will be scheduled

together. Lemma 2 guarantees that no stacked organization

will be delayed. Organizations from C can be scheduled

anywhere from t = 0 to t = 3
2 , since 2 · C

(C)
max ≤ 2 · 3

4 = 3
2 .

C. Algorithm 2: (3; 4
3)

Using the same frame as in Algorithm 1, we define below

a new algorithm which achieves a 4
3 -approximation for the

global makespan while guaranteeing that no organization

will have its local makespan more than tripled.

This algorithm also has five phases described below.

Phase 1: Classify each organization into one of the

following disjoint groups:

• A = {O(k) | C
(k) local
max ≤ 1

3};

• B1 = {O(k) | 1
3 < C

(k) local
max ≤ 4

9 and ∄ J
(k)
i such that

p
(k)
i > 1

3};

• B2 = {O(k) | 1
3 < C

(k) local
max ≤ 4

9 and ∃! J
(k)
i such that

p
(k)
i > 1

3};

• C = {O(k) | C
(k) local
max > 4

9}.

Phase 2: We first pair all the large jobs using an LPT

scheduling order. Since a large job have p
(k)
i > 1

3 , we have

at most 2N large jobs owned by organizations either in B2

or C. Remark that if there are x large jobs with x ≤ N there

will be no pairing, and there will even be N − x machines

with no large jobs.

During this phase, we first allocate jobs from B2 on

their own organizations, or if two jobs from B2 have to be

scheduled together we do so on the organization with the

largest index. We place paired jobs of C (or single jobs of

C) on the remaining organizations.

In the rest of the algorithm, we will note (B2,C) the set

of pairs created in this phase with one member of B2 and

one member of C. Similarly, we will use the sets (C,C) and

(B2,B2) and if the number of large jobs is strictly lower than

2N , the sets (B2) and (C) will denote respectively the jobs

of B2 and C which were not matched in a pair.

Phase 3: As in the previous algorithm, the assignment

calculated in Phase 2 is adjusted and each large job owned

by an organization in B2 is replaced by all the jobs of its

owner (including itself). These jobs will be tied together in

the rest of the algorithm and treated as a unique job.

Phase 4: Since we have at most 2N large jobs, the

schedule generated in Phase 2 can contain machines with

jobs from only one B2 or C organization, or jobs from two

organizations taken in B2 or C.

As long as the set (B2,C) has at least two elements, we

consider two such pairs. Let O(i) be the organization from

B2 whose job is in the first pair from (B2,C), and O(j) be

the organization from B2 whose job is in the second pair.

Supposing that i > j, we put all the jobs from O(i) and

O(j) on the machine i, and the two jobs from C they were

paired with on machine j. Jobs on machine i are ordered

according to their local makespan. The sets (B2,B2), (C,C)

and (B2,C) are then updated accordingly.

This leaves us with many pairs in (B2,B2) and (C,C) and at

most one in (B2,C). Remember that the sets (B2) and (C) are

eventually not empty if there were less than 2N large jobs in

Phase 2. Jobs in (B2) are allocated to their own organization

machine.

Using a similar argument from Lemma 2 we can show that

up to three organizations can be scheduled sequentially if the

jobs are scheduled from the organization with smaller initial

makespan to the organization with the larger makespan.

As long as there are organizations of type B1 which are

unaffected, these organizations are distributed, allocating one

to each pair in (B2,B2), and two to each single organization

in (B2). After this stage, if there are some organizations from

B1 which are unaffected, then all the organizations from B2

are either in triplets from B1 and B2 or in the last pair of

(B2,C).

If there were strictly less than N large jobs in Phase 2, the

empty machines are filled with triplets of organizations from

B1, as long as that is possible. After this stage, either all the

jobs from organizations in B1 and B2 have been allocated

somewhere, or all the machines either have a triplet from

jobs in B1 and/or B2, or they have at least one large job

from C.

Phase 5: Assign all jobs owned by organizations in A to

their original machines with an original pair of (C,C) from

Phase 2 or a single job from (C) if the remaining pairs in

(C,C) are only pairs formed during Phase 4. Then, assign all

remaining jobs from organizations B1 sequentially to any

machine with less than 1 unit of workload.

Finally, assign all the remaining small jobs in C to the

scheduling using any list scheduling algorithm. The jobs

execution are ordered on each machine according to their

original local makespan.

Analysis

Lemma 4: There are at most 2N jobs J
(k)
i such that

p
(k)
i > 1

3
Proof: By contradiction, similar to the proof of

Lemma 1. Suppose that there are N organizations with

2N + 1 large jobs. Since the number of large jobs is larger

than twice the number of organizations, three large jobs must

be assigned to a same machine on the optimal schedule.

Then Cmax ≥ 3 ·p
(k)
i > 3 · 13 > 1, which contradicts the fact

that the optimal schedule must be equal to 1.

Lemma 5: When considering a pair of (B2,C) formed in

Phase 2, the length of the jobs from C is lesser than 2
3 ,

and scheduling two such jobs together is possible within the

targeted global makespan.

Proof: By contradiction. Suppose that LPT scheduled

the pair (B2,C) together and that length of the jobs from

C is greater than or equal to 2
3 . Since the makespan of

organizations in B2 is greater than 1
3 , the makespan obtained

on the machine where the pair were assigned is greater than
2
3 +

1
3 = 1, which contradicts the fact that LPT schedule the

first two jobs optimally on each machine [16].

Lemma 6: Scheduling all the jobs from any triplet of

organizations of type B1 or B2 on a single machine is always

possible within the target bounds on global makespan and

degree of cooperativeness.

Proof: Since the makespan of any organization in

B1 and B2 is at most 4
9 , scheduling a triplet of these

organizations on a same machine produces a makespan of at

most 3 · 4
9 = 4

3 , which respects the target bounds on global

makespan.

Similarly to Lemma 2, this triplet can be scheduled

sequentialy while respecting the degree of cooperativeness.

Let O(i), O(j), and O(k) be the organizations from this

triplet with C
(i) local
max ≤ C

(j) local
max ≤ C

(k) local
max . If the

organizations are scheduled from the one with smaller initial

makespan to the one with larger makespan, we have:

• C
(i)
max = C

(i) local
max ;

• C
(j)
max = C

(i) local
max + C

(j) local
max ≤ 2C

(j) local
max ;

• C
(l)
max = C

(i) local
max + C

(j) local
max + C

(l) local
max ≤

3C
(l) local
max .

This show that all organizations have their makespan at

most tripled, and respects the targeted degree of coopera-

tiveness α = 3.

Lemma 7: There are always enough machines left to

assign all the organizations of type A to a machine where

there are no jobs of type B1 or B2, and no pair of (C,C)

formed during Phase 4.

Proof: During phase 4, pairs of (C,C) are formed by

splitting two pairs of (B2,C) and creating two new pairs by

grouping the two organizations of B1 in one pair and the two

organizations of C in the other. This means that the number

of pairs (C,C) generated by Phase 4 is bounded by half of

the number of organizations in B2 (as are pairs (B2,B2)) and

these pairs (C,C) are actually assigned to machines originally

owned by an organization in B2. Since |A|+|B1|+|B2| < N ,

there is always a machine to assign the jobs from A not

owned by an organization from B1 or B2.

Lemma 8: Whenever there is a large job of C scheduled

on a machine and no more than 1 unit of workload, jobs

from organizations B1 can be added to the machine while

still respecting the target bounds on global makespan and

degree of cooperativeness.

Proof: First, let us prove that the bound on the global

makespan is respected. Individual jobs J
(k)
i belonging to

an organization B1 are all strictly shorter than 1
3 . Therefore,

when adding such a job to a machine with less than 1 unit of

workload, the total workload is strictly lower than 4
3 . Hence,

when scheduling all the jobs without idle time the makespan

is strictly lower than 4
3 .

Since the targeted degree of cooperativeness is 3, the in-

serted job J
(k)
i have to complete at most at time 3C

(k) local
max .

Since k is an organization of B1, its local makespan is more

than 1
3 and 3C

(k) local
max is greater than 1. As there is a large

job (i.e. of length more than 1
3) of C on the machine, and

this large job will be executed last with a global makespan

lower than 4
3 , any job scheduled on the same machine will

complete before time 1. In particular, job J
(k)
i will complete

before time 1, which is lower than thrice its local makespan.

Lemma 9: Remaining small jobs from organization C
always have a machine to be scheduled on, while still

respecting the target bounds on global makespan and degree

of cooperativeness.

Proof: Within the targeted makespan of 4
3 , the degree of

cooperativeness α = 3 is always respected for any organiza-

tion k in C because C
(k) local
max > 4

9 ⇒ 3C
(k) local
max > 4

3 . This

means that the remaining small jobs from C can always be

scheduled at the end of the schedule, after all other jobs were

assigned while respecting the degree of cooperativeness.

Since there is always a machine with load less than 1,

after the addition of a small job from C we will have a

makespan smaller than 1 + 1
3 = 4

3 and, therefore, the target

bound on the global makespan is respected.

Theorem 2: Algorithm 2 provides a schedule which has

a global makespan lower or equal to 4
3 , and for which each

task J
(
i k) completes at most at time 3C

(k) local
max .

Proof:

• During Phase 1, the organizations are just structured in

groups.

• During Phase 2, we pair large jobs to distribute them

evenly and ensure that the global makespan will be

lower than 4
3 . We prove in Lemma 4 that this pairing

is possible, and at this stage the workload affected on

each machine is strictly lower than 1 as proved in [16].

• During Phase 3, we add at most 1
9 units of workload to

pairs (B2,C), and 2
9 units of workload to pairs (B2,B2).

• Since the organizations of type B2 have a local

makespan lower than 4
9 , and as we proved in Lemma 5

that we can bound the length of jobs from C paired with

a job from B2, the transformation done in Phase 4 be-

tween two pairs of (B2,C) into one pair of (B2,B2) and

one pair of (C,C) keeps the workload of all machines

under the 4
3 bound.

• The triplets formed in the second part of Phase 4 can

be scheduled within the targeted bounds for the global

makespan and degree of cooperativeness according to

Lemma 6.

• During Phase 5, jobs from organizations of type A are

alloted to machines with a workload lower than 1, since

the pairs of (C,C) are original pairs from Phase 2, as

proved in Lemma 7. The workload on these machines

is then lower or equal to 4
3 .

• In the second part of Phase 5, the remaining jobs

from organizations B1 are alloted to the least utilized

machines such that they will complete before thrice

their local makespan as proved in Lemma 8.

• Finally, Lemma 9 states that all the remaining small

jobs from organizations C can be scheduled within the

global makespan bound.

Remark that this structure could be used to generate an

algorithm with performance ratio of (4; 5
4), or any larger

values corresponding to Family 1. However, it is our con-

viction that these values would be of little practical interest.

V. CONCLUDING REMARKS

In this paper we studied a relaxed form of the schedul-

ing problem known as the Multi-organization Scheduling

Problem (MOSP). We investigated how limited cooperation

between organizations can greatly improve the global per-

formance of grid computing platforms. This relaxed form

of MOSP is known in the literature as the α-Cooperative

Multi-Organization Scheduling Problem (α-MOSP). It mod-

els the scheduling problem where organizations accept a

limited degradation on their perceived performance in order

to improve the quality of the global performance.

 1

 1.2

 1.4

 1.6

 1.8

 2

 1 2 3 4 5

Gl
ob

al
 C

m
ax

Local Cmax

(2; 3/2)

(3; 4/3)

(1; 2)

(3; 3/2)

(4; 4/3)

Previously known guaranteed algorithms
Algorithms 1 and 2

Figure 8. Graphical interpretation of the results.

We improved the previously known inapproximation

bounds for α-MOSP by showing that it is actually not

polynomially approximable even if P = NP . We designed

two families of instances whose Pareto optimal points cor-

roborate the presented inapproximation bounds. Then, two

new algorithms with guaranteed performance to solve the α-

MOSP problem were developed and analyzed. We showed

that the first one achieves a 3
2 -approximation for the obtained

global makespan, while it guarantees that no organization

will have its makespan more than doubled. The second

one guarantees a 4
3 -approximation for the global makespan,

while no organization has its makespan more than tripled.

We summarize in Figure 8 all these results. It evidences the

improvements of the known results and shows how close the

new approximation ratios are from the Pareto set.

Our future work includes two distinct lines of research.

First, we are interested in the development of algorithms that

produce approximation ratios that are Pareto optimal. The

inapproximation analysis presented in Section III suggests

that algorithms with guaranteed approximation ratios of

(2; 4
3) or (3; 5

4) are still possible. We are also interested

in the possible links between this work and Game Theory.

More specifically, we are interested in the study of the Price

of Anarchy on non-cooperative games and in the study of

the possible relations of α-MOSP with the theory of ǫ-Nash

equilibria.

REFERENCES

[1] B. S. Baker, E. G. Coffman, Jr., and R. L. Rivest, “Orthogonal
packings in two dimensions,” SIAM Journal on Computing,
vol. 9, no. 4, pp. 846–855, Nov. 1980.

[2] S. N. Zhuk, “Approximate algorithms to pack rectangles
into several strips,” Discrete Mathematics and Applications,
vol. 16, no. 1, pp. 73–85, Jan. 2006.

[3] D. Ye, X. Han, and G. Zhang, “On-line multiple-strip pack-
ing,” in Proceedings of the 3rd International Conference on
Combinatorial Optimization and Applications, ser. LNCS,
S. Berlin, Ed., vol. 5573, Jun. 2009, pp. 155–165.

[4] K. Jansen and C. Otte, “Approximation algorithms for mul-
tiple strip packing,” in Proceedings of 7th Workshop on
Approximation and Online Algorithms (WAOA), Copenhagen,
Denmark, Sep. 2009.

[5] U. Schwiegelshohn, A. Tchernykh, and R. Yahyapour, “On-
line scheduling in grids,” in IEEE International Symposium
on Parallel and Distributed Processing (IPDPS), Apr. 2008,
pp. 1–10.

[6] F. Pascual, K. Rzadca, and D. Trystram, “Cooperation in
multi-organization scheduling,” in Euro-Par 2007 Paral-
lel Processing, ser. Lecture Notes in Computer Science.
Springer Berlin, Aug. 2007, vol. 4641/2007, pp. 224–233.

[7] ——, “Cooperation in multi-organization scheduling,” Con-
currency and Comp.: Practice & Experience, vol. 21, no. 7,
pp. 905–921, May 2009.

[8] J. Cohen, D. Cordeiro, D. Trystram, and F. Wagner, “Anal-
ysis of multi-organization scheduling algorithms,” in Euro-
Par 2010 – Parallel Processing, ser. LNCS, P. D’Ambra,
M. Guarracino, and D. Talia, Eds., vol. 6272. Ischia, Italy:
Springer Berlin / Heidelberg, Sep. 2010, pp. 367–379.

[9] F. Ooshita, T. Izumi, and T. Izumi, “A generalized multi-
organization scheduling on unrelated parallel machines,” in
International Conference on Parallel and Distributed Com-
puting, Applications and Technologies (PDCAT). Los Alami-
tos, CA, USA: IEEE Computer Society, Dec. 2009, pp. 26–33.

[10] E. Koutsoupias and C. Papadimitriou, “Worst-case equilibria,”
in Proceedings of 16th Annual Symposium on Theoretical
Aspects of Computer Science, ser. LNCS, vol. 1563. Trier,
Germany: Springer Berlin, Mar. 1999, pp. 404–413.

[11] N. Nisam, T. Roughgarden, E. Tardos, and V. V. Vazirani,
Algorithmic Game Theory. Cambridge University Press, Sep.
2007.

[12] E. Even-Dar, A. Kesselman, and Y. Mansour, “Convergence
time to nash equilibria,” ACM Transactions on Algorithms,
vol. 3, no. 3, p. 32, Aug. 2007.

[13] I. Caragiannis, M. Flammini, C. Kaklamanis, P. Kanellopou-
los, and L. Moscardelli, “Tight bounds for selfish and greedy
load balancing,” in Proceedings of the 33rd International
Colloquium on Automata, Languages and Programming, ser.
Lecture Notes in Computer Science, vol. 4051. Springer
Berlin, Jun. 2006, pp. 311–322.

[14] M. Voorneveld, “Characterization of Pareto dominance,” Op-
erations Research Letters, vol. 31, no. 1, pp. 7–11, Jan. 2003.

[15] D. S. Hochbaum and D. B. Shmoys, “A polynomial ap-
proximation scheme for scheduling on uniform processors:
Using the dual approximation approach,” SIAM Journal on
Computing, vol. 17, no. 3, pp. 539–551, 1988.

[16] R. L. Graham, “Bounds on multiprocessing timing anoma-
lies,” SIAM Journal on Applied Mathematics, vol. 17, no. 2,
pp. 416–429, Mar. 1969.

