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Abstract

This paper studies from a machine learning viewpoint
the problem of extracting tuples of a target n-ary relation
from tree structured data like XML or XHTML documents.
Our system can extract, without any post-processing, tu-
ples for all data structures including nested, rotated and
cross tables. The wrapper induction algorithm we pro-
pose is based on two main ideas. It is incremental: par-
tial tuples are extracted by increasing length. It is based
on a representation-enrichment procedure: partial tuples
of length i are encoded with the knowledge of extracted tu-
ples of length i − 1. The algorithm is then set in a friendly
interactive wrapper induction system for Web documents.
We evaluate our system on several information extraction
tasks over corporate Web sites. It achieves state-of-the-
art results on simple data structures and succeeds on com-
plex data structures where previous approaches fail. Ex-
periments also show that our interactive framework signif-
icantly reduces the number of user interactions needed to
build a wrapper.

1 Introduction

In less than ten years, XML has become a standard for
semi-structured data exchange and storage. From its pre-
liminary usage in Internet technologies, XML influence has
grown to become widely used now for corporate data1. XML
usage includes document-like data produced for instance by
word processors and spreadsheets, data for software inter-
operability (UDDI, WSDL). In the meantime, with the gener-
alization of decision support systems, high valued corporate
data such as economic statistics are generated by reporting
tools2 and are published as semi-structured documents. All
such data participates in a new source of information that
end-users want to query in an easy way.

But end-user accessibility of XML or XHTML data, by
means of query tools, is more problematic than in the

1See for instance www.oasis-open.org
2See for instance jasperreports.sourceforge.net

classical and long-standing experienced case of relational
databases. This situation is due either to the lack of explicit
and coercive data types or due to the extensibility nature of
XML that allows great heterogeneity of data.

Therefore, in spite of standardized query languages like
XPATH, a common attitude is to develop specific programs
for each query over semi-structured data. Recently, tech-
niques have appeared to assist end-users in designing such
programs. For instance, the Lixto system [2] allows to de-
fine queries or so-called wrappers over semi-structured data
in a visual and interactive framework. Unfortunately, spec-
ifying wrappers with such systems can be too difficult for
end-users. Alternate or complementary approaches relying
on machine learning techniques have been considered. As
in a query by example system, an end-user annotates data to
extract and the system induces an appropriate wrapper. Ma-
chine learning approaches have been widely developed for
Web information extraction [3, 5, 9, 11, 14, 16, 17]. These
systems are limited so far to simple Web pages containing
lists of results à la Google or tables.

But data organizations in tree structured documents may
be intricate. For instance, let us consider as a running
example a (part of a) page of the BEA Web site from
www.bea.gov in Fig. 1. The corresponding HTML tree is
given in Fig. 2. Let us consider the target relation (Country,
Year, Exports, Balance). The tuples (France, 1986, 10.130,
7.119) and (France, 1987, 11.701, 7.947) are intertwined in
the HTML tree. Thus extracting tuples in the document or-
der should fail. Also it could be noted that values for the
component Country are factorized over several tuples.

Our objective is a friendly system for extracting tuples
from XML or XHTML documents whatever the structure used
to store tuples is. We follow the wrapper induction approach
which is licensed because the generation process implies
regularities of semi-structured data. We first study, in Sec-
tion 2, different ways to encode n-ary relations in XML, that
is the manner to store tuples in XML trees. We define five
base cases: lists, tables, rotated tables, nested tables and
cross tables. Related work is described in Section 3. It is
shown that existing systems for extracting tuples from Web
documents only deal with lists and tables. Other systems
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Figure 1. Part of a sample page of BEA web site.
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Figure 2. Simplified HTML tree for a page of the BEA Web site (Fig. 1). It corresponds to rotated tables
with pivot values

rely on unary wrappers and a post processing to enable tu-
ple extraction. But let us consider the BEA example and
the target relation (Country, Year, Exports, Balance) and let
us suppose that the sets of values for each component of
the target relation are known, the post processing needs the
knowledge of the tree structure depicted in Fig. 2. Writing
such a post processing procedure is not easy for an end-user.
Moreover, writing by hand such a procedure is in conflict
with the example-based approach.

Thus a machine learning approach for extracting tuples
should allow to extract tuples for all data organizations. The
number of tuples in a tree is exponential in the length of tu-
ples. Therefore, direct approaches fail and we propose a
system based on two main ideas. It is incremental: par-
tial tuples are extracted by increasing length. It is based
on a representation-enrichment procedure: partial tuples of
length i are encoded with the knowledge of extracted tuples
of length i − 1. In Section 4, we present the extraction al-
gorithm. At each step of the incremental process, a binary
classification procedure is used. The attribute-value repre-
sentation schemas use both the DOM view (tree structure)
and the yield view (textual contents) of XML data. The
induction procedure from completely annotated documents,
in which all tuples to be extracted are annotated, is given

in Section 5. At each step i of the incremental process, a
classifier is learned from examples. Positive examples are
encodings of partial tuples which are projections of tuples
to be extracted. Negative examples are encodings of partial
tuples not to be extracted while the i − 1-th partial tuple is
to be extracted. This ensures that the number of examples
is linear in the number of annotated tuples.

The system suffers of one main flaw: completely anno-
tated examples are required. As our objective is to build
a friendly end-user system for wrapper generation with ma-
chine learning techniques, it is mandatory to be able to build
accurate wrappers in a minimal amount of time. In Section
6, we integrate our approach in an interactive framework in
order to reduce the number of user actions. This implies to
modify the algorithms to learn from partially annotated ex-
amples, in which some tuples to be extracted are annotated
as positive examples and some tuples not to be extracted are
annotated as negative.

In Section 7, we present experimental results of our pro-
totype. It has been evaluated on standard RISE [18] data
sets and corporate Web sites in the domains of statistics,
meteorology and economics. These data sets cover the
simplest organizations (lists and tables) and more complex
ones (rotated tables, nested tables and cross tables). First,
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we consider the case of completely annotated examples.
Our system achieves excellent results without any post-
processing. On simple datasets it reaches state-of-the-art
results and it succeeds on intricate ones where other sys-
tems fail. Second, we study the behaviour of our algorithm
in an interactive framework. We show that this interactive
approach significantly improves the time needed to build
wrappers when the number of tuples in each document is
large. It also reduces the quantity of information provided
by the user to define accurate wrappers.

2 Tuples in XML data

We discuss how tuples can be embedded in XML data.
Our case study was done for XHTML data from different
Web sites. We present the five base cases:

Case 1. Tuples can be stored consecutively in the same
order. For instance consider a list of search results like
Google or eBay. Tuples do not overlap in the XHTML doc-
ument. Two cases should be distinguished. In the first one,
the tree structure of the XHTML document is poor and the
problem is equivalent to a problem for sequences. In the
second one, the list constructor of XHTML is used. In this
case, each tuple is in a different item. The case of nested
lists is quite similar to the case of tables we present now.

Case 2. A second structure is a table with component
names in the first row and data in the following rows3. Tu-
ples again do not overlap in the XHTML document. In the
DOM view the least common ancestors of each tuple are dis-
tinct. So it is easy to distinguish between tuples using the
tree structure or the XHTML tags in the document. Nested
lists lead to similar properties.

Case 3. For relations with more components than data
instances, the previous organization is often rotated. Slot
names are in the first column and data are in the follow-
ing columns4. Another example is given by the tables from
www.bea.gov in Fig. 1 for the target relation (Year, Ex-
ports, Balance) for France. It is shown in Fig. 2 that tuples
(1986, 10.130,7.119) and (1987, 11.701, 7.947) are inter-
twined. It should also be noted that different components
of a tuple occur at the same position in the DOM tree. For
instance, 1987, 11.701 and 7.947 are below the third td of
the tr tags of the table.

Case 4. A nested structure is used to avoid repetitions
and to shorten the data presentation. This is common when
issued from reporting tools. Consider for instance the ad-
dress report from JASPERREPORTS 5 where the city name
is factorized among several citizens records. Another exam-
ple is given by the tables from www.bea.gov in Fig. 1 for

3see the table of market indices on quotes.nasdaq.com/aspx/
marketindices.aspx

4see the table of http://www.bls.gov/eag/eag.IA.htm
5jasperreports.sourceforge.net/samples/DataSourceReport.html

Figure 3. Part of a sample page of BLS web
site.

the target relation (Country, Year, Exports, Balance). The
country name is factorized and it is shown in Fig. 2 that
component values occur at different depths in the DOM tree.

Case 5. Cross-tables are used to present multi-
dimensional relations. This is frequent for statistics and re-
ports. This case shares properties with the two preceding
cases: a subset of the component values are stored as in the
case 3 but the rest is stored according to case 4. An example
from BLS www.bls.gov is given in Fig. 3. The DOM tree is
given in Fig. 4. Let us consider for instance the target rela-
tion (Year, Quarter, Unit Labor Costs). Examples of tuples
are (1992, Qtr1, 0.3) and (1993, Qtr3, 1.0).

For the two first cases, tuples are stored consecutively
while, for the three last cases, tuples are intertwined both
in the sequential view and in the DOM view. For the three
last cases, it is necessary to count in order to construct tu-
ples because component values occur at the same position
in different subtrees. It should be noted that variants are
frequent in XML or XHTML data. They consist in mixing
several possible layouts, merging some leaves of the tree or
placing several relations in the same structure. Also, build-
ing tuples can be more intricate when there are missing val-
ues.

3 Related work

We relate to [12] for a survey on Web data extraction
tools. Here we focus on wrapper induction tools for Web
documents. We discuss the supervised and unsupervised
approaches.
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Figure 4. Tree organization for a cross-table
from BLS Web site presented in Fig. 3 re-
stricted to the three first quarters.

The supervised wrapper induction problem has been ad-
dressed by many authors. Several systems have emerged
from this active research field, working from manually an-
notated documents. Let us cite WIEN [11], SOFT MEALY

[9], BWI [7], STALKER [14], SQUIRREL [3], among others.
They achieve very good performance on unary extraction
tasks. Wrapper induction approaches for n-ary tuples ex-
traction include Kushmerick seminal works [11] with LR
wrappers and transducers induction in [9]. More recently
Thomas proposes an approach based on Inductive Logic
Programming [17]. These systems are designed for HTML
documents generated from a back-end database, such as
commercial sites and online shops. For instance, LR wrap-
pers work when tuples are stored consecutively in the se-
quential view of HTML documents. Thus, to the best of our
knowledge, wrapper induction systems for n-ary relations
are able to deal with the most simple cases: lists, nested
lists and tables.

For n-ary extraction, it is often argued that a post-
processing that builds tuples from components extracted by
n unary wrappers is sufficient to solve the n-ary extraction
problem. Indeed, this post processing is easy for cases 1 or
2 when there are no missing values. With missing values,
user interactions are required to label data or to correctly
re-associate tuple components [5, 10]. We argue that this is
unsatisfactory for at least two reasons. First, we have shown
in the introduction that, even with perfect unary wrappers,
the post-processing procedure may be complex. Second,
learning-based solutions have been promoted to avoid writ-
ing wrappers by hand. Thus it is not fair to ask the end user
to write programs for constructing tuples from the outputs
of several unary wrappers.

The unsupervised approach is automatically trying to
avoid manual labeling. Unsupervised learning methods are
based on document alignment [1, 4, 13, 20] or grammati-
cal inference techniques [6]. However, as indicated by Zhai
and Liu in [19], these automatic methods are less accurate
than the systems that ask the user to label training pages.
Manual post-processing is needed for the user to identify
what he/she is interested in. For instance, consider the ta-
bles from www.bea.gov in Fig. 1, the system presented in
[20] identifies the two data regions corresponding to the two

tables. But if we consider the target relation (Country, Year,
Exports, Balance), the problem of extracting tuples is still
present. Moreover, in case 4, factorized values may not be
found by an unsupervised system. Therefore, extracting tu-
ples of records from the output of automatic systems can
be as difficult as wrapping original documents. Neverthe-
less, automatic systems could be a useful preprocessing for
large documents with few data records in order to identify
the data regions.

To sum-up, existing systems based on machine learning
techniques solve simple data organizations (Cases 1 and 2),
but fail on complex data organizations (Cases 3-5).

4 The extraction process

We present the incremental extraction procedure which
is based on data enrichment. The first component of the
target n-ary relation is called the seed. The seed extraction
is cast as a binary classification problem, which consists in
deciding whether a leaf is to be extracted or not. Figure 5
briefly describes the 56 attributes used by rep1 to encode a
leaf. The reader should note that attributes are defined from
several views over XML or XHTML documents: nodes prop-
erties over the DOM view; textual values over the yield
view which is the concatenation of text leaves’ contents ob-
tained with a depth-first left-right exploration of the DOM
view.

Extraction of partial tuples of length i (i �= 1) is cast
as a binary classification problem, which consists in de-
ciding whether a tuple of length i should be extracted or
not. Tuples of length i are encoded in an attribute-value
representation denoted by repi. Let us consider a tuple
(l0, . . . , li−1, li), repi includes an encoding of dependen-
cies between li and the partial tuple (l0, . . . , li−1). For en-
coding dependencies, we use node couples attributes which
are presented in Fig. 6. Again node couples attributes are
defined over the DOM view and the yield view. In order to
have a fixed number of attributes whatever the length of the
partial tuple is, repi encodes a partial tuple (l0, . . . , li−1, li)
by the leaf representation of li, node couples attributes for

Node representation label, position in father’s children
sequence, depth and height, number of children, size of
the subtree under the node, the label of its previous and
next siblings, the value of the class XHTML attribute.
There are 9 attributes.
Leaf representation node representation of the leaf plus
node representation of its 5 ancestors in the DOM view
plus the previous and next leaves’ contents (without to-
kenisation) in the yield view. There are 56 attributes.

Figure 5. Attributes for leaf representation.
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node couples attributes: for a pair of nodes (p, m) at-
tributes are: attributes for the node representation of the
nearest common ancestor a between p and m; the length
of the shortest path between p and a, between p and m
and between a and m in the DOM view and in the binary
tree encoding of the DOM view; the number of textual
leaves between p and m in the yield view; and for
each 1 ≤ k ≤ 5; the difference between the position
of the kth ancestor of p and of the kth ancestor of m in
their father’s children sequence. There are 21 attributes
for each pair of nodes.

Figure 6. Attributes for pairs of nodes

the pair (l0, li) (dependency with the seed) and node cou-
ples attributes for the pair (li−1, li) (dependency with the
previous component). There are 98 attributes for a tuple
representation and they are all independent of i.

The extraction algorithm for a target n-ary relation is the
algorithm 1. It takes as input a document d and n clas-
sifiers c1, . . . , cn according to the representation schemas
rep1, . . . , repn. First, tuples of length 1 are extracted.
Then, for each i, in line 4 a set Si of candidate tuples to
be extracted is defined by adding a leaf to every extracted
tuple of length i − 1. Tuples of length i are extracted in
line 5: the representation procedure repi issues a record;
records are then given to a classification procedure ci that
labels each of them as positive or negative. Every tuple of
length i classified as positive is extracted. This allows us
to handle factorized values. Indeed, when one of the i − 1
components is a factorized values, several tuples of length i,
constructed with the same tuple ti−1 of length i−1, must be
extracted. Line 6 allows us to handle missing values. When
no tuple ti, constructed from some ti−1, is extracted, then
the component i is assumed to be missing, and the tuple
(ti−1,null) is extracted.

The complexity of algorithm 1 depends on the complex-
ity of computing repi for candidate partial tuples at each
step i. The computation of tuple representations is efficient.
Indeed, leaf and node attributes are computed while read-
ing the input document. Couple nodes attributes must be
computed at each step of the incremental extraction process.
They are computed only from extracted tuples at the previ-
ous step. Calculating node couples attributes involves find-
ing the nearest common ancestor of a pair of nodes. This
can be done in constant time after a linear preprocessing of
the input tree structured document [8]. It should also be
noted that a classifier ci may only use a subset of attributes
reducing the computation time for the extraction process.

Algorithm 1 Extraction algorithm
Input: document d; n classifiers c1, . . . , cn according to

representation schemas rep1, . . . , repn

Notation: L(d) is the set of leaves of d, Si is the set of can-
didate partial tuples of length i, S+

i is the set of selected
partial tuples of length i.

1: S1 = {(l) | l ∈ L(d)};
2: S+

1 = {t1 ∈ S1 | c1(rep1(t1)) = +1}
3: for i = 2 to n do
4: Si = {ti = (ti−1, l) | ti−1 ∈ S+

i−1, l ∈ L(d)}
5: S+

i = {ti ∈ Si | ci(repi(ti)) = +1}
6: S+

i = S+
i ∪ {(ti−1,null) | ti−1 ∈ S+

i−1, ∀l ∈
L(d), ci(repi((ti, l))) = −1}

7: end for
Output: the set of extracted n-ary tuples S+

n

5 The induction process

Let us consider a target n-ary relation. The learning
process is incremental similarly to the extraction process.
Given a set D of completely annotated documents, algo-
rithm 2 loops from 1 to the number n of components. At
each step i, it computes a classifier ci for tuples of length i.
The number of positive examples is bounded by the number
of tuples in ∪d∈SS+(d), that is the number of tuples to be
extracted in D. On the opposite, the number of negative ex-
amples can be exponential in n. So we only use a subset of
negative examples to train each classifier ci. The selection
of negative examples is driven by the schema of the extrac-
tion process as well: at each step i of the process, candidate
tuples are built from positive examples of step i − 1. Neg-
ative examples are computed by the function Neg taking as
input a document d in D and a set of tuples to be extracted
from d. It is defined by:

Neg(d, S) = {(x, l) �∈ S|l ∈ L(d),∃l′ ∈ L(d)|(x, l′) ∈ S}
where L(d) is the set of leaves of the document d. Then,
examples are represented via repi and the base supervised
classification algorithm W is applied. Algorithm 2 outputs
a sequence of classifiers. This sequence will be the input of
algorithm 1 for the extraction process.

6 Interactive wrapper induction system

Algorithm 2 suffers from one main flaw: it requires a set
of documents where all tuples to extract are annotated. In
this section, we propose to adapt this algorithm for learning
from partially annotated examples in order to plug it in an
interactive system. The aim is to reduce the number of user
interactions to build n-ary wrappers.

In an interactive process, an end user first labels some
examples to extract. Then we enter a loop where the system
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Algorithm 2 Induction algorithm

Input: a sample D = ∪{d} of annotated documents
Notation: S+(d) is the set of tuples to be extracted in d;

S+
i (d) is the projection of S+(d) over the first i com-

ponents
1: for i = 1 to n do
2: S+

i = ∪d∈DS+
i (d)

3: S−
i = ∪d∈DNeg(d, S+

i (d))
4: ci = W (repi(S+

i ), repi(S−
i ))

5: end for
Output: the sequence (c1, . . . , cn) of classifiers

proposes a new hypothesis wrapper and the user corrects
this hypothesis until a good one is built. We have integrated
the interactive process in the wrapper induction system fol-
lowing the incremental approach developed so far: for every
i, wrappers for partial tuples are constructed in an interac-
tive process.

We simulate an end user by an oracle U . The oracle U is
given access to a pool of documents. Given as input a hy-
pothesis wrapper wi = (c1, . . . , ci) where each cj is a clas-
sifier for partial tuples of length j, the oracle U(wi) returns
true if wi is correct and returns new annotations otherwise.
We suppose a working document dc and that U returns new
annotations according to the following scenario. If U(wi)
does not return true and if wi is not correct on dc, U returns
a false negative example (a tuple not extracted by wi while
it should be extracted) and a false positive example (a tuple
extracted by wi while it should not be extracted) from dc.
We should note that a false positive or a false negative may
not exist. If U(wi) does not return true and wi is correct on
dc, then U returns a new document with two partial tuples
of length i to be extracted.

The interactive wrapper induction system is the algo-
rithm 3. It iterates over the length of partial tuples. At
each step i, it learns from a set of completely annotated
documents Di and a current working document dc, which
is partially annotated. In the working document dc, S+

i (dc)
(respectively S−

i (dc)) denotes the set of partial tuples of
length i to be extracted (respectively tuples not to be ex-
tracted) given by the oracle U .

When U returns a new document, it is supposed, accord-
ing to the above scenario, that the current wrapper is correct
over dc. Then, we add dc to the set of completely annotated
documents and the new working document is the document
returned by U .

The sets S+
i (dc) and S−

i (dc) are updated according to
the annotations given by U .

Positive examples are partial tuples of length i to be ex-
tracted in the documents of Di and in the set S+

i (dc).
Negative examples for completely annotated documents

in Di are defined according to function Neg as in Algo-

Algorithm 3 interactive wrapper induction system
Notation: an oracle U is an end user simulator;

d(U(c1, . . . , ci)) is the document returned by U ;
d+(U(c1, . . . , ci)) is the set of tuples to be extracted
returned by U ; d−(U(c1, . . . , ci)) is the set of tuples
not to be extracted returned by U ;

1: for i = 1 to n do
2: Di = ∅ {set of completely annotated documents}
3: ci = null {classifier}
4: dc = null {current working document}
5: while not U(c1, . . . , ci) do
6: if d(U(c1, . . . , ci)) �= dc then
7: {a new document to be processed}
8: Di = Di ∪ {dc} {dc is completely annotated}
9: dc = d(U(c1, . . . , ci)); S+

i (dc) = S−
i (dc) = ∅

10: end if
11: S+

i (dc) = S+
i (dc) ∪ d+(U(c1, . . . , ci))

12: S−
i (dc) = S−

i (dc) ∪ d−(U(c1, . . . , ci))
13: S+

i = (∪d∈Di
S+

i (d)) ∪ S+
i (dc)

14: S−
i = (∪d∈Di

Neg(d, S+
i (d))) ∪

Negp(i, dc, S+
i (dc), S−

i (dc))
15: ci = W (repi(S+

i ), repi(S−
i ))

16: end while
17: end for
Output: the sequence (c1, . . . , cn) of classifiers

rithm 2.
Negative examples for dc should be carefully defined be-

cause dc is partially annotated. For instance, let us consider
the case i = 1, that is the induction of the wrapper for the
seed. In the first interaction: there are only two positive ex-
amples available for learning. Thus we have to guess nega-
tive examples. The function Neg, used in the case of com-
pletely annotated documents, would give us all leaves in the
current document which are not explicitly labeled as posi-
tive and the classifier learned would classify positive only
leaves which are already known as positive!

To compute negative examples in the working document
dc, we define the function Negp. It takes as input the in-
dex i, the working document dc, and the sets S+

i (dc) and
S−

i (dc). When i = 1, it returns all leaves in S−
1 (dc) to-

gether with all leaves whose path in the DOM tree is not the
path of any leaf in S+

1 (dc). When i > 1, two cases are to
be distinguished: the first i − 1 components may be factor-
ized or not other several tuples of length i. In the first case,
several tuples of length i are constructed over the same par-
tial tuple of length i − 1. The function Neg would gener-
ate false negative examples. Thus we need to guess which
leaves may be good candidates to complete an (i − 1)-ary
tuple. Therefore, Negp returns all partial tuples of length i
in S−

i (dc) together with all partial tuples of length i such
that the partial tuple of length i − 1 is in S+

i−1 and the path
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of the ith component is not the path of any ith component in
S+

i (dc). In the second case, Negp returns all partial tuples
of length i in S−

i (dc) together with Neg(dc, S+(dc)).
Then the set of negative examples is computed in

Line 14.
A classifier ci is induced with the base supervised learn-

ing algorithm W updating the current partial wrapper wi =
(c1, . . . , ci). And the process iterates over calls to U and
over i when U agrees with the current partial wrapper.

7 Experimental results

Evaluation Protocol An extracted tuple is correct if all its
component values are correct. A component value is correct
if it matches exactly the target component value. Perfor-
mance of our wrapper induction system is evaluated using
the average of precision (P ), recall (R) and f-measure (F ).
They are computed with cross-validation techniques. In all
experiments, the base learner for binary classifiers is Quin-
lan’s C5.0 [15].

Experiments on RISE datasets Data sets in RISE corre-
spond to the first two cases according to Section 2. Table 1
presents the experimental results where TD is the average
number of tuples per document, and D is the number of doc-
uments used in the induction process. In this section and in
the next section as well, at most two documents are given to
the learner.

On BIGBOOK, OKRA and S20, Algorithm 2 obtain 100
of f-measure. For the problem S1 with the target relation
(company, price, product), WIEN achieves 100 of f-measure
while our system does not achieve 100 of f-measure because
parts of textual values in leaves are needed for correct ex-
traction. In the IAF dataset, with the target relation (name,
email, lastupdate, organization, altname, serviceprovider),
three of the six components of the target relation have miss-
ing values. Our system outperforms LIPX [17] (which has
46 of f-measure) and WIEN which fails because it can not
deal with missing values. On n-ary extraction tasks, we can
not compare with systems like STALKER because it uses n
unary wrappers and does not evaluate on tuples recombina-
tion. Further more it uses a post-processing, defined by the
end-user, to construct tuples from component values. On
unary extraction tasks, our system reaches the performances
of STALKER (except on S1 as mentioned before). In partic-
ular on IAF, the f-measure of our system varies from 84 to
100, whereas it obtains 64 in the n-ary case. Indeed on IAF

tuples recombination is more difficult than components ex-
traction.

Corpus TD D P R F

BIGBOOK 18.29 1 100 100 100
OKRA 13,23 1 100 100 100
S20 32.7 1 100 100 100
S1 40.3 1 88.65 88.57 88.61
IAF 9 2 61.51 67.66 64.22

Table 1. Experimental results on RISE
datasets.

Corpus Case TD D P R F

EXCITE 1 3,4 5 1 100 100 100
BBC 2,4 5 1 100 100 100
BLS 1 3 29 1 100 100 100
BLS 2 5 3.56 1 100 100 100
BLS 3 3 6 1 100 100 100
BLS 4 5 24 2 100 90 93.33
BEA 1 4,3 8.30 2 97.11 88.58 92.58
BEA 2 3 5.2 2 86.47 100 89.78
BTS 3 20 1 100 100 100

Table 2. Experiments on corporate Web sites.

Experiments on Web datasets We now consider
datasets6 obtained from several corporate Web sites. They
were chosen to be representative of the tree organizations
presented in Section 2. For the EXCITE 1 dataset, the re-
lation to extract is (town, day, weather, high, low). There
are five tuples, the component town is factorized while the
others are stored in a rotated table. In BBC, the relation
to extract is (town, day, high, low). The component town
is factorized and the others are stored in a table. There are
several datasets built from BLS with a target 3-ary relation.
In BLS 1, BLS 2 and BLS 4, tuples are stored in a cross table,
while in BLS 3 they are stored in a rotated table. In the BEA

1 benchmark (see Fig.1), the target relation is the 4-ary re-
lation (balance,year,country,export). For each document of
BEA 1, there are six tuples to extract. The component coun-
try is factorized among the six tuples. The other compo-
nents are stored in a rotated table. In the BEA 2 benchmark,
the target relation is the 3-ary relation (year,balance,export)
stored in a rotated table. In the rotated table of BTS, the re-
lation to extract is (year,highway,oil).

Experimental results are presented in Table 2. They
show that Algorithm 2 succeeds with one or two completely
annotated Web pages. Two pages were needed when there
are large variations in the size of the tables and in the num-
ber of tuples to be extracted from one page to another.

Experiments in the interactive system We consider the
interactive wrapper induction algorithm of Section 6 with
its user simulator U . We compare the number of interac-
tions in the completely annotated case and in the interactive
framework. We denote by #F the number of interactions

6http://www.grappa.univ-lille3.fr/ marty/corpus.html

Proceedings of the 2006 IEEE/WIC/ACM International Conference
on Web Intelligence (WI 2006 Main Conference Proceedings)(WI'06)
0-7695-2747-7/06 $20.00  © 2006



Corpus TD # I # P # F

EXCITE 1 5 13 25 25
BBC 5 7 13 15
BLS 1 29 25.8 32.40 87
BLS 2 3.56 7.60 12.20 10.68
BLS 3 6 13.60 21.60 18
BLS 4 24 16.40 30.20 288
BEA 1 8.30 32 56.40 66.40
BEA 2 5.2 9.4 15.20 31.2
BTS 8.30 29 45.00 60

Table 3. Interactive experiments

performed by the user with algorithm 2. It is defined to be
n × m where m is the number of annotated tuples and n is
the arity of tuples. In the interactive system, we denote by
#I the number of component values selected or unselected
by the user U , and we denote by #P the number of interac-
tions performed by the user U . The selection of an example
requires one interaction for the seed and two interactions
for a partial tuple of length i (the tuple of length i − 1 and
the ith component value). Thus a correction requires: 1 or
2 interactions for the seed; 2 or 4 interactions for the next
steps.

We present in table 3 the number of interactions required
in the two scenarios to achieve perfect wrappers on corpo-
rate Web sites. The number #I of examples selected or un-
selected by the user in the interactive framework is smaller
than the number #F of interactions for a complete annota-
tion. The number of interactions #P in the interactive frame-
work is smaller than #F on datasets with many tuples per
document. For benchmarks with few tuples to extract per
document, like BLS 2, #P can be greater than #F because
negative examples must be selected and because many par-
tial tuples must be selected per tuple to be extracted.

We made experiments where the components are taken
in different orders and we do not notice significant varia-
tions of the performances.

8 Conclusion

We have presented a machine learning approach for
n-ary relation extraction from semi-structured documents.
Our algorithm combines the advantage that component ex-
traction and tuples construction are made simultaneously in
the wrapping procedure and in the induction process, with-
out any post-processing.

The effectiveness of our approach is evident with com-
pletely annotated documents: we achieve state-of-the-art re-
sults on simple data organizations and also succeeds on in-
tricate organizations like pivot table, rotated table and cross
table where previous systems fail. Extraction and learn-
ing are fast. Furthermore, we have proposed an interactive
framework in order to reduce the number of user actions
and shown that our method is again improved: we are able

to learn equally performant wrappers, with less effort for
the user.
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