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ABSTRACT

We propose a new method to learn overcomplete dictionaries for
sparse coding structured as unions of orthonormal bases. The in-
terest of such a structure is manifold. Indeed, it seems that many
signals or images can be modeled as the superimposition of sev-
eral layers with sparse decompositions in as many bases. More-
over, in such dictionaries, the efficient Block Coordinate Relax-
ation (BCR) algorithm can be used to compute sparse decompo-
sitions. We show that it is possible to design an iterative learning
algorithm that produces a dictionary with the required structure.
Each step is based on the coefficients estimation, using a variant
of BCR, followed by the update of one chosen basis, using Sin-
gular Value Decomposition. We assess experimentally how well
the learning algorithm recovers dictionaries that may or may not
have the required structure, and to what extent the noise level is a
disturbing factor.

1. INTRODUCTION

Sparse coding [1, 2] is a useful tool to analyze and try to explain the
structure of series of observed data, such as successive time frames
of an audio signal [3] or natural images [4]. Formally, assume that
we observe T vectors x(t) = (xn(t))N

n=1, 1 ≤ t ≤ T which are
supposed to have been generated following the model:

x(t) = As(t) + ε(t) (1)

A being an overcomplete dictionary (an N × K matrix), s(t) ∈
RK some “sparse” coefficients and ε(t) ∈ RN a Gaussian noise.
Sparse coding can be viewed as a way of estimating A from the
only observation of X = AS + E where X is the N × T matrix
containing T signal frames (similar notations being used for S and
E).

Jointly optimizing the coefficients and the dictionary, under
constraints added to enforce the well-posedness of the problem, is
a hard task, so we use an alternating optimization strategy:

1. Coefficient update given a dictionary A:

arg min
S

‖X − AS‖2
2 + λ‖S‖1 (2)

2. Dictionary update given coefficients S:

arg min
A

‖X − AS‖2
2 (3)

under some constraint on A.
!The initial part of this work was done in collaboration with Laurent

Benaroya while he was finishing his PhD with IRISA.

The coefficient update step (2) can be justified in a probabilistic
framework using a Laplacian prior on the coefficients sk(t) [5].
Moreover, it is a simpler parent problem of the NP-hard combi-
natorial problem, where ‖S‖1 is replaced with ‖S‖0

0, the number
of non-zero components in S. Computing the solution to Eq. (2)
by Quadratic Programming is rather computationally intensive in
the general case where A has no special structure. However, when
A is a union of orthonormal bases (ONB), the Block Coordinate
Relaxation (BCR) methods are efficient [6]. Another motivation
to constrain the dictionary to be a union of ONB is that it seems
that audio signals [7] and images [8] can indeed be modeled as
the superimposition of several layers, each of which having sparse
representation in its own adapted ONB. Note that when A is con-
strained to have this precise structure, the dictionary update step
(3) is also made relatively easy. This step, in a probabilistic frame-
work, can be interpreted as a likelihood maximization and solved
with an Expectation-Maximization (EM) algorithm [9].

In Section 2, we describe BCR and a variant which we used
to solve (2). In Section 3, we introduce our algorithm to learn a
union of bases by iteratively optimizing (3) with respect to each
basis. In Section 4 we describe and analyze the experiments made
with the learning algorithm on data generated following the model
(1). We study the influence of the number T of frames of the
learning dataset, of the a priori knowledge on the noise level, and
of the possible modeling error corresponding to the fact that the
true A might not be a union of bases or the number of bases could
be wrong.

2. COMPUTATION OF SPARSE COEFFICIENTS

Finding sparse coefficients for the observed data X is the result of
a compromise between

• the minimization of the reconstruction error:

‖X − AS‖2
2 :=

NX

n=1

TX

t=1

|xn(t) − (As(t))n|2.

• the minimization of a diversity measure, the most common
ones being:

‖S‖p
p :=

KX

k=1

TX

t=1

|sk(t)|p

for 0 ≤ p ≤ 1. The strict diversity, defined by the number
of non-zeros coefficients, is given by ‖S‖0

0.

This problem is generally difficult. It is indeed NP-hard with the
‖S‖0

0 diversity measure when A is an arbitrary redundant dictio-
nary. Many sub-optimal algorithms have been proposed such as
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Matching Pursuit (MP) [10], Basis Pursuit (BP) [5] and FOCUSS
[11]. The latter solves the minimization problem

min
S

‖X − AS‖2
2 + λ‖S‖p

p (4)

and Basis Pursuit solves it for p = 1 (see Eq. (2)). These algo-
rithms are generally rather computationally intensive. However
Basis Pursuit can be implemented more efficiently with a Block
Coordinate Relaxation (BCR) method [6] when A is a union of
ONB. Moreover, it has been shown that, under some conditions,
the solution of (4) for any 0 ≤ p ≤ 1 is close to the solution given
by Basis Pursuit [5].

In this section we recall how Basis Pursuit is implemented
with soft-thresholding when A is a single ONB, then we remind
the reader about BCR and eventually we describe a variant of BCR
that we introduced to deal with low noise levels (small threshold
parameter λ).

2.1. Case of an orthonormal basis

When A is an orthonormal basis, the solution of (2) is given by
soft thresholding:

∀k, t ŝk(t) =

8
<

:

aT
k x(t) − λ/2 if aT

k x(t) > λ/2
0 if |aT

k x(t)| ≤ λ/2
aT

k x(t) + λ/2 if aT
k x(t) < −λ/2

(5)

where ak is the kth column of A (also called atom of the dictio-
nary).

2.2. Case of a union of orthonormal bases

When A = [A1, . . . ,AL] is a union of L orthonormal bases,
the coefficients S are decomposed in L subsets of coefficients Sl

corresponding to the L bases, as S = [ST
1 , . . . ,ST

L ]T . The BCR
algorithm, described in Table 1 deals with the difficulty to directly
solve (2) for a redundant dictionary A by successively solving it
for its different bases Al. Then the sub-coefficients of an initial es-
timate Sinit are iteratively updated until convergence is reached.
The BCR algorithm has been proven to converge to a solution of
(2), when, in Step 1, the selection of Sl follows a systematic cycle,
or results from an optimal descent rule [6]. Unfortunately, if λ is
very small (which corresponds to looking for a small reconstruc-
tion error, namely the low noise assumption), BCR might converge
very slowly since almost no thresholding is performed in Step 3.
In order to compute sparse coefficients in this low noise case, we
propose to start BCR with a large initial threshold λ0 and decrease
it regularly, leading to the algorithm explained in Table 2. During
the very first steps, since the threshold is high, sparsity is enforced;
when the threshold becomes smaller, the error vanishes.

2.3. Experiments

Even though we have no proof of convergence of this modified
BCR algorithm, we observed experimentally that if the two pa-
rameters Nit and λ0 are appropriately chosen, it reaches a solution
close to those provided at a higher computational cost by MP and
FOCUSS.

Our experiments reported in [12] have shown that, for each
Nit, the initial threshold λ0 greatly impacts the diversity of the
estimated coefficients. An optimal value of λ0 may be choosen
a posteriori to minimize (2). Note that the higher the number of

1. Select a subset Sl of the current S to update;

2. Compute Xl = X −
P

i!=l AiSi;

3. Update Sl by replacing it by

arg min
Sl

‖Xl − AlSl‖2
2 + λ‖Sl‖1,

which is computed by soft thresholding (Eq. (5));

4. If the stopping criterion is not reached, go to step 1.

Table 1. Block Coordinate Relaxation algorithm

for it = 0 to Nit

use BCR with threshold λ0(1 − it
Nit

) to update S

end

Table 2. Modified BCR algorithm for the low noise case

iterations, the sparser the coefficients obtained using the optimal
threshold.

For Nit = 100 and λ0 in a fairly large range, the diversity of
the coefficients obtained by the BCR variant is the same than for
MP and FOCUSS. However, the BCR algorithm variant is com-
putationally less costly, taking about 2 seconds instead of about 3
seconds for MP, and 6 seconds for FOCUSS.

3. DICTIONARY LEARNING WITH SVD

The algorithm used to learn a union of L orthonormal bases (ONB)
is described in Table 3. To understand the rationale behind the
use of the SVD in Step 3, we will first analyze the optimization
problem (3) when A is constrained to be a single ONB. Then, we
will briefly explain how the algorithm for L bases is derived from
the single basis one, and we will discuss in more details how the
coefficient update (Step 2) is performed, depending whether we
know which value of λ to use in (2) or we want to adapt it to the
data. As for the the stopping criterion (4), we simply set a priori
the number of learning steps. Studying how much the dictionary
varies between two steps may help design a better criterion in the
future.

1. Choose an initial dictionary A = [A1 . . .AL];

2. Update the coefficients S = [S1 . . .SL] using the current
A (see text);

3. Choose which basis Al to update and:

(a) Compute Xl = X −
P

i!=l AiSi

(b) Compute the singular value decomposition:

XlS
T
l = UDVT

(c) Update
Al = UVT

4. If the stopping criterion is not reached, go to step 2 (see
text).

Table 3. Learning algorithm for L orthonormal bases
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3.1. Learning a single orthonormal basis

The optimization problem (3) with the constraint that A is an ONB
can be written as the minimization of a Lagrangian,

L(A, µ) = ‖X − AS‖2
2 + Tr

h
µ(AT A − Id)

i
(6)

where µ is an N × N matrix of Lagrange multipliers. Setting the
gradients ∇µL and ∇AL to zero yields:

AT A − Id = 0 (7)

−2(X − AS)ST + A(µ + µT ) = 0 (8)

Let Z := XST and Y(µ) := SST + (µ + µT )/2. While Z
can be explicitly computed, Y(µ) is unknown since it depends
on the unknown multipliers µ. Solving the equations (7) and (8) is
equivalent to finding µ such that A−1 = Y(µ)Z−1 is orthogonal,
or in other words such that:

Y(µ)Z−1(Z−1)T YT (µ) = Id. (9)

Let Z = UDVT be the Singular Value Decomposition (SVD) of
Z, that is to say U and V are orthogonal matrices and D is a diago-
nal matrix. Condition (9) becomes (Y(µ)VD−1)(D−1VT YT (µ)) =
Id, i.e. the following matrix W(µ) should be orthogonal:

W(µ) := Y(µ)VD−1 (10)

Noting that Y(µ) = W(µ)DVT must be symmetric, it can be
shown [12] that the only solutions are of the form:

W(µ) = VΣ

Σ being a diagonal matrix with ±1 diagonal entries. Among the
2N candidate solutions A = UΣVT , the one which minimizes L
is A = UVT , i.e. Σ = Id. Note that, even if the SVD of Z is
not unique, the product UVT is.

3.2. Learning a union of L orthonormal bases

Ideally, when A is constrained to be the union of L orthonormal
bases, one would like to perform the dictionary update step (3) by
minimizing the Lagrangian:

‖X − AS‖2
2 +

LX

l=1

Tr
h
µl(A

T
l Al − Id)

i
.

However, this optimization problem does not have an explicit so-
lution as in the case of a single ONB. The principle behind the
algorithm described in Table 3 is that, at each iteration, only one
of the bases Al is optimized.

If we know which parameter λ to use in Eq. (2) – for exam-
ple, if we know the prior distributions of ε and s in the proba-
bilistic model (1) – then we perform Step 2 with the regular BCR
algorithm. In many practical cases however, it is difficult to have
an idea of a relevant value for λ. If Gaussian noise ε(t) is as-
sumed, with unknown variance, we use the algorithm proposed by
Azzalini et al, [13]: starting from an initial exact representation
X = AS0 and the estimate S = 0 we iterate the following steps

1. compute the variance σ2 of S0 − S;

2. update S by letting it contain all the entries of S0 that are
above the threshold 2 log(N)σ2.

3. if the last update did not modify S, then stop, else go to 1.

To compute the initial exact decomposition S0, one can use indif-
ferently the variant of BCR, FOCUSS or MP preferably to S0 =
A+X, because they encourage sparsity of the coefficients. If we
try to use the above algorithm with a very small λ – for example in
the low noise limit – the above strategy for Step 2 needs to be mod-
ified since, similarly to what we explained for the variant of BCR,
the dictionary update step would almost not change the dictionary.
We refer the reader to report [12] for more details.

4. EXPERIMENTS

The following experiments have been designed with synthetic data
generated with the model (1) using a known reference dictionary
Aref . The goal is to study the influence of various parameters on
the performance, and to see how modeling error could also impact
the results. We use two relevant and complementary performance
measures: the false alarm rate and the missed detection rate, cor-
responding respectively to the relative number of estimated atoms
aest (i.e. the number of columns of Aest, the dictionary estimated
using the learning algorithm) that “do not match” any reference
atom aref , and to the relative number of reference atoms that “are
not matched” by any estimated atom. Since all atoms have unit
norm, aest and aref are considered to match if their inner prod-
uct |aT

estaref | is close enough to one. So we use a parameter ξ
to decide that they match if and only if |aT

estaref | ≥ ξ. Different
values of ξ yield different but related performance measures.

In order to evaluate the performance on a wide range of con-
ditions, each experiment is run with Nr different dictionaries, and
the performance measures are averaged over these runs.

4.1. Influence of the number T of signal frames

First, we study the impact of the number T of frames used to learn
the dictionary. Data are generated with Aref a union of two ran-
dom ONB in dimension N = 32, using the noiseless model (1)
with s(t) (of dimension 2N ) containing between 0 and 6, ran-
domly located, non-zero coefficients, that follow a standard Gaus-
sian law.

For T ≤ 10N , the dictionary estimation yields poor perfor-
mance, the false alarm rate and the missed detection rate both reach
80%, for ξ = 0.99. On the contrary, for T = 20N , about eight
out of ten atoms are correctly estimated, and for T ≥ 50N , all
atoms are retrieved (rates are 0% with ξ = 0.99). Noting that the
computing time linearly increases with T , we set T = 50N in the
rest of the experiments.

4.2. Influence of the noise level

To understand the effect of the noise level on the performance, we
repeat the above experiments with the same data to which we add
noise at various signal to noise levels: +∞ dB, 10 dB, 0 dB. At
each noise level we run the three configurations of the learning al-
gorithm designed respectively for known λ, small λ and unknown
λ. For the known λ case, we chose the parameter λ for which the
coefficients computed with were the closer to the original coeffi-
cients.

Table 4.2 shows that the algorithms with known λ, and small
λ (without prior knowledge on λ), give almost similar results, the
first one performing better when there is some noise, while the
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Learning algorithm +∞ dB +10 dB +0 dB
λknown 7% 28% 59%
λsmall 6% 30% 63%
λunknown 42% 58% 86%

Table 4. Missed Detection Rate depending on the noise level on
data, and on the learning method, with ξ = 0.99 (average over
sixty experiments)

second one giving better estimation in the low-noise case. Un-
fortunately, the algorithm designed for unknown λ never finds as
many atoms.

The three configurations of the algorithm are greatly depen-
dent on the noise level, no one retrieving, among the Nr = 60
runs, more than 86% of the dictionary, even for a +10dB signal to
noise ratio.

4.3. Influence of the model mismatch

We designed experiments to analyse the behavior of the learning
algorithm when there is a mismatch between the number of ONB
in the reference dictionary and in the estimated one.

We run the same algorithm to estimate a pair of ONB on three
datasets generated as above with the noiseless model (1) with

• Aref,1 a single random ONB

• Aref,2 a union of two ONB

• Aref,3 a union of three random ONB.

Note that with Aref,3, if the three bases are sufficiently different
one from another, one cannot expect to get less than 33% missed
detection, because only 2N atoms are estimated while there are
3N reference atoms. With Aref,1, as soon as there is no more
than 50% false alarm we are sure to have recovered the atoms of
the reference dictionary, but they may be split in the two learned
bases.

Reference dictionary Aref,1 Aref,2 Aref,3

Average missed detection rate 0.5% 7% 99.5%
Average false alarm rate 44% 7% 99%

Table 5. missed detection rate and false alarm rate (ξ = 0.99)
depending on the number of bases in Aref , when the estimated
dictionary owes two bases (average over Nr = 200 runs)

The results of two hundred runs are summarized in Table 4.3.
More precisely:

• Aref,1: almost all reference atoms are retrieved. In 55
cases out of 100, one of the estimated basis is exactly Aest,1.
In the 45 other cases out of 100, the retrieved atoms are
shared between the two bases, 82% in the first basis, and
17% in the second, while 1% are not detected.

• Aref,2: the average performance values hide two distinct
behaviours. In 92% of the experiments, the dictionary is
perfectly estimated, while in 8% of the cases, learning to-
tally failed, without any well estimated atom at all.

• Aref,3: never more than 15% of the atoms were retrieved,
the average being only 0.5%.

The algorithm seems to be efficient only when estimating at
least as many bases as there are in the reference dictionary. A good
strategy could therefore be to learn a lot of bases, and to estimate
a posteriori the number of interesting ones.

5. CONCLUSION

We have presented a new method for learning from a set of ob-
served data vectors, a dictionary structured as a union of orthonor-
mal bases, with the objective that the decomposition of the data on
this dictionary would be sparse. We have demonstrated on synthet-
ically generated data that this method is able to recover a relevent
underlying dictionary provided that it knows a priori the structure
(i.e. the number of ONB in the dictionary). The approach seems to
behave reasonably well even when the number of bases is overesti-
mated. We are now considering several remaining practical prob-
lems, namely estimating the number of bases, studying how the
algorithm scales when the dimension N of the data becomes large
and extending experiments to real audio signals or images. Last
but not least, we are looking for conditions where we can prove
that the algorithm converges to the underlying dictionary.
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